

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	9360
Number of Logic Elements/Cells	149760
Total RAM Bits	6635520
Number of I/O	475
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx150df31i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
V _I	DC input voltage	_	-0.5		3.6	V
V ₀	DC output voltage	_	0	_	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0	_	85	°C
T _J	operating junction temperature	For industrial use	-40	_	100	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (7)	50 μs	_	50 ms	_
		Fast POR (8)	50 μs	_	3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	ı	10	mA

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect V_{CCD PLL} to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCIO} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCIO} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCIO} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCIO} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{\text{CC_CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1-5. ESD for Cyclone IV Devices GPIOs and HSSI I/Os

Symbol	Parameter	Passing Voltage	Unit
V	ESD voltage using the HBM (GPIOs) (1)	± 2000	V
V _{ESDHBM}	ESD using the HBM (HSSI I/Os) (2)	± 1000	V
V	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) (2)	± 250	V

Notes to Table 1-5:

- (1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.
- (2) This value is applicable only to Cyclone IV GX devices.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1-6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_I = 0 V \text{ to } V_{CCIOMAX}$		-10	_	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$		-10	_	10	μΑ

Notes to Table 1-6:

- This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).
- (2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2) (1)

		V _{CCIO} (V)												
Parameter	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μА
Bus hold low, overdrive current	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА
Bus hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μА

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2) (1)

Parameter	Condition		V _{CCIO} (V)											
		1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1-8. Series OCT Without Calibration Specifications for Cyclone IV Devices

		Resistance			
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit	
	3.0	±30	±40	%	
0 · 00 T ···	2.5	±30	±40	%	
Series OCT without calibration	1.8	±40	±50	%	
- Cambration	1.5	±50	±50	%	
	1.2	±50	±50	%	

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9. Series OCT with Calibration at Device Power-Up Specifications for Cyclone IV Devices

		Calibration	n Accuracy	
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1-1. Final OCT Resistance (1), (2), (3), (4), (5), (6)

Notes to Equation 1-1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_{\rm X}$ refers to both $_{\rm V}$ and $_{\rm T}$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- (11) V2 is final voltage.
- (12) V_1 is the initial voltage.

Operating Conditions

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1-1. Impedance Change

$$\Delta R_V = (3.15 - 3) \times 1000 \times -0.026 = -3.83$$

$$\Delta R_T = (85 - 25) \times 0.262 = 15.72$$

Because ΔR_V is negative,

$$MF_V = 1 / (3.83/100 + 1) = 0.963$$

Because ΔR_T is positive,

$$MF_T = 15.72/100 + 1 = 1.157$$

$$MF = 0.963 \times 1.157 = 1.114$$

$$R_{final} = 50 \times 1.114 = 55.71 \Omega$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Table 1–11. Pin Capacitance for Cyclone IV Devices (1)

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C _{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR} (2)	Input capacitance on right dual-purpose $\ensuremath{\mathtt{VREF}}$ pin when used as V_{REF} or user I/O pin	21	21	21	pF
C _{VREFTB} (2)	Input capacitance on top and bottom dual-purpose ${\tt VREF}$ pin when used as $V_{{\tt REF}}$ or user I/O pin	23 (3)	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

- (1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.
- (2) When you use the VREF pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.
- (3) C_{VREFTB} for the EP4CE22 device is 30 pF.

For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the I/O Features in Cyclone IV Devices chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	V	_{CC10} (V	')	V _{Swing}	_{J(DC)} (V)	V _{X(AC)} (V)			V _{Swi}	ng(AC) /)	V _{OX(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.7	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125

Note to Table 1-18:

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices (1)

	V	_{CCIO} (V)	V _{DIF(DC)} (V)		V _x		V	СМ(DC)	V)	V _{DII}	_{F(AC)} (V)	
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85		0.95	0.85	_	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71		0.79	0.71	_	0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.3	0.48 x V _{CCIO}

Note to Table 1-19:

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 1 of 2)

