

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1330
Number of Logic Elements/Cells	21280
Total RAM Bits	774144
Number of I/O	72
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	169-LBGA
Supplier Device Package	169-FBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx22bf14c8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic, 1.2-V operation	1.15 1.2 1.25 1.26 1.27 1.26 1.27 1.27 1.28 1.28 1.29 1.29 1.29 1.20 1.20 1.21 1.22 1.22 1.23 1.23 1.24 1.25 1.25 1.26 1.27 1.27 1.28 1.28 1.28 1.29 1.29 1.20 1.20 1.20 1.20 1.21 1.22 1.22 1.23 1.23 1.24 1.25 1.25 1.26 1.26 1.27 1.27 1.28 1.28 1.29 1.29 1.20 1.20 1.20	1.25	V		
VCCINT 19	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	2 1.25 1.03 3.465 3.15 5 2.625 3 1.89 5 1.575 2 1.26 5 2.625 0 1.03 - 3.6 - V _{CCIO} - 85 - 100 - 125	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
V _{CCIO} (3). (4)	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (57)	Supply voltage for output buffers, 1.8-V operation	V operation — 1.71 1.8 ply voltage for output buffers, 1.425 1.5	1.89	V		
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation — 1.14 1.2	1.2	1.26	V		
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	_	1.15	1.2	1.25 1.03 3.465 3.15 2.625 1.89 1.575 1.26 2.625 1.03 3.6 V _{CCIO} 85 100 125 125	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	_	0.97	1.0		V
V _I	Input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
		For commercial use	0	_		°C
т	Operating junction towns and the	For industrial use	-40	_	100	°C
T_J	Operating junction temperature	For extended temperature		°C		
		For automotive use	-40	_	1.03 3.6 V _{CCIO} 85 100 125 125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (5)	50 μs	_	50 ms	_
		Fast POR (6)	50 μs	_	2.625 1.89 1.575 1.26 2.625 1.03 3.6 V _{CCIO} 85 100 125 125 50 ms	_

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
V _I	DC input voltage	_	-0.5		3.6	V
V ₀	DC output voltage	_	0	_	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0		85	°C
T _J	operating junction temperature	For industrial use	-40	_	2.5 2.625 1.2 1.24 — 3.6 — V _{CCIO}	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (7)	50 μs	_	50 ms	_
		Fast POR (8)	50 μs	_	2.625 1.24 3.6 V _{CCIO} 85 100 50 ms 3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	ı	10	mA

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect V_{CCD PLL} to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCIO} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCIO} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCIO} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCIO} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{\text{CC_CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1-5. ESD for Cyclone IV Devices GPIOs and HSSI I/Os

Symbol	Parameter	Passing Voltage	Unit
VECTURM	ESD voltage using the HBM (GPIOs) (1)	± 2000	V
VESDHBM	ESD using the HBM (HSSI I/Os) (2)	± 1000	V
V	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) (2)	± 250	V

Notes to Table 1-5:

- (1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.
- (2) This value is applicable only to Cyclone IV GX devices.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1-6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_I = 0 V \text{ to } V_{CCIOMAX}$		-10	_	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$		-10	_	10	μΑ

Notes to Table 1-6:

- This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).
- (2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2) (1)

		V _{CCIO} (V)												
Parameter	Condition	1.2		1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μА
Bus hold low, overdrive current	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА
Bus hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μА

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2) (1)

Parameter	Condition		V _{CCIO} (V)											
		1	1.2 1.5		.5	1.8 2.5		.5	3.0		3.3		Unit	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1-8. Series OCT Without Calibration Specifications for Cyclone IV Devices

		Resistance		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
0 · 00 T ···	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
danbration	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9. Series OCT with Calibration at Device Power-Up Specifications for Cyclone IV Devices

		Calibration		
Description	Commercial Maximum industri		Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1-1. Final OCT Resistance (1), (2), (3), (4), (5), (6)

Notes to Equation 1-1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_{\rm X}$ refers to both $_{\rm V}$ and $_{\rm T}$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- (11) V2 is final voltage.
- (12) V_1 is the initial voltage.

