

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	6839
Number of Logic Elements/Cells	109424
Total RAM Bits	5621760
Number of I/O	475
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx110df31i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express® (PCIe®) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
T _J	Operating junction temperature	-40	125	°C

Note to Table 1-1:

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to -2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1-2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

⁽¹⁾ Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

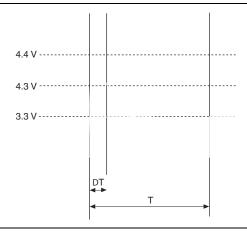

A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 65% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 65/10ths of a year.

Table 1–2. Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame for Cyclone IV Devices

Symbol	Parameter	Condition (V)	Overshoot Duration as % of High Time	Unit
		V _I = 4.20	100	%
		V _I = 4.25	98	%
		V _I = 4.30	65	%
	40 1	V _I = 4.35	43	%
V _i	AC Input Voltage	V _I = 4.40	29	%
	l	V _I = 4.45	20	%
		V _I = 4.50	13	%
		V _I = 4.55	9	%
		V _I = 4.60	6	%

Figure 1–1 shows the methodology to determine the overshoot duration. The overshoot voltage is shown in red and is present on the input pin of the Cyclone IV device at over 4.3 V but below 4.4 V. From Table 1–2, for an overshoot of 4.3 V, the percentage of high time for the overshoot can be as high as 65% over a 10-year period. Percentage of high time is calculated as ([delta T]/T) \times 100. This 10-year period assumes that the device is always turned on with 100% I/O toggle rate and 50% duty cycle signal. For lower I/O toggle rates and situations in which the device is in an idle state, lifetimes are increased.

Figure 1-1. Cyclone IV Devices Overshoot Duration

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT (*)	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (5% (5)	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	_	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	_	0.97	1.0	1.03	V
V _I	Input voltage	_	-0.5	_	3.6	V
V_0	Output voltage	_	0	_	V _{CCIO}	V
		For commercial use	0	_	85	°C
т	Operating junction temperature	For industrial use	-40	_	100	°C
T_J	Operating junction temperature	For extended temperature	-40	_	125	°C
		For automotive use	-40	_	125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (5)	50 μs	_	50 ms	_
		Fast POR (6)	50 μs	_	3 ms	_

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
V _I	DC input voltage	_	-0.5		3.6	V
V ₀	DC output voltage	_	0	_	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0	_	85	°C
T _J	operating junction temperature	For industrial use	-40	_	100	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (7)	50 μs	_	50 ms	_
		Fast POR (8)	50 μs	_	3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	ı	10	mA

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect V_{CCD PLL} to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCIO} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCIO} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCIO} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCIO} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{\text{CC_CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1-5. ESD for Cyclone IV Devices GPIOs and HSSI I/Os

Symbol	Parameter	Passing Voltage	Unit
V _{ESDHBM}	ESD voltage using the HBM (GPIOs) (1)	± 2000	V
	ESD using the HBM (HSSI I/Os) (2)	± 1000	V
V	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) (2)	± 250	V

Notes to Table 1-5:

- (1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.
- (2) This value is applicable only to Cyclone IV GX devices.

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1-12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
	Value of the I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
D	before and during configuration, as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
R_ _{PU}	well as user mode if you enable the programmable pull-up resistor option	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
R_PD	Value of the I/O pin pull-down resistor before and during configuration	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
	201010 and daring bonnigaration	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (4)	8	50	112	kΩ

Notes to Table 1-12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.
- (3) $R_{PU} = (V_{CC10} V_1)/I_{R_PU}$ Minimum condition: $-40^{\circ}C$; $V_{CC10} = V_{CC} + 5\%$, $V_1 = V_{CC} + 5\% 50$ mV; Typical condition: $25^{\circ}C$; $V_{CC10} = V_{CC}$, $V_1 = 0$ V; $V_2 = 0$ V; $V_3 = 0$ V; $V_4 = 0$ V and $V_5 = 0$ V and $V_6 = 0$ V and $V_7 = 0$ V and $V_8 = 0$ V and $V_$

Maximum condition: 100°C ; $V_{\text{CCIO}} = V_{\text{CC}} - 5\%$, $V_{\text{I}} = 0$ V; in which V_{I} refers to the input voltage at the I/O pin.