I/O Standard		V _{CCIO} (V)			V _{ID} (mV)		V _{IcM} (V) ⁽²⁾				(3)	,	ا (۷) (۵	3)
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LV/DEQL						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVPECL (Row I/Os)	2.375	2.5	2.625	100	_	0.55	500 Mbns < D		_	_		_	_	_
						1.05	D _{MAX} > 700 Mbps	1.55						
IV/DEOL						0.05	WIAX I							
LVPECL (Column I/Os) (6)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq 700 \; \text{Mbps} \end{array}$	1.80	_	_	_	_	_	_
1,00)						1.05	D _{MAX} > 700 Mbps	1.55						
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	$0.55 \begin{vmatrix} 500 \text{ Mbps} \leq D_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{vmatrix}$		1.80	247	_	600	1.125	1.25	1.375
						1.05 D _{MAX} > 700 Mbps 1		1.55						

⁽¹⁾ Differential SSTL requires a V_{REF} input.

⁽¹⁾ Differential HSTL requires a V_{REF} input.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus® II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Symbol/	0 1111		C6			C7, I7			C8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	Max 175 75 4000 4000 17000 17000 2500	mV
t _{LTR} (10)	_	_	_	75	_	_	75	_	_	75	μs
t _{LTR-LTD_Manual} (11)	_	15	_	_	15	_	_	15	_	_	μs
t _{LTD} (12)	_	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	_		_	4000	_		4000	_		4000	ns
t _{LTD_Auto} (14)	_		_	4000	_		4000	_		4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_		_	17000	_	_	17000	_	_	17000	recon fig_c lk cycles
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting	_	650	_	_	650	_	_	650	_	mV
Differential on-chip	100–Ω setting	_	100	_	_	100	_	_	100	_	Ω
termination resistors	150– Ω setting	_	150	_	_	150	_	_	150	_	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA					Complian	į			,	_
Rise time	_	50	_	200	50	_	200	50	_	200	ps
Fall time	_	50	_	200	50	_	200	50	_	200	ps
Intra-differential pair skew	_	_	_	15	_	_	15	_	_	15	ps
Intra-transceiver block skew	_	_	_	120	_	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/	Conditions		C6			C7, I7			C8		Unit
Description	Collultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PLD-Transceiver Inte	rface										
Interface speed (F324 and smaller package)	_	25	_	125	25	_	125	25	_	125	MHz
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Digital reset pulse width	_				Minimu	m is 2 pa	rallel clock	cycles			

Notes to Table 1-21:

- (1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.
- (2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll locked goes high after pll powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx analogreset deasserts and before rx locktodata is asserted in manual mode.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3).
- (13) Time taken to recover valid data after the $rx_locktodata$ signal is asserted in manual mode.
- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–4 shows the differential receiver input waveform.

Figure 1-4. Receiver Input Waveform

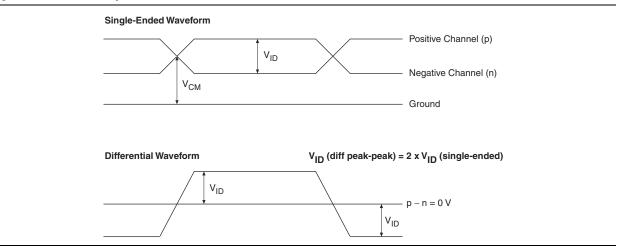


Figure 1–5 shows the transmitter output waveform.

Figure 1-5. Transmitter Output Waveform

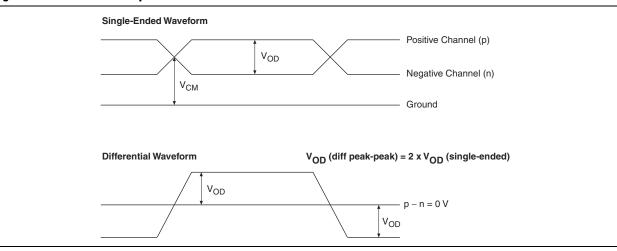


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω

Symbol Von differential peak		V _{OD} Setting (mV)												
Symbol	1	2	3	4 (1)	5	6								
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200								

Note to Table 1-22:

