

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	9360
Number of Logic Elements/Cells	149760
Total RAM Bits	6635520
Number of I/O	270
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx150cf23i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

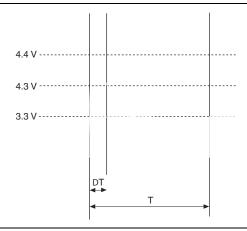

A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 65% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 65/10ths of a year.

Table 1–2. Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame for Cyclone IV Devices

Symbol	Parameter	Condition (V)	Overshoot Duration as % of High Time	Unit
		V _I = 4.20	100	%
		V _I = 4.25	98	%
		V _I = 4.30	65	%
		V _I = 4.35	43	%
V _i	AC Input Voltage	V _I = 4.40	29	%
	Voltago	V _I = 4.45	20	%
		V _I = 4.50	13	%
		V _I = 4.55	9	%
		V _I = 4.60	6	%

Figure 1–1 shows the methodology to determine the overshoot duration. The overshoot voltage is shown in red and is present on the input pin of the Cyclone IV device at over 4.3 V but below 4.4 V. From Table 1–2, for an overshoot of 4.3 V, the percentage of high time for the overshoot can be as high as 65% over a 10-year period. Percentage of high time is calculated as ([delta T]/T) \times 100. This 10-year period assumes that the device is always turned on with 100% I/O toggle rate and 50% duty cycle signal. For lower I/O toggle rates and situations in which the device is in an idle state, lifetimes are increased.

Figure 1-1. Cyclone IV Devices Overshoot Duration

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
CCINT	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (5% (5)	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	_	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	_	0.97	1.0	1.03	V
V _I	Input voltage	_	-0.5	_	3.6	V
V_0	Output voltage	_	0	_	V _{CCIO}	V
		For commercial use	0	_	85	°C
т	Operating junction temperature	For industrial use	-40	_	100	°C
T_J	Operating junction temperature	For extended temperature	-40	_	125	°C
		For automotive use	-40	_	125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (5)	50 μs	_	50 ms	_
		Fast POR (6)	50 μs	_	3 ms	_

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enable	_	_	_	10	mA

Notes to Table 1-3:

- (1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades.
- (2) V_{CCIO} for all I/O banks must be powered up during device operation. All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (3) V_{CC} must rise monotonically.
- (4) V_{CCIO} powers all input buffers.
- (5) The POR time for Standard POR ranges between 50 and 200 ms. Each individual power supply must reach the recommended operating range within 50 ms.
- (6) The POR time for Fast POR ranges between 3 and 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Core voltage, PCIe hard IP block, and transceiver PCS power supply	_	1.16	1.2	1.24	V
V _{CCA} (1), (3)	PLL analog power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL} (2)	PLL digital power supply	_	1.16	1.2	1.24	V
	I/O banks power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	I/O banks power supply for 3.0-V operation	_	2.85	3	3.15	V
\/ (3). (4)	I/O banks power supply for 2.5-V operation	_	2.375	2.5	2.625	V
V _{CCIO} (3), (4)	I/O banks power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	I/O banks power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	I/O banks power supply for 1.2-V operation	_	1.14	1.2	1.26	V
	Differential clock input pins power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	Differential clock input pins power supply for 3.0-V operation	_	2.85	3	3.15	V
V _{CC_CLKIN}	Differential clock input pins power supply for 2.5-V operation	_	2.375	2.5	2.625	V
(3), (5), (6)	Differential clock input pins power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	Differential clock input pins power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	Differential clock input pins power supply for 1.2-V operation	_	1.14	1.2	1.26	V
V_{CCH_GXB}	Transceiver output buffer power supply	_	2.375	2.5	2.625	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2) (1)

Parameter							V _{CCIO}	(V)						
	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1-8. Series OCT Without Calibration Specifications for Cyclone IV Devices

		Resistance			
Description	V _{CCIO} (V)	Commercial Maximum	imum industrial, Extended imum industrial, and Automotive Maximum		
	3.0	±30	±40	%	
0 · 00 T ···	2.5	±30	±40	%	
Series OCT without calibration	1.8	±40	±50	%	
Canbration	1.5	±50	±50	%	
	1.2	±50	±50	%	

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9. Series OCT with Calibration at Device Power-Up Specifications for Cyclone IV Devices

		Calibration	n Accuracy	
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1-12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
	Value of the I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
D	before and during configuration, as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
R_ _{PU}	well as user mode if you enable the programmable pull-up resistor option	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
	Value of the 1/O air well decreased as	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
R_PD	Value of the I/O pin pull-down resistor before and during configuration	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
	before and daring configuration	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (4)	8	50	112	kΩ