(4) $R_{PD} = V_I/I_{RPD}$

Minimum condition: -40°C; $V_{CCIO} = V_{CC} + 5\%$, $V_I = 50$ mV;

Typical condition: 25°C; $V_{CCIO} = V_{CC}$, $V_1 = V_{CC} - 5\%$; Maximum condition: 100°C; $V_{CCIO} = V_{CC} - 5\%$, $V_1 = V_{CC} - 5\%$; in which V_1 refers to the input voltage at the I/O pin.

Hot-Socketing

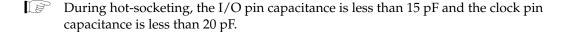

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN(AC)}	AC current per I/O pin	8 mA (1)
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|IIOPIN| = C \frac{dv}{dt}$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported $V_{\rm CCIO}$ range for Schmitt trigger inputs in Cyclone IV devices.

Table 1–14. Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		$V_{CCIO} = 3.3$	200	mV
V	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5	200	mV
V _{SCHMITT}	input	V _{CCIO} = 1.8	140	mV
		V _{CCIO} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

I/O Ctondovd	V _{CCIO} (V)		V	V _{IL} (V) V _{IH} (V)		V _{OL} (V) V _{OH} (V)		I _{OL}	I _{OH}		
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) <i>(4)</i>	(mA) (4)
3.3-V LVTTL (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15	_	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Notes to Table 1-15:

- (1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1-15, refer to "Glossary" on page 1-37.
- (2) AC load CL = 10 pF
- (3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.
- (4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 2 of 2)

I/O Standard	V _{CCIO} (V)			V _{CCIO} (V) V _{ID} (mV)				V _{IcM} (V) ⁽²⁾			V _{OD} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max		
LVDS						0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.80								
(Column I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; Mbps \leq D_{MAX} \\ \leq \; 700 \; Mbps \end{array}$	1.80	247	_	600	1.125	1.25	1.375		
1,00)						1.05	D _{MAX} > 700 Mbps	1.55								
BLVDS (Row I/Os) (4)	2.375	2.5	2.625	100		_	_	_	_	_	_		_	_		
BLVDS (Column I/Os) (4)	2.375	2.5	2.625	100		_	_	_	_	_	_		_	_		
mini-LVDS (Row I/Os)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4		
mini-LVDS (Column I/Os) (5)	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4		
RSDS® (Row I/Os) (5)	2.375	2.5	2.625	_		_	_	_	100	200	600	0.5	1.2	1.5		
RSDS (Column I/Os) (5)	2.375	2.5	2.625	_			_		100	200	600	0.5	1.2	1.5		
PPDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4		
PPDS (Column I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4		

Notes to Table 1-20:

- (1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.
- (2) V_{IN} range: $0 \text{ V} \leq V_{IN} \leq 1.85 \text{ V}.$
- (3) $R_L \text{ range: } 90 \leq R_L \leq 110 \ \Omega$.
- (4) There are no fixed V_{IN} , V_{OD} , and V_{OS} specifications for BLVDS. They depend on the system topology.
- (5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.
- (6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/	Conditions		C6			C7, I7				Unit	
Description	Collultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PLD-Transceiver Inte	rface										
Interface speed (F324 and smaller package)	_	25	_	125	25	_	125	25	_	125	MHz
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Digital reset pulse width	_		Minimum is 2 parallel clock cycles								

Notes to Table 1-21:

- (1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.
- (2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll locked goes high after pll powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx analogreset deasserts and before rx locktodata is asserted in manual mode.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3).
- (13) Time taken to recover valid data after the $rx_locktodata$ signal is asserted in manual mode.
- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–4 shows the differential receiver input waveform.

Figure 1-4. Receiver Input Waveform

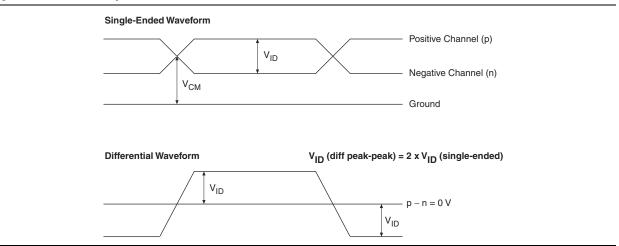


Figure 1–5 shows the transmitter output waveform.