(1) This setting is required for compliance with the PCle protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Symbol/	Conditions		C6			C7, I7	7			Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PCIe Transmit Jitter Gene	ration ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_		0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	6		> 0.6	i		> 0.6	6	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾										
Deterministic jitter	Pattern = CRPAT		_	0.14			0.14			0.14	UI
(peak-to-peak)	Tattom - On 70			0.11			0.11			0.11	01
Total jitter (peak-to-peak)	Pattern = CRPAT		_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4		> 0.4				> 0.4	ļ	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66		> 0.66				6	UI	

Notes to Table 1-23:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers specified are valid for the stated conditions only.
- (3) The jitter numbers for PIPE are compliant to the PCle Base Specification 2.0.
- (4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Davis	Performance													
Device	C6	C 7	C8	C8L (1)	C9L (1)	17	I8L ⁽¹⁾	A7	Unit					
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz					

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Dovice		Performance														
Device	C6	C 7	C8	C8L (1)	C9L (1)	17	I8L (1)	A7	Unit							
EP4CE55	500	437.5	402	362	265	437.5	362	_	MHz							
EP4CE75	500	437.5	402	362	265	437.5	362	_	MHz							
EP4CE115	_	437.5	402	362	265	437.5	362	_	MHz							
EP4CGX15	500	437.5	402	_	_	437.5	_	_	MHz							
EP4CGX22	500	437.5	402	_	_	437.5	_	_	MHz							
EP4CGX30	500	437.5	402	_	_	437.5	_	_	MHz							
EP4CGX50	500	437.5	402	_	_	437.5	_	_	MHz							
EP4CGX75	500	437.5	402	_	_	437.5	_	_	MHz							
EP4CGX110	500	437.5	402	_	_	437.5	_	_	MHz							
EP4CGX150	500	437.5	402	_	_	437.5	_	_	MHz							

Note to Table 1-24:

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (-40°C to 100°C), the extended industrial junction temperature range (-40°C to 125°C), and the automotive junction temperature range (-40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (-8L speed grade)	5	_	362	MHz
	Input clock frequency (-9L speed grade)	5		265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
t _{INJITTER_CCJ} (5)	Input clock cycle-to-cycle jitter F _{REF} \geq 100 MHz	_	_	0.15	UI
	F _{REF} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (external clock output) (3)	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	_	_	472.5	MHz
	PLL output frequency (-7 speed grade)	_	_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	_	_	402.5	MHz
	PLL output frequency (-8L speed grade)	_	_	362	MHz
	PLL output frequency (-9L speed grade)	_	_	265	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_		1	ms

⁽¹⁾ Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) (1)	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1–30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	_	ns
t _{JCH}	TCK clock high time	19	_	ns
t _{JCL}	TCK clock low time	19	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	_	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t_{JPH}	JTAG port hold time	10	_	ns
t _{JPCO}	JTAG port clock to output (2), (3)	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output (2), (3)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2), (3)	_	15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

- (1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1-37.
- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol	Modes	C6			C7, I7			C8, A7			C8L, I8L			C9L			llnit
	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (3)	_	_		1	_	_	1	_		1	_	_	1	_		1	ms

Notes to Table 1-31:

- (1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
- (2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks.

 Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Ob.al	Madaa		C6			C7, 17	'	C8, A7			(C8L, 18	BL	C9L			Unit
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	85	5		85	5		85	5	_	85	5	_	72.5	MHz
	×8	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
frequency)	×4	5	_	85	5	_	85	5		85	5	_	85	5	_	72.5	MHz
	×2	5		85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5	_	170	5	_	145	MHz
	×10	100	_	170	100	_	170	100	_	170	100	_	170	100		145	Mbps
	×8	80	_	170	80	_	170	80	_	170	80	_	170	80	_	145	Mbps
Device operation in	×7	70	_	170	70	_	170	70	_	170	70	_	170	70	_	145	Mbps
Mbps	×4	40	_	170	40		170	40	_	170	40		170	40	_	145	Mbps
	×2	20	1	170	20	_	170	20		170	20	_	170	20		145	Mbps
	×1	10	-	170	10		170	10		170	10		170	10	_	145	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45		55	45	_	55	%
TCCS	_		1	200	_	_	200	_		200	_	_	200			200	ps
Output jitter (peak to peak)	_	_		500	_	_	500	_		550	_	_	600	_		700	ps
	20 – 80%,																
t _{RISE}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
	20 – 80%,																
t _{FALL}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_		500	_	ps