Table 1–16. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Cyclone IV Devices (1)

1/0	V _{CCIO} (V)				V _{REF} (V)				
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCIO} (3) 0.47 x V _{CCIO} (4)	0.5 x V _{CCIO} (3) 0.5 x V _{CCIO} (4)	0.52 x V _{CCIO} (3) 0.53 x V _{CCIO} (4)	_	0.5 x V _{CCIO}	_

Notes to Table 1-16:

- (1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.
- (2) V_{TT} of the transmitting device must track V_{REF} of the receiving device.
- (3) Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- (4) Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Table 1-17. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone IV Devices

I/O	V _{IL(}	_{DC)} (V)	VIII	_{I(DC)} (V)	V _{IL(}	_(AC) (V)	V _{IH}	(AC) (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I		V _{REF} – 0.125	V _{REF} + 0.125	_		V _{REF} – 0.25	V _{REF} + 0.25	_	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} - 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the I/O Features in Cyclone IV Devices chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	V	_{CCIO} (V	")	V _{Swing}	_{J(DC)} (V)	V _{x(i}	_{AC)} (V)		V _{Swi}	ng(AC) /)	V _{ox}	_(AC) (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.7	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125

Note to Table 1-18:

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices (1)

	V	_{CCIO} (V)	V _{DIF(}	_{DC)} (V)	V _x	_(AC) (V)		V	CM(DC)	V)	V _{DII}	_(AC) (V)
I/O Standard	Min	Тур	Max	Min	Мах	Min	Тур	Max	Min	Тур	Max	Mi n	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85		0.95	0.85	_	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71		0.79	0.71	_	0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.3	0.48 x V _{CCIO}

Note to Table 1-19:

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 1 of 2)

I/O Standard		V _{CCIO} (V)		V _{ID}	(mV)		V _{ICM} (V) ⁽²⁾		Vo	_D (mV)	(3)	,	ا (۷) (۵	3)
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
L) (DEOL						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVPECL (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq 700 \; \text{Mbps} \end{array}$	1.80	_	_		_	_	_
						1.05	D _{MAX} > 700 Mbps	1.55						
IV/DEQL						0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.80						
LVPECL (Column I/Os) (6)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq 700 \; \text{Mbps} \end{array}$	1.80	_	_	_	_	_	_
1,00)						1.05	D _{MAX} > 700 Mbps	1.55						
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq \; 700 \; \text{Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375
						1.05	D _{MAX} > 700 Mbps	1.55						

⁽¹⁾ Differential SSTL requires a V_{REF} input.

⁽¹⁾ Differential HSTL requires a V_{REF} input.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 2 of 2)

I/O Standard		V _{CCIO} (V))	V _{ID} (mV)		V _{ICM} (V) ⁽²⁾		Vo	_D (mV)	(3)	1	ا V _{os} (V)	3)
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVDS						0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.80						
(Column I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; Mbps \leq D_{MAX} \\ \leq \; 700 \; Mbps \end{array}$	1.80	247	_	600	1.125	1.25	1.375
1,00)						1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS (Row I/Os) (4)	2.375	2.5	2.625	100		_	_	_	_	_	_		_	_
BLVDS (Column I/Os) (4)	2.375	2.5	2.625	100		_	_	_	_	_	_		_	_
mini-LVDS (Row I/Os)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4
mini-LVDS (Column I/Os) (5)	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4
RSDS® (Row I/Os) (5)	2.375	2.5	2.625	_		_	_	_	100	200	600	0.5	1.2	1.5
RSDS (Column I/Os) (5)	2.375	2.5	2.625	_			_		100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4
PPDS (Column I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4

Notes to Table 1-20:

- (1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.
- (2) V_{IN} range: $0 \text{ V} \leq V_{IN} \leq 1.85 \text{ V}$.
- (3) $R_L \text{ range: } 90 \leq R_L \leq 110 \ \Omega$.
- (4) There are no fixed V_{IN} , V_{OD} , and V_{OS} specifications for BLVDS. They depend on the system topology.
- (5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.
- (6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus® II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

Table 1–21 lists the Cyclone IV GX transceiver specifications.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 1 of 4)

Symbol/	Oouditions.		C6			C7, I7			C8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock											
Supported I/O Standards		1.2 V F	PCML, 1.5	V PCML, 3.	3 V PCN	1L, Differe	ntial LVPE	CL, LVD	S, HCSL		
Input frequency from REFCLK input pins	_	50	_	156.25	50	_	156.25	50	_	156.25	MHz
Spread-spectrum modulating clock frequency	Physical interface for PCI Express (PIPE) mode	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PIPE mode	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
Peak-to-peak differential input voltage	_	0.1	_	1.6	0.1	_	1.6	0.1	_	1.6	V
V _{ICM} (AC coupled)	_		1100 ± 5	5%		1100 ± 5%	%		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
Transmitter REFCLK Phase Noise (1)	Frequency offset	_	_	-123	_	_	-123	_	_	-123	dBc/Hz
Transmitter REFCLK Total Jitter (1)	= 1 MHz – 8 MHZ	_	_	42.3	_	_	42.3	_	_	42.3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock											
cal_blk_clk clock frequency	_	10	_	125	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	_	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 (2)	_	50	2.5/ 37.5 (2)	_	50	MHz
Delta time between reconfig_clk	_	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1	_	_	1	_	_	1	_	μs

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/	Conditions		C6			C7, I7			C8		Unit
Description	Collultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PLD-Transceiver Inte	rface										
Interface speed (F324 and smaller package)	_	25	_	125	25	_	125	25	_	125	MHz
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Digital reset pulse width	_				Minimu	m is 2 pa	rallel clock	cycles			

Notes to Table 1-21:

- (1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.
- (2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll locked goes high after pll powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx analogreset deasserts and before rx locktodata is asserted in manual mode.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3).
- (13) Time taken to recover valid data after the $rx_locktodata$ signal is asserted in manual mode.
- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–2. Lock Time Parameters for Manual Mode

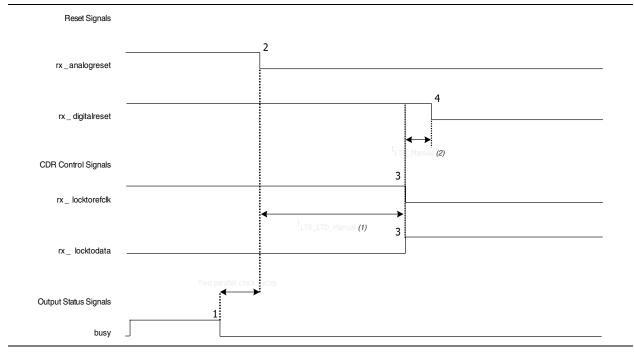


Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1-3. Lock Time Parameters for Automatic Mode

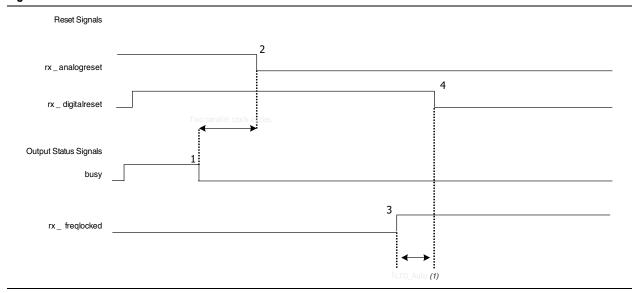


Figure 1–4 shows the differential receiver input waveform.