Figure 1-5. Transmitter Output Waveform

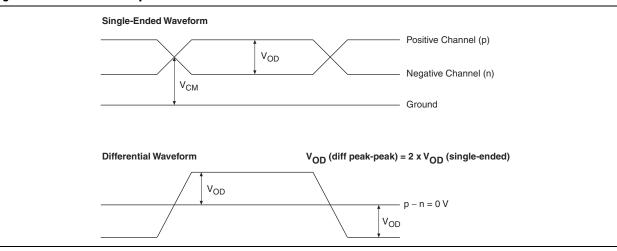


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω

Cumbal			V _{op} Sett	ing (mV)		
Symbol	1	2	3	4 (1)	5	6
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200

Note to Table 1-22:

(1) This setting is required for compliance with the PCle protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Symbol/	Conditions		C6			C7, I7	7			Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PCIe Transmit Jitter Gene	ration ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_		0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	6		> 0.6	i		> 0.6	6	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾										
Deterministic jitter	Pattern = CRPAT		_	0.14			0.14			0.14	UI
(peak-to-peak)	Tattom - On 70			0.11			0.11			0.11	01
Total jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4			> 0.4				> 0.4	ļ	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66				> 0.60	6		6	UI	

Notes to Table 1-23:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers specified are valid for the stated conditions only.
- (3) The jitter numbers for PIPE are compliant to the PCle Base Specification 2.0.
- (4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Davis				Perfor	mance				11-14
Device	C6	C 7	C8	C8L (1)	C9L (1)	17	I8L ⁽¹⁾	A7	Unit
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Dovice					Unit				
Device	C6	C7	C8	C8L (1)	C9L (1)	17	I8L (1)	A7	Unit
EP4CE55	500	437.5	402	362	265	437.5	362	_	MHz
EP4CE75	500	437.5	402	362	265	437.5	362	_	MHz
EP4CE115	_	437.5	402	362	265	437.5	362	_	MHz
EP4CGX15	500	437.5	402	_	_	437.5	_	_	MHz
EP4CGX22	500	437.5	402	_	_	437.5	_	_	MHz
EP4CGX30	500	437.5	402	_	_	437.5	_	_	MHz
EP4CGX50	500	437.5	402	_	_	437.5	_	_	MHz
EP4CGX75	500	437.5	402	_	_	437.5	_	_	MHz
EP4CGX110	500	437.5	402	_	_	437.5	_	_	MHz
EP4CGX150	500	437.5	402	_	_	437.5	_	_	MHz

Note to Table 1-24:

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (-40°C to 100°C), the extended industrial junction temperature range (-40°C to 125°C), and the automotive junction temperature range (-40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (-8L speed grade)	5	_	362	MHz
	Input clock frequency (-9L speed grade)	5		265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
t _{INJITTER_CCJ} (5)	Input clock cycle-to-cycle jitter F _{REF} \geq 100 MHz	_	_	0.15	UI
	F _{REF} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (external clock output) (3)	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	_	_	472.5	MHz
	PLL output frequency (-7 speed grade)	_	_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	_	_	402.5	MHz
	PLL output frequency (-8L speed grade)	_	_	362	MHz
	PLL output frequency (-9L speed grade)	_	_	265	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_		1	ms

⁽¹⁾ Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
toutjitter_period_dedclk (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_ccj_dedclk (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_period_io (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
toutjitter_ccj_io <i>(6)</i>	Regular I/O cycle-to-cycle jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_	_	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{CASC_OUTJITTER_PERIOD_DEDCLK}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)	_	_	42.5	mUI

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{CCD\ PLL}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{CO} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{CO} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- $\begin{tabular}{ll} (8) & The cascaded PLLs specification is applicable only with the following conditions: \end{tabular}$
 - Upstream PLL—0.59 MHz \leq Upstream PLL bandwidth < 1 MHz
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) (1)	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1–30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	_	ns
t _{JCH}	TCK clock high time	19	_	ns
t _{JCL}	TCK clock low time	19	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	_	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t_{JPH}	JTAG port hold time	10	_	ns
t _{JPCO}	JTAG port clock to output (2), (3)	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output (2), (3)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2), (3)	_	15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

- (1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1-37.
- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol Modes		C6			C7, I7			C8, A7				C8L, I	BL		Unit		
Syllibul	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (3)	_	_		1	_	_	1	_		1	_	_	1	_		1	ms

Notes to Table 1-31:

- (1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
- (2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks.

 Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Ob.al	Madaa		C6			C7, 17	'		C8, A7	7	(C8L, 18	BL		C9L		11!4
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	85	5		85	5		85	5		85	5	_	72.5	MHz
	×8	5	_	85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
frequency)	×4	5	_	85	5	_	85	5		85	5		85	5	_	72.5	MHz
	×2	5		85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5		170	5	_	145	MHz
	×10	100	_	170	100	_	170	100	_	170	100	_	170	100		145	Mbps
	×8	80	_	170	80	_	170	80	_	170	80	_	170	80	_	145	Mbps
Device operation in	×7	70	_	170	70	_	170	70	_	170	70		170	70	_	145	Mbps
Mbps	×4	40	_	170	40		170	40	_	170	40	_	170	40	_	145	Mbps
	×2	20	1	170	20	_	170	20		170	20		170	20		145	Mbps
	×1	10	-	170	10		170	10		170	10		170	10	_	145	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45	_	55	45	_	55	%
TCCS	_	_	1	200	_	_	200	_		200	_		200	_		200	ps
Output jitter (peak to peak)	_	_		500	_	_	500	_		550	_	_	600	_		700	ps
	20 – 80%,																
t _{RISE}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
	20 – 80%,																
t _{FALL}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_		500	_	ps

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 2 of 2)

Symbol	Modes	C6			C7, I7			C8, A7			(C8L, 18	L		Unit			
	Symbol	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t_{LOO}	CK <i>(2)</i>	_		_	1	_	_	1	_	_	1	_		1	_	_	1	ms

Notes to Table 1-32:

- (1) Emulated RSDS_E_1R transmitter is supported at the output pin of all I/O Banks of Cyclone IV E devices and I/O Banks 3, 4, 5, 6, 7, 8, and 9 of Cyclone IV GX devices.
- (2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–33. Mini-LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4)

0	Modes	C6		C7, I7		C8, A7			C8L, I8L			C9L					
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	200	5	_	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
	×8	5	_	200	5	_	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
f _{HSCLK} (input clock	×7	5		200	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
frequency)	×4	5		200	5		155.5	5		155.5	5		155.5	5		132.5	MHz
1 37	×2	5		200	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
	×1	5		400	5		311	5		311	5		311	5		265	MHz
Device operation in	×10	100		400	100		311	100	_	311	100		311	100	_	265	Mbps
	×8	80		400	80		311	80		311	80		311	80		265	Mbps
	×7	70	_	400	70	_	311	70	_	311	70	_	311	70	_	265	Mbps
Mbps	×4	40		400	40		311	40	_	311	40		311	40	_	265	Mbps
,	×2	20		400	20		311	20	_	311	20		311	20		265	Mbps
	×1	10	_	400	10	_	311	10	_	311	10	_	311	10	_	265	Mbps
t _{DUTY}	_	45		55	45		55	45	_	55	45		55	45	_	55	%
TCCS	_	_	_	200	_	_	200	_	_	200	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{LOCK} (3)	_	_	_	1	_	_	1	_	_	1	_	_	1	_	_	1	ms

Notes to Table 1-33:

- (1) Applicable for true and emulated mini-LVDS transmitter.
- (2) Cyclone IV E—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated mini-LVDS transmitter is supported at the output pin of all I/O banks.

