
E·XFL

Intel - EP4CGX150DF27C7N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	9360
Number of Logic Elements/Cells	149760
Total RAM Bits	6635520
Number of I/O	393
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx150df27c7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express [®] (PCIe [®]) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
TJ	Operating junction temperature	-40	125	°C

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Note to Table 1–1:

(1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to –2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1–6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	_	-10	_	10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 V$ to $V_{CCIOMAX}$		-10		10	μΑ

Notes to Table 1-6:

(1) This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCI0} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).

(2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

 Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2)⁽¹⁾

		V _{CC10} (V)												
Parameter	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30		-50	_	-70	_	-70	_	μΑ
Bus hold low, overdrive current	$0 V < V_{\rm IN} < V_{\rm CCI0}$	_	125		175	_	200	_	300		500		500	μA
Bus hold high, overdrive current	$0 V < V_{IN} < V_{CCIO}$	_	-125	_	-175		-200		-300		-500		-500	μА

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
, Hysteresi	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
V _{SCHMITT}	HMITT input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V		V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) (4)	(mA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465		0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	$V_{CC10} - 0.2$	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

1/0 Ober devid		V _{CCIO} (V)		V _{ID} ((mV)	V _{ICM} (V) <i>(2)</i>			V _{0D} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
I/O Standard	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80						
LVDS (Column I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \mbox{ Mbps} \leq D_{MAX} \\ \leq \mbox{ 700 } \mbox{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS (Row I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_	_	_			_
BLVDS (Column I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_		_	_	_	
mini-LVDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4
mini-LVDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4
RSDS® (Row I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
RSDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) <i>(</i> 5)	2.375	2.5	2.625	—	_		—		100	200	600	0.5	1.2	1.4
PPDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625				_		100	200	600	0.5	1.2	1.4

Table 1-20.	Differential I/O Standard S	pecifications for C	yclone IV Devices ⁽¹⁾	(Part 2 of 2)
-------------	-----------------------------	---------------------	----------------------------------	---------------

Notes to Table 1-20:

(1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.

(2) $~V_{IN}$ range: 0 V $\leq V_{IN} \leq$ 1.85 V.

 $(3) \quad R_L \text{ range: } 90 \leq \ R_L \leq \ 110 \ \Omega \, .$

(4) There are no fixed $V_{\rm IN},\,V_{\rm OD},\, and\,V_{\rm OS}$ specifications for BLVDS. They depend on the system topology.

(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.

(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Transceiver Performance Specifications

Table 1–21 lists the Cyclone IV GX transceiver specifications.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 1 of 4)

Symbol/	0 and 111 and		C6			C7, I7			C 8		Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock						-		<u>.</u>		<u>.</u>	-
Supported I/O Standards		1.2 V F	PCML, 1.5	V PCML, 3	.3 V PCN	1L, Differe	ntial LVPE	CL, LVD	S, HCSL		
Input frequency from REFCLK input pins	_	50	_	156.25	50	_	156.25	50	_	156.25	MHz
Spread-spectrum modulating clock frequency	Physical interface for PCI Express (PIPE) mode	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PIPE mode	_	0 to 0.5%	_	_	0 to -0.5%	_	_	0 to 0.5%	_	_
Peak-to-peak differential input voltage	_	0.1	_	1.6	0.1	_	1.6	0.1	_	1.6	V
V_{ICM} (AC coupled)	—		1100 ± 5	%		1100 ± 59	%		1100 ± 5	%	mV
V_{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
Transmitter REFCLK Phase Noise ⁽¹⁾	Frequency offset		_	-123	_	_	-123	_	_	-123	dBc/Hz
Transmitter REFCLK Total Jitter ⁽¹⁾	= 1 MHz – 8 MHZ		_	42.3	_	_	42.3	_	_	42.3	ps
R _{ref}			2000 ± 1%		_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock											
cal_blk_clk clock frequency	_	10	_	125	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 <i>(2)</i>	_	50	MHz
Delta time between reconfig_clk	_	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1		_	1	_	_	1	—	μs