Notes to Table 1-12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.
- (3) $R_{PU} = (V_{CC10} V_1)/I_{R_PU}$ Minimum condition: $-40^{\circ}C$; $V_{CC10} = V_{CC} + 5\%$, $V_1 = V_{CC} + 5\% 50$ mV; Typical condition: $25^{\circ}C$; $V_{CC10} = V_{CC}$, $V_1 = 0$ V; $V_2 = 0$ V; $V_3 = 0$ V; $V_4 = 0$ V and $V_5 = 0$ V and $V_6 = 0$ V and $V_7 = 0$ V and $V_8 = 0$ V and $V_$

Maximum condition: 100°C ; $V_{\text{CCIO}} = V_{\text{CC}} - 5\%$, $V_{\text{I}} = 0$ V; in which V_{I} refers to the input voltage at the I/O pin.

(4) $R_{PD} = V_I/I_{RPD}$

Minimum condition: -40°C; $V_{CCIO} = V_{CC} + 5\%$, $V_I = 50$ mV;

Typical condition: 25°C; $V_{CCIO} = V_{CC}$, $V_1 = V_{CC} - 5\%$; Maximum condition: 100°C; $V_{CCIO} = V_{CC} - 5\%$, $V_1 = V_{CC} - 5\%$; in which V_1 refers to the input voltage at the I/O pin.

Hot-Socketing

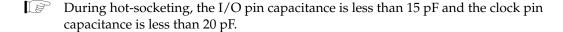

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN(AC)}	AC current per I/O pin	8 mA (1)
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|IIOPIN| = C \frac{dv}{dt}$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported $V_{\rm CCIO}$ range for Schmitt trigger inputs in Cyclone IV devices.

Table 1–14. Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
V _{SCHMITT}		$V_{CCIO} = 3.3$	200	mV
	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5	200	mV
	input	V _{CCIO} = 1.8	140	mV
		V _{CCIO} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

I/O Ctondovd		V _{CCIO} (V)	V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) <i>(4)</i>	(mA) (4)
3.3-V LVTTL (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15	_	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Notes to Table 1-15:

- (1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1-15, refer to "Glossary" on page 1-37.
- (2) AC load CL = 10 pF
- (3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.
- (4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

Table 1–16. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Cyclone IV Devices (1)

1/0	,	V _{CCIO} (V)		V _{REF} (V)			V _{TT} (V) ⁽²⁾	
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCIO} (3) 0.47 x V _{CCIO} (4)	0.5 x V _{CCIO} (3) 0.5 x V _{CCIO} (4)	0.52 x V _{CCIO} (3) 0.53 x V _{CCIO} (4)	_	0.5 x V _{CCIO}	_

Notes to Table 1-16:

- (1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.
- (2) V_{TT} of the transmitting device must track V_{REF} of the receiving device.
- (3) Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- (4) Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Table 1-17. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone IV Devices

I/O	V _{IL(}	_{DC)} (V)	VIH	_{I(DC)} (V)	V _{IL(}	_(AC) (V)	V _{IH}	(AC) (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_		V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I		V _{REF} – 0.125	V _{REF} + 0.125	_		V _{REF} – 0.25	V _{REF} + 0.25	_	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_		V _{REF} – 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} - 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_		V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_		V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the I/O Features in Cyclone IV Devices chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	V	_{CC10} (V	')	V _{Swing}	_{J(DC)} (V)	V _{x(} ,	_{AC)} (V)		V _{Swi}	ng(AC) /)	V _{ox}	_(AC) (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.7	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125

Note to Table 1-18:

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices (1)

	V	_{CCIO} (V)	V _{DIF(}	_{DC)} (V)	V _x	_(AC) (V)		V	СМ(DC)	V)	V _{DII}	_{F(AC)} (V)
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85		0.95	0.85	_	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71		0.79	0.71	_	0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.3	0.48 x V _{CCIO}

Note to Table 1-19:

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 1 of 2)

I/O Standard		V _{CCIO} (V)		V _{ID}	(mV)		V _{ICM} (V) ⁽²⁾		Vo	_D (mV)	(3)	1	ا (۷) (۵	3)
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
L) (DEOL						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVPECL (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq 700 \; \text{Mbps} \end{array}$	1.80	_	_		_	_	_
				1.05		1.05	D _{MAX} > 700 Mbps	1.55						
IV/DEQL						0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.80						
LVPECL (Column I/Os) (6)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq 700 \; \text{Mbps} \end{array}$	1.80	_	_	_	_	_	_
1,00)						1.05	D _{MAX} > 700 Mbps	1.55						
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq \; 700 \; \text{Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375
	1.05 D _{MAX} > 7		D _{MAX} > 700 Mbps	1.55										

⁽¹⁾ Differential SSTL requires a V_{REF} input.