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Table 1-44. IOE Programmable Delay on Column Pins for Cyclone IV GX Devices (1), (2)

		Number	Min	Max Offset						
Parameter	Paths Affected	of		Fast (Corner		Unit			
		Settings		C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1-45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

		Number		Max Offset							
Parameter	Paths Affected	of	Min Offset	Fast (Corner		Unit				
		Settings		C6	17	C6	C 7	C8	17		
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns	
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns	
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns	
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns	

Notes to Table 1-45:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software

I/O Timing

Use the following methods to determine I/O timing:

- the Excel-based I/O Timing
- the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get a timing budget estimation as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices Literature website.

Glossary

Table 1–46 lists the glossary for this chapter.

Table 1-46. Glossary (Part 1 of 5)

Letter	Term	Definitions							
Α	_								
В	_	_							
С	_	_							
D	_	_							
E	_	_							
F	f _{HSCLK}	High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.							
G	GCLK	Input pin directly to Global Clock network.							
u	GCLK PLL	Input pin to Global Clock network through the PLL.							
Н	HSIODR	High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).							
ı	Input Waveforms for the SSTL Differential I/O Standard	V _{IH} V _{REF} V _{IL}							

Table 1-46. Glossary (Part 4 of 5)

ter	Term	Definitions										
	t _C	High-speed receiver and transmitter input and output clock period.										
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.										
	t _{cin}	Delay from the clock pad to the I/O input register.										
	t _{co}	Delay from the clock pad to the I/O output.										
	t _{cout}	Delay from the clock pad to the I/O output register.										
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.										
	t _{FALL}	Signal high-to-low transition time (80–20%).										
	t _H	Input register hold time.										
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w).$										
	t _{INJITTER}	Period jitter on the PLL clock input.										
	t _{OUTJITTER_DEDCLK}	Period jitter on the dedicated clock output driven by a PLL.										
	t _{OUTJITTER_IO}	Period jitter on the general purpose I/O driven by a PLL.										
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.										
-	t _{pllcout}	Delay from the PLL inclk pad to the I/O output register.										
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V _{OD} 0 V p - n										
	t _{RISE}	Signal low-to-high transition time (20–80%).										
	t _{SU}	Input register setup time.										
J	_	_										

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage.
	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.
	V _{IL (AC)}	Low-level AC input voltage.
	V _{IL (DC)}	Low-level DC input voltage.
	V _{IN}	DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
v	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.
	V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.
W	_	
X	_	_
Υ	_	_
Z		_

Document Revision History

Table 1–47 lists the revision history for this chapter.

Table 1–47. Document Revision History

Date	Version	Changes							
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.							
October 2014	1.0	Updated maximum value for V _{CCD_PLL} in Table 1–1.							
October 2014	1.9	Removed extended temperature note in Table 1–3.							
December 2013	1.8	Updated Table 1–21 by adding Note (15).							
May 2013	1.7	Updated Table 1–15 by adding Note (4).							
		■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCIO} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.							
		■ Updated Table 1–11 and Table 1–22.							
October 2012	1.6	 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock. 							
		■ Updated Table 1–29 to include the typical DCLK value.							
		■ Updated the minimum f _{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.							
		 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections. 							
November 2011	1.5	■ Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.							
		■ Updated Figure 1–1.							
		■ Updated for the Quartus II software version 10.1 release.							
December 2010	1.4	■ Updated Table 1–21 and Table 1–25.							
		■ Minor text edits.							
		Updated for the Quartus II software version 10.0 release:							
	1.3	■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.							
July 2010		■ Updated Figure 1–2 and Figure 1–3.							
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables. 							
		■ Minor text edits.							
		Updated to include automotive devices:							
		Updated the "Operating Conditions" and "PLL Specifications" sections.							
March 2010	1.2	■ Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.							
		■ Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.							
		 Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices. 							
		Minor text edits.							