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

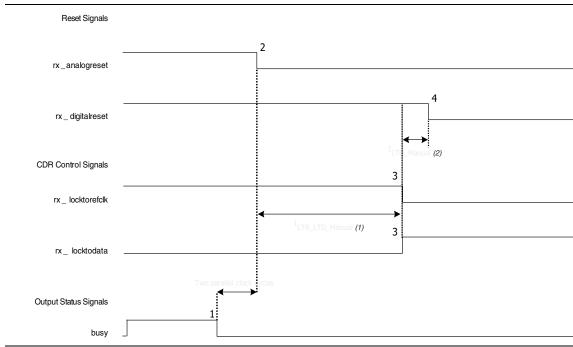
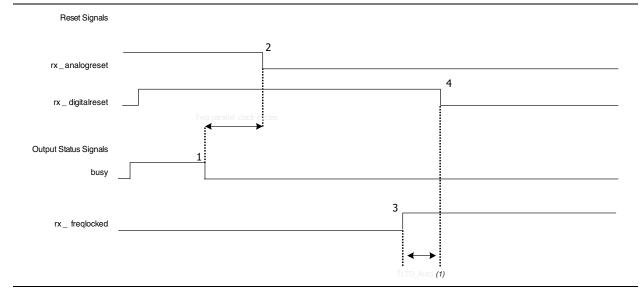



Figure 1–2. Lock Time Parameters for Manual Mode

Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1–3. Lock Time Parameters for Automatic Mode

Symbol	Parameter	Min	Тур	Max	Unit
t _{dlock}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
t _{outjitter_period_dedclk} (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	—	30	mUI
t _{outjitter_ccj_dedclk} (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
t _{outjitter_period_10} (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{outjitter_ccj_io} <i>(6)</i>	Regular I/O cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_		ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{scanclk}	scanclk frequency	—	—	100	MHz
t _{casc_outjitter_period_dedclk}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} < 100 \text{ MHz}$)	_		42.5	mUI

Table 1-25.	PLL Specifications	s for Cyclone IV Devices ^{(1),}	⁽²⁾ (Part 2 of 2)
-------------	--------------------	--	------------------------------

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{\text{CCD_PLL}}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{C0} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{C0} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VC0} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- (8) The cascaded PLLs specification is applicable only with the following conditions:
 - $\blacksquare \quad Upstream \ PLL {----}0.59 \ MHz \leq Upstream \ PLL \ bandwidth < 1 \ MHz$
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mode	Resources Used	Resources Used Performance								
	Number of Multipliers	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit			
9 × 9-bit multiplier	1	340	300	260	240	175	MHz			
18 × 18-bit multiplier	1	287	250	200	185	135	MHz			

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

Table 1–27. Memory Block Performance Specifications for Cyclone IV Devices

		Resou	rces Used		Per	forman	ce		
Memory	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
	FIFO 256 × 36	47	1	315	274	238	200	157	MHz
M9K Block	Single-port 256 × 36	0	1	315	274	238	200	157	MHz
WISK DIUCK	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Table 1–28. Passive Configuration Mode Specifications for Cyclone IV Devices (1)

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passive Serial (PS)	1.0 <i>(3</i>)	66	MHz
rassive Sellai (rS)	1.2	133	MHz
Fast Passive Parallel (FPP) (2)	1.0 <i>(3)</i>	66	MHz
	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) V_{CCINT} = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) ⁽¹⁾	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1-30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	—	ns
t _{JCH}	TCK clock high time	19	_	ns
t _{JCL}	TCK clock low time	19	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	_	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t _{JPH}	JTAG port hold time	10	_	ns
t _{JPC0}	JTAG port clock to output ^{(2), (3)}	—	15	ns
t _{JPZX}	JTAG port high impedance to valid output ^{(2), (3)}	—	15	ns
t _{JPXZ}	JTAG port valid output to high impedance ^{(2), (3)}	—	15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSC0}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

(1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1–37.

- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

Symbol	Modes		C6			C 7, I	7		C8, A	7		C8L, I	BL		C9L		Unit
Symbol	WOUCS	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
t _{LOCK} (3)				1	—	—	1	—	_	1		—	1			1	ms

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (2), (4)} (Part 2 of 2)

Notes to Table 1-31:

(1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.

(2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks. Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the

pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
(3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Gumbal	Madas		C6			C7, 17	,		C8, A7	7	(C8L, 18	BL		C9L		Unit
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
	×10	5	—	85	5	—	85	5		85	5		85	5	—	72.5	MHz
	×8	5		85	5		85	5	-	85	5	_	85	5	—	72.5	MHz
f _{HSCLK} (input clock	×7	5	—	85	5	_	85	5	_	85	5	_	85	5	—	72.5	MHz
frequency)	×4	5		85	5		85	5	_	85	5	_	85	5	—	72.5	MHz
,	×2	5	_	85	5	_	85	5		85	5		85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5	_	170	5	—	145	MHz
	×10	100		170	100		170	100	_	170	100	_	170	100	—	145	Mbps
	×8	80	—	170	80		170	80	_	170	80	_	170	80	—	145	Mbps
Device operation in	×7	70	—	170	70		170	70	_	170	70	_	170	70	—	145	Mbps
Mbps	×4	40	—	170	40	_	170	40	_	170	40	_	170	40	—	145	Mbps
	×2	20	_	170	20		170	20	_	170	20	_	170	20	—	145	Mbps
	×1	10	_	170	10	_	170	10	_	170	10	_	170	10	—	145	Mbps
t _{DUTY}	—	45	_	55	45	-	55	45	_	55	45	_	55	45	—	55	%
TCCS	—	—	_	200	_		200	_	_	200	_	_	200	_	—	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_	_	550	_	_	600	_		700	ps
	20-80%,																
t _{RISE}	C _{LOAD} = 5 pF	-	500		_	500		_	500		_	500		_	500	—	ps
t _{FALL}	20 - 80%, C _{LOAD} =	_	500	_	_	500	_	_	500	_	_	500	_	_	500		ps
	5 pF																

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 1 of 2)

Symbol	Modes		C6			C7, 17	1		C8, A7	7	(C8L, 18	L		C9L		Unit
Symbol	WIUUES	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} <i>(2)</i>		—		1	_		1	-	_	1		-	1	—		1	ms

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 2 of 2)

Notes to Table 1-32:

(1) Emulated RSDS_E_1R transmitter is supported at the output pin of all I/O Banks of Cyclone IV E devices and I/O Banks 3, 4, 5, 6, 7, 8, and 9 of Cyclone IV GX devices.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Ormshall	Madaa		C6			C7, I	7		C8, A	7		C8L, I	8L		C9L		U., 14
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	200	5	—	155.5	5		155.5	5	_	155.5	5	_	132.5	MHz
	×8	5		200	5	_	155.5	5		155.5	5		155.5	5		132.5	MHz
f _{HSCLK} (input clock	×7	5	_	200	5		155.5	5		155.5	5	_	155.5	5	_	132.5	MHz
frequency)	×4	5		200	5	—	155.5	5		155.5	5		155.5	5		132.5	MHz
, ,,	×2	5	_	200	5		155.5	5		155.5	5	_	155.5	5	_	132.5	MHz
	×1	5	_	400	5		311	5		311	5	_	311	5	_	265	MHz
	×10	100		400	100		311	100		311	100		311	100		265	Mbps
	×8	80		400	80	—	311	80		311	80		311	80		265	Mbps
Device operation in	×7	70	_	400	70		311	70	—	311	70	_	311	70	_	265	Mbps
Mbps	×4	40		400	40		311	40		311	40		311	40		265	Mbps
	×2	20		400	20	—	311	20		311	20		311	20		265	Mbps
	×1	10	_	400	10		311	10	—	311	10	_	311	10	_	265	Mbps
t _{DUTY}	—	45		55	45		55	45		55	45		55	45		55	%
TCCS	—	—	_	200	—		200	_	—	200	—	_	200	_	_	200	ps
Output jitter (peak to peak)	—	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500			500		_	500		_	500		ps
t _{FALL}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{LOCK} (3)				1			1			1			1			1	ms