Figure 1-4. Receiver Input Waveform

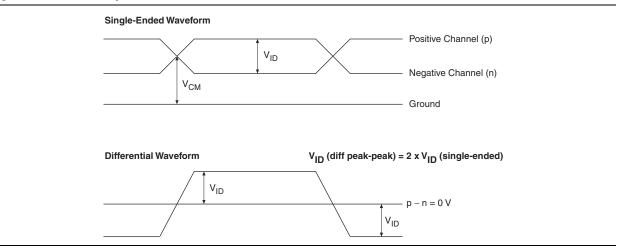


Figure 1–5 shows the transmitter output waveform.

Figure 1-5. Transmitter Output Waveform

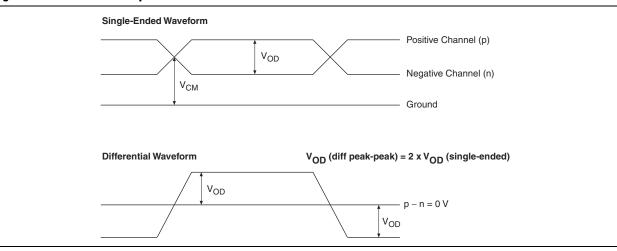


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω

Cumbal			V _{op} Sett	ing (mV)		
Symbol	1	2	3	4 (1)	5	6
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200

Note to Table 1-22:

(1) This setting is required for compliance with the PCle protocol.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
toutjitter_period_dedclk (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_ccj_dedclk (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_period_io (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
toutjitter_ccj_io <i>(6)</i>	Regular I/O cycle-to-cycle jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_	_	ns
tconfigpll	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{CASC_OUTJITTER_PERIOD_DEDCLK}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_		425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)	_	_	42.5	mUI

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{CCD\ PLL}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{CO} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{CO} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- $(8) \quad \text{The cascaded PLLs specification is applicable only with the following conditions:} \\$
 - Upstream PLL—0.59 MHz \leq Upstream PLL bandwidth < 1 MHz
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to Section III: System Performance Specifications of the External Memory Interfaces Handbook.

Actual achievable frequency depends on design- and system-specific factors. Perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

Table 1–31 through Table 1–36 list the high-speed I/O timing for Cyclone IV devices. For definitions of high-speed timing specifications, refer to "Glossary" on page 1–37.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 1 of 2)

			C6			C7, I	7		C8, A	7		C8L, I	BL		C9L		
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	180	5	_	155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
	×8	5		180	5		155.5	5	_	155.5	5		155.5	5	_	132.5	MHz
f _{HSCLK} (input clock	×7	5	_	180	5		155.5	5		155.5	5		155.5	5	_	132.5	MHz
frequency)	×4	5		180	5		155.5	5		155.5	5		155.5	5	-	132.5	MHz
,	×2	5		180	5	_	155.5	5		155.5	5		155.5	5		132.5	MHz
	×1	5	_	360	5	_	311	5	_	311	5		311	5	_	265	MHz
	×10	100	_	360	100		311	100	l	311	100		311	100	_	265	Mbps
	×8	80		360	80		311	80		311	80		311	80	_	265	Mbps
Device operation in	×7	70		360	70	_	311	70		311	70	_	311	70	1	265	Mbps
Mbps	×4	40	_	360	40	_	311	40	_	311	40	_	311	40	_	265	Mbps
·	×2	20	_	360	20	_	311	20	_	311	20	_	311	20	_	265	Mbps
	×1	10		360	10		311	10		311	10		311	10		265	Mbps
t _{DUTY}	_	45	_	55	45	_	55	45	_	55	45	_	55	45	_	55	%
Transmitter channel-to- channel skew (TCCS)	_	_	_	200	_	_	200	_	_	200	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500			500	_	_	550			600	_	_	700	ps
t _{RISE}	$20 - 80\%$, $C_{LOAD} = 5 pF$	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	1		500	_	_	500	ı	_	500		ps

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol	Modes		C6			C7, I	7		C8, A	7		C8L, I	BL		C9L		Unit
Syllibul	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (3)	_	_		1	_	_	1	_		1	_	_	1	_		1	ms

Notes to Table 1-31:

- (1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
- (2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks.

 Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Ob.al	Madaa		C6			C7, 17	'		C8, A7	7	(C8L, 18	BL		C9L		11!4
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	85	5		85	5		85	5		85	5	_	72.5	MHz
	×8	5	_	85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
frequency)	×4	5	_	85	5	_	85	5		85	5		85	5	_	72.5	MHz
	×2	5		85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5		170	5	_	145	MHz
	×10	100	_	170	100	_	170	100	_	170	100	_	170	100		145	Mbps
	×8	80	_	170	80	_	170	80	_	170	80	_	170	80	_	145	Mbps
Device operation in	×7	70	_	170	70	_	170	70	_	170	70		170	70	_	145	Mbps
Mbps	×4	40	_	170	40		170	40	_	170	40	_	170	40	_	145	Mbps
	×2	20	1	170	20	_	170	20		170	20		170	20		145	Mbps
	×1	10	-	170	10		170	10		170	10		170	10	_	145	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45	_	55	45	_	55	%
TCCS	_	_	1	200	_	_	200	_		200	_		200	_		200	ps
Output jitter (peak to peak)	_	_		500	_	_	500	_		550	_	_	600	_		700	ps
	20 – 80%,																
t _{RISE}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	—	ps
	20 – 80%,																
t _{FALL}	C _{LOAD} = 5 pF		500		_	500	_	_	500	_	_	500	_		500	_	ps

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

Table 1–40. IOE Programmable Delay on Column Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

		Number	Min Offset	Max Offset					
Parameter	Paths Affected	of		Fast Corner		Slow Corner			Unit
		Setting		C8L	I8L	C8L	C9L	I8L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–41. IOE Programmable Delay on Row Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

	Paths Affected	Number of	Min Offset	Max Offset					
Parameter				Fast Corner		Slow Corner			Unit
		Setting		C8L	I8L	C8L	C9L	I8L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting $\bf 0$ as available in the Quartus II software.

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions				
	V _{CM(DC)}	DC common mode input voltage.				
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.				
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.				
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.				
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.				
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.				
	V _{IH(AC)}	High-level AC input voltage.				
	V _{IH(DC)}	High-level DC input voltage.				
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.				
	V _{IL (AC)}	Low-level AC input voltage.				
	V _{IL (DC)}	Low-level DC input voltage.				
	V _{IN}	DC input voltage.				
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.				
v	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.				
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.				
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.				
	V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.				
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.				
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.				
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.				
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.				
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.				
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.				
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.				
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.				
W	_					
X	_	_				
Υ	_	_				
Z		_				

Document Revision History

Table 1–47 lists the revision history for this chapter.

Table 1–47. Document Revision History

Date	Version	Changes	
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.	
October 2014	1.9	Updated maximum value for V _{CCD_PLL} in Table 1–1.	
		Removed extended temperature note in Table 1–3.	
December 2013	1.8	Updated Table 1–21 by adding Note (15).	
May 2013	1.7	Updated Table 1–15 by adding Note (4).	
	1.6	■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCIO} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.	
		■ Updated Table 1–11 and Table 1–22.	
October 2012		 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock. 	
		■ Updated Table 1–29 to include the typical DCLK value.	
		■ Updated the minimum f _{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.	
	1.5	 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections. 	
November 2011		■ Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.	
		■ Updated Figure 1–1.	
	1.4	■ Updated for the Quartus II software version 10.1 release.	
December 2010		■ Updated Table 1–21 and Table 1–25.	
		■ Minor text edits.	
	1.3	Updated for the Quartus II software version 10.0 release:	
July 2010		■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.	
		■ Updated Figure 1–2 and Figure 1–3.	
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables. 	
		■ Minor text edits.	
	1.2	Updated to include automotive devices:	
March 2010		Updated the "Operating Conditions" and "PLL Specifications" sections.	
		■ Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.	
		■ Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.	
		■ Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.	
		Minor text edits.	