⁽¹⁾ Differential HSTL requires a V_{REF} input.

Transceiver Performance Specifications

Table 1–21 lists the Cyclone IV GX transceiver specifications.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 1 of 4)

Symbol/	Oouditions.		C6			C7, I7			C8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock											
Supported I/O Standards		1.2 V F	PCML, 1.5	V PCML, 3.	3 V PCN	1L, Differe	ntial LVPE	CL, LVD	S, HCSL		
Input frequency from REFCLK input pins	_	50	_	156.25	50	_	156.25	50	_	156.25	MHz
Spread-spectrum modulating clock frequency	Physical interface for PCI Express (PIPE) mode	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PIPE mode	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
Peak-to-peak differential input voltage	_	0.1	_	1.6	0.1	_	1.6	0.1	_	1.6	V
V _{ICM} (AC coupled)	_		1100 ± 5	5%		1100 ± 5%	%		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
Transmitter REFCLK Phase Noise (1)	Frequency offset	_	_	-123	_	_	-123	_	_	-123	dBc/Hz
Transmitter REFCLK Total Jitter (1)	= 1 MHz – 8 MHZ	_	_	42.3	_	_	42.3	_	_	42.3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock											
cal_blk_clk clock frequency	_	10	_	125	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	_	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 (2)	_	50	2.5/ 37.5 (2)	_	50	MHz
Delta time between reconfig_clk	_	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1	_	_	1	_	_	1	_	μs

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/	Conditions		C6			C7, I7			C8		Unit
Description	Collultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PLD-Transceiver Inte	rface										
Interface speed (F324 and smaller package)	_	25	_	125	25	_	125	25	_	125	MHz
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Digital reset pulse width	_	Minimum is 2 parallel clock cycles									

Notes to Table 1-21:

- (1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.
- (2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll locked goes high after pll powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx analogreset deasserts and before rx locktodata is asserted in manual mode.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3).
- (13) Time taken to recover valid data after the $rx_locktodata$ signal is asserted in manual mode.
- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–2. Lock Time Parameters for Manual Mode

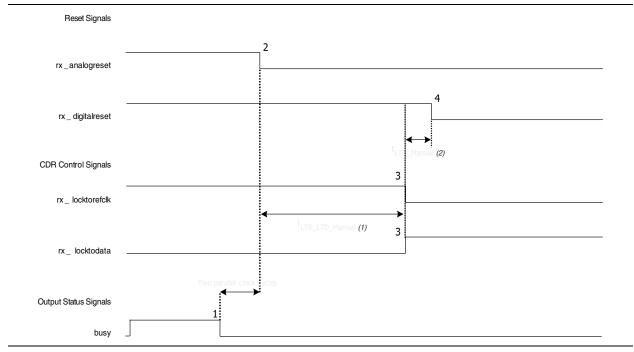


Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1-3. Lock Time Parameters for Automatic Mode

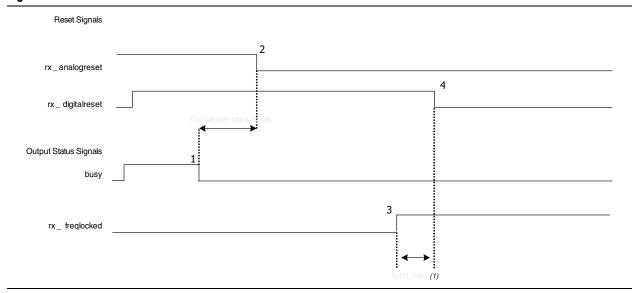


Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Dovice				Perfor	mance				Unit				
Device	C6	C7	C8	C8L (1)	C9L (1)	17	I8L (1)	A7	Unit				
EP4CE55	500	437.5	402	362	265	437.5	362	_	MHz				
EP4CE75	500	437.5	402	362	265	437.5	362	_	MHz				
EP4CE115	_	437.5	402	362	265	437.5	362	_	MHz				
EP4CGX15	500	437.5	402	_	_	437.5	_	_	MHz				
EP4CGX22	500	437.5	402	_	_	437.5	_	_	MHz				
EP4CGX30	500	437.5	402	_	_	437.5	_	_	MHz				
EP4CGX50	500	437.5	402	_	_	437.5	_	_	MHz				
EP4CGX75	500	437.5	402	_	_	437.5	_	_	MHz				
EP4CGX110	500	437.5	402	_	_	437.5	_	_	MHz				
EP4CGX150	500	437.5	402	_	_	437.5	_	_	MHz				