Table 1–33. Mini-LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4)

Notes to Table 1-33:

(1) Applicable for true and emulated mini-LVDS transmitter.

(2) Cyclone IV E—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated mini-LVDS transmitter is supported at the output pin of all I/O banks.
Cyclone IV CY—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5.

Cyclone IV GX—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Symbol	Madaa	C	6	C7,	, 17	C8,	A7	C8L,	, 18L	C	9L	Unit
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{DUTY}	—	45	55	45	55	45	55	45	55	45	55	%
TCCS	—	_	200	—	200	_	200	_	200	_	200	ps
Output jitter (peak to peak)	_		500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	_		1	_	1		1	_	1	_	1	ms

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 2 of 2)

Notes to Table 1-35:

(1) Cyclone IV E—emulated LVDS transmitter is supported at the output pin of all I/O Banks.

Cyclone IV GX—emulated LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Gumbal	Madaa	C	6	C7,	, 17	C8,	A7	C8L	, 18L	C)L	11
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	10	437.5	10	370	10	320	10	320	10	250	MHz
	×8	10	437.5	10	370	10	320	10	320	10	250	MHz
f _{HSCLK} (input clock	×7	10	437.5	10	370	10	320	10	320	10	250	MHz
frequency)	×4	10	437.5	10	370	10	320	10	320	10	250	MHz
, ,,	×2	10	437.5	10	370	10	320	10	320	10	250	MHz
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	MHz
	×10	100	875	100	740	100	640	100	640	100	500	Mbps
	×8	80	875	80	740	80	640	80	640	80	500	Mbps
HSIODR	×7	70	875	70	740	70	640	70	640	70	500	Mbps
HOIDDN	×4	40	875	40	740	40	640	40	640	40	500	Mbps
	×2	20	875	20	740	20	640	20	640	20	500	Mbps
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	Mbps
SW	—	_	400	_	400	_	400	_	550	—	640	ps
Input jitter tolerance	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	—	—	1	—	1	—	1	—	1	—	1	ms

Table 1–36. LVDS Receiver Timing Specifications for Cyclone IV Devices (1), (3)

Notes to Table 1-36:

(1) Cyclone IV E—LVDS receiver is supported at all I/O Banks.

Cyclone IV GX—LVDS receiver is supported at I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

External Memory Interface Specifications

The external memory interfaces for Cyclone IV devices are auto-calibrating and easy to implement.

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

		Number			Γ	Nax Offse	t		
Parameter	Paths Affected	of	Min Offset	Fast (Corner	S	Unit		
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

	Number			Max Offset					
Parameter	Paths Affected	of	Min Offset	Fast Corner		S	Unit		
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	egister I/O output register to pad		0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.

		Number		Max Offset								
Parameter	Paths Affected	of	Min Offset	Fa	ast Corn	er	Slow Corner					
		Setting		C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.211	1.211	2.177	2.340	2.433	2.388	2.508	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.307	1.203	1.203	2.19	2.387	2.540	2.430	2.545	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.437	0.402	0.402	0.747	0.820	0.880	0.834	0.873	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.693	0.665	0.665	1.200	1.379	1.532	1.393	1.441	ns