 Cyclone IV GX—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the
 - Cyclone IV GX—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Table 1-44. IOE Programmable Delay on Column Pins for Cyclone IV GX Devices (1), (2)

		Number	Min Offset	Max Offset						
Parameter	Paths Affected	of		Fast (Corner	Slow Corner				Unit
		Settings		C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1-45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

		Number	Min Offset	Max Offset						
Parameter	Paths Affected	of		Fast (Corner	Slow Corner				Unit
		Settings		C6	17	C6	C 7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Notes to Table 1-45:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software

Table 1-46. Glossary (Part 2 of 5)

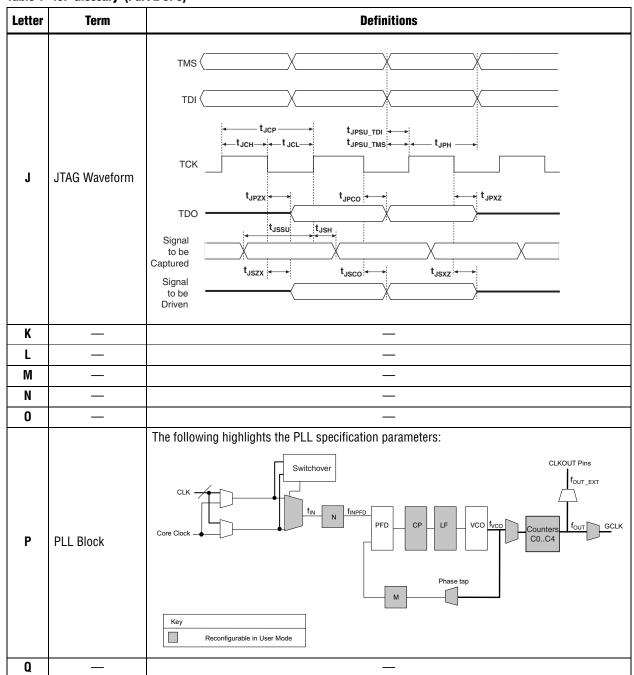


Table 1-46. Glossary (Part 4 of 5)

ter	Term	Definitions									
	t _C	High-speed receiver and transmitter input and output clock period.									
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.									
	t _{cin}	Delay from the clock pad to the I/O input register.									
	t _{co}	Delay from the clock pad to the I/O output.									
	t _{cout}	Delay from the clock pad to the I/O output register.									
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.									
	t _{FALL}	Signal high-to-low transition time (80–20%).									
	t _H	Input register hold time.									
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w)$.									
	t _{INJITTER}	Period jitter on the PLL clock input.									
	t _{OUTJITTER_DEDCLK}	Period jitter on the dedicated clock output driven by a PLL.									
	t _{OUTJITTER_IO}	Period jitter on the general purpose I/O driven by a PLL.									
Т	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.									
	t _{pllcout}	Delay from the PLL inclk pad to the I/O output register.									
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel)									
	t _{RISE}	Signal low-to-high transition time (20–80%).									
	t _{SU}	Input register setup time.									
J	_	_									

Document Revision History

Table 1–47 lists the revision history for this chapter.

Table 1–47. Document Revision History

Date	Version	Changes						
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.						
October 2014	1.0	Updated maximum value for V _{CCD_PLL} in Table 1–1.						
October 2014	1.9	Removed extended temperature note in Table 1–3.						
December 2013	1.8	Updated Table 1–21 by adding Note (15).						
May 2013	1.7	Updated Table 1–15 by adding Note (4).						
		■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCIO} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.						
		■ Updated Table 1–11 and Table 1–22.						
October 2012	1.6	 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock. 						
		■ Updated Table 1–29 to include the typical DCLK value.						
		■ Updated the minimum f _{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.						
	1.5	 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections. 						
November 2011		■ Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.						
		■ Updated Figure 1–1.						
		■ Updated for the Quartus II software version 10.1 release.						
December 2010	1.4	■ Updated Table 1–21 and Table 1–25.						
		■ Minor text edits.						
		Updated for the Quartus II software version 10.0 release:						
	1.3	■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.						
July 2010		■ Updated Figure 1–2 and Figure 1–3.						
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables. 						
		■ Minor text edits.						
		Updated to include automotive devices:						
		Updated the "Operating Conditions" and "PLL Specifications" sections.						
March 2010	1.2	■ Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.						
		■ Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.						
		■ Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.						
		Minor text edits.						