Note to Table 1-24:

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (-40°C to 100°C), the extended industrial junction temperature range (-40°C to 125°C), and the automotive junction temperature range (-40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (-8L speed grade)	5	_	362	MHz
	Input clock frequency (-9L speed grade)	5		265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
t _{INJITTER_CCJ} (5)	Input clock cycle-to-cycle jitter F _{REF} \geq 100 MHz	_	_	0.15	UI
	F _{REF} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (external clock output) (3)	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	_	_	472.5	MHz
	PLL output frequency (-7 speed grade)	_	_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	_	_	402.5	MHz
	PLL output frequency (-8L speed grade)	_	_	362	MHz
	PLL output frequency (-9L speed grade)	_	_	265	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_		1	ms

⁽¹⁾ Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
toutjitter_period_dedclk (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_ccj_dedclk (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_period_io (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
toutjitter_ccj_io <i>(6)</i>	Regular I/O cycle-to-cycle jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_	_	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
CASC_OUTJITTER_PERIOD_DEDCLK	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)	_	_	42.5	mUI

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{CCD\ PLL}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{CO} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{CO} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- $\begin{tabular}{ll} (8) & The cascaded PLLs specification is applicable only with the following conditions: \end{tabular}$
 - Upstream PLL—0.59 MHz \leq Upstream PLL bandwidth < 1 MHz
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to Section III: System Performance Specifications of the External Memory Interfaces Handbook.

Actual achievable frequency depends on design- and system-specific factors. Perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

Table 1–31 through Table 1–36 list the high-speed I/O timing for Cyclone IV devices. For definitions of high-speed timing specifications, refer to "Glossary" on page 1–37.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 1 of 2)

			C6			C7, I	7		C8, A	7		C8L, I	BL		C9L		
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	180	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
	×8	5		180	5		155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
f _{HSCLK} (input clock	×7	5		180	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
frequency)	×4	5	_	180	5	_	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
1 37	×2	5	_	180	5		155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
	×1	5		360	5	_	311	5	_	311	5		311	5	_	265	MHz
	×10	100	_	360	100		311	100	_	311	100		311	100	_	265	Mbps
	×8	80	_	360	80		311	80	_	311	80		311	80	_	265	Mbps
Device operation in	×7	70	_	360	70	_	311	70		311	70	_	311	70	_	265	Mbps
Mbps	×4	40	_	360	40		311	40	_	311	40		311	40	_	265	Mbps
'	×2	20	_	360	20		311	20	_	311	20		311	20	_	265	Mbps
	×1	10	_	360	10	_	311	10		311	10	_	311	10	_	265	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45		55	45	_	55	%
Transmitter channel-to- channel skew (TCCS)	_	_	_	200	_	_	200	_	_	200	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	$20 - 80\%$, $C_{LOAD} = 5 pF$	_	500	_	_	500	_	_	500	_	_	500	—	_	500	_	ps
t _{FALL}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	1		500	_	_	500	ı	_	500		ps

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol	Modes		C6			C7, I	7		C8, A	7		C8L, I	BL		C9L		Unit
	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (3)	_	_		1	_	_	1	_		1	_	_	1	_		1	ms

Notes to Table 1-31:

- (1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
- (2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks.

 Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Symbol Modes			C6		C7, I7		C8, A7		(C8L, 18	BL	C9L			11!4		
Symbol	Wodes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	85	5		85	5		85	5	_	85	5	_	72.5	MHz
	×8	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
frequency)	×4	5	_	85	5	_	85	5		85	5	_	85	5	_	72.5	MHz
	×2	5		85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5	_	170	5	_	145	MHz
	×10	100	_	170	100	_	170	100	_	170	100	_	170	100		145	Mbps
	×8	80	_	170	80	_	170	80	_	170	80	_	170	80	_	145	Mbps
Device operation in	×7	70	_	170	70	_	170	70	_	170	70	_	170	70	_	145	Mbps
Mbps	×4	40	_	170	40		170	40	_	170	40		170	40	_	145	Mbps
	×2	20	1	170	20	_	170	20		170	20	_	170	20		145	Mbps
	×1	10	-	170	10		170	10		170	10		170	10	_	145	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45		55	45	_	55	%
TCCS	_		1	200	_	_	200	_		200	_	_	200	_		200	ps
Output jitter (peak to peak)	_	_		500	_	_	500	_		550	_	_	600	_		700	ps
	20 – 80%,																
t _{RISE}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
	20 – 80%,																
t _{FALL}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_		500	_	ps