Notes to Table 1-42:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number		Max Offset								
Parameter	Paths Affected	of	Min Offset	Fa	ast Corn	er	Slow Corner					
		Setting		C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.209	1.209	2.201	2.386	2.510	2.429	2.548	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.207	1.207	2.202	2.402	2.558	2.447	2.557	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.458	0.419	0.419	0.783	0.861	0.924	0.875	0.915	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.686	0.657	0.657	1.185	1.360	1.506	1.376	1.422	ns

Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

Notes to Table 1-43:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

				Max Offset						
Parameter	Paths Affected	Number of Settings	Min Offset	Fact L'orner		Slow Corner				Unit
				C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

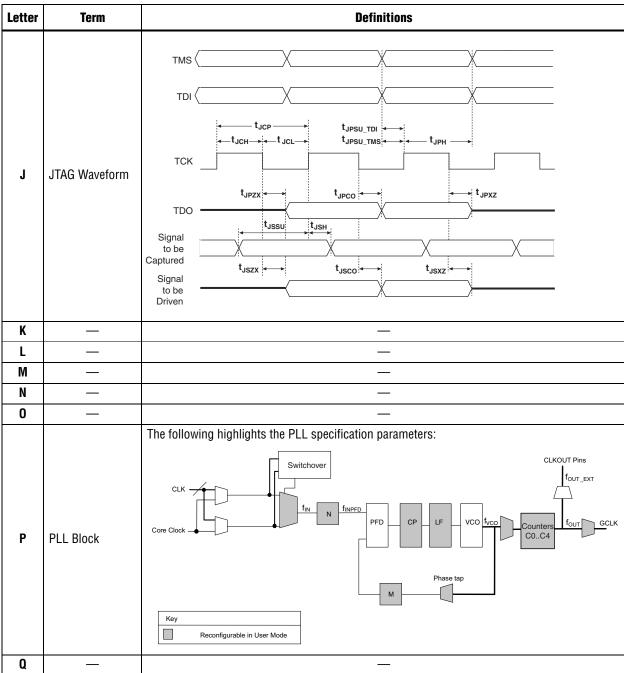

				Max Offset								
Parameter	Paths Affected	of	Min Offect		Of Offeet	Fast (Corner		Slow (Corner		Unit
		Settings		C6	17	C6	C 7	C8	17			
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns		
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns		
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns		
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns		

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software

Table 1-46. Glossary (Part 2 of 5)

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions
	RL	Receiver differential input discrete resistor (external to Cyclone IV devices).
R	Receiver Input Waveform	Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform V_{ID} V_{CM} Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V_{ID} V_{ID} V_{ID} V_{ID}
	Receiver input skew margin (RSKM)	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.
S	Single-ended voltage- referenced I/O Standard	VCCIO VOH VIH(DC) VIH(DC) VIL(AC) Values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform <i>ringing</i> .
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.

Letter	Term	Definitions								
	t _C	High-speed receiver and transmitter input and output clock period.								
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew. The clock is included in the TCCS measurement.								
	t _{cin}	Delay from the clock pad to the I/O input register.								
	t _{co}	Delay from the clock pad to the I/O output.								
	t _{cout}	Delay from the clock pad to the I/O output register.								
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.								
	t _{FALL}	Signal high-to-low transition time (80–20%).								
	t _H	Input register hold time.								
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.								
	t _{INJITTER} Period jitter on the PLL clock input.									
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.								
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.								
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.								
т	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.								
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform V_{OD} $V_{$								
	t _{RISE}	Signal low-to-high transition time (20–80%).								
	t _{SU}	Input register setup time.								
U	l —	_								

Table 1–46. Glossary (Part 4 of 5)

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage.
	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.
	V _{IL (AC)}	Low-level AC input voltage.
	V _{IL (DC)}	Low-level DC input voltage.
	V _{IN}	DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{0D} = V_{0H} - V_{0L}$.
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.
	V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.
W	_	_
X		—
Y	_	_
Z	—	_

Table 1–47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.