Cumbal	C6		C7, I7		C8, A7		C8L, I8L		C9L		- Unit	
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	UIIIL
t _{DUTY}	_	45	55	45	55	45	55	45	55	45	55	%
TCCS	_	_	200	_	200	_	200	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	_	_	1	_	1	_	1	_	1	_	1	ms

Notes to Table 1-35:

- (1) Cyclone IV E—emulated LVDS transmitter is supported at the output pin of all I/O Banks. Cyclone IV GX—emulated LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–36. LVDS Receiver Timing Specifications for Cyclone IV Devices (1), (3)

0	80	C6		C7, I7		C8, A7		C8L, I8L		C9L		Ilmit
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	10	437.5	10	370	10	320	10	320	10	250	MHz
	×8	10	437.5	10	370	10	320	10	320	10	250	MHz
f _{HSCLK} (input clock	×7	10	437.5	10	370	10	320	10	320	10	250	MHz
frequency)	×4	10	437.5	10	370	10	320	10	320	10	250	MHz
1 3,	×2	10	437.5	10	370	10	320	10	320	10	250	MHz
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	MHz
	×10	100	875	100	740	100	640	100	640	100	500	Mbps
	×8	80	875	80	740	80	640	80	640	80	500	Mbps
HSIODR	×7	70	875	70	740	70	640	70	640	70	500	Mbps
חטוטח	×4	40	875	40	740	40	640	40	640	40	500	Mbps
	×2	20	875	20	740	20	640	20	640	20	500	Mbps
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	Mbps
SW	_	_	400	_	400	_	400	_	550	_	640	ps
Input jitter tolerance	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	_	_	1	_	1	_	1		1		1	ms

Notes to Table 1-36:

- Cyclone IV E—LVDS receiver is supported at all I/O Banks.
 Cyclone IV GX—LVDS receiver is supported at I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

External Memory Interface Specifications

The external memory interfaces for Cyclone IV devices are auto-calibrating and easy to implement.

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

Table 1–40. IOE Programmable Delay on Column Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

		Number	Min Offset	Max Offset						
Parameter	Paths Affected	of		Fast (Corner	S	Unit			
		Setting		C8L	I8L	C8L	C9L	I8L		
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns	
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns	
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns	
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns	

Notes to Table 1-40:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–41. IOE Programmable Delay on Row Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

		Number	Min Offset	Max Offset						
Parameter	Paths Affected	of		Fast (Corner	S	Unit			
		Setting		C8L	I8L	C8L	C9L	I8L		
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns	
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns	
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns	
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns	

Notes to Table 1-41:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting $\bf 0$ as available in the Quartus II software.

I/O Timing

Use the following methods to determine I/O timing:

- the Excel-based I/O Timing
- the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get a timing budget estimation as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices Literature website.

Glossary

Table 1–46 lists the glossary for this chapter.

Table 1-46. Glossary (Part 1 of 5)

Letter	Term	Definitions						
Α	_	_						
В	_	_						
С	_	_						
D	_	_						
E	_	_						
F	f _{HSCLK}	High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.						
G	GCLK	Input pin directly to Global Clock network.						
u	GCLK PLL	Input pin to Global Clock network through the PLL.						
Н	HSIODR	High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).						
ı	Input Waveforms for the SSTL Differential I/O Standard	V _{IH} V _{REF} V _{IL}						

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions											
	Receiver differential input discrete resistor (external to Cyclone IV devices). Receiver input waveform for LVDS and LVPECL differential standards:												
		Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform											
		Positive Channel (p) = V _{IH}											
		Negative Channel (n) = V _{IL}											
R	Receiver Input Waveform	Ground											
		Differential Waveform (Mathematical Function of Positive & Negative Channel)											
		V _{ID} 0 V											
		V _{ID} p-n											
	Receiver input skew margin (RSKM)	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.											
		V _{CGIO}											
		V _{IH(DC)}											
		V_{REF} $V_{IL(DC)}$											
	Single-ended voltage-	Vil(AC)											
S	referenced I/O Standard	$\overline{V_{ ext{OL}}}$											
		The JEDEC standard for SSTI and HSTL I/O standards defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform <i>ringing</i> .											
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.											