
E·XFL

Intel - EP4CGX30BF14C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1840
Number of Logic Elements/Cells	29440
Total RAM Bits	1105920
Number of I/O	72
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	169-LBGA
Supplier Device Package	169-FBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx30bf14c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express [®] (PCIe [®]) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
TJ	Operating junction temperature	-40	125	°C

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Note to Table 1–1:

(1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to –2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT (")	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{ccio} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (Syn (Syn	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} <i>(3)</i>	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	—	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
		For commercial use	0	—	85	°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
IJ		For extended temperature	-40	_	125	°C
		For automotive use	-40		125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs		50 ms	
		Fast POR (6)	50 µs		3 ms	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
VI	DC input voltage)C input voltage —			3.6	V
V ₀	DC output voltage	—	0	—	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0	—	85	°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁷⁾	50 µs	_	50 ms	_
		Fast POR ⁽⁸⁾	50 µs		3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	_	10	mA

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 2 of 2)

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect $V_{CCD PLL}$ to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCI0} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCI0} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCI0} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCI0} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{CC_{CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1–5. ESD for Cyclone IV Devices GPIOs and HSSI I/0
--

Symbol	Parameter	Passing Voltage	Unit
M	ESD voltage using the HBM (GPIOs) ⁽¹⁾	± 2000	V
VESDHBM	ESD using the HBM (HSSI I/Os) ⁽²⁾	± 1000	V
V	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) ⁽²⁾	± 250	V

Notes to Table 1-5:

(1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.

(2) This value is applicable only to Cyclone IV GX devices.

							V _{ccio}	(V)						
Parameter	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	—	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

		Resistance		
Description	Commercial Maximum i		Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
Series OCT without calibration	2.5	±30	±40	%
	1.8	±40	±50	%
	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

		Calibratio		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with calibration at device power-up	2.5	±10	±10	%
	1.8	±10	±10	%
	1.5	±10	±10	%
	1.2	±10	±10	%

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1–1. Impedance Change

$$\begin{split} \Delta R_V &= (3.15-3) \times 1000 \times -0.026 = -3.83 \\ \Delta R_T &= (85-25) \times 0.262 = 15.72 \\ \text{Because } \Delta R_V \text{ is negative,} \\ MF_V &= 1 \ / \ (3.83/100 + 1) = 0.963 \\ \text{Because } \Delta R_T \text{ is positive,} \\ MF_T &= 15.72/100 + 1 = 1.157 \\ MF &= 0.963 \times 1.157 = 1.114 \\ R_{\text{final}} &= 50 \times 1.114 = 55.71 \ \Omega \end{split}$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C_{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR}	Input capacitance on right dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	21	21	21	pF
C _{VREFTB}	Input capacitance on top and bottom dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	23 <i>(3)</i>	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

(1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.

(2) When you use the vref pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.

(3) C_{VREFTB} for the EP4CE22 device is 30 pF.

I/O	V _{CCIO} (V)				V _{REF} (V)	V _{TT} (V) ⁽²⁾			
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCI0} (3) 0.47 x V _{CCI0} (4)	$\begin{array}{c} 0.5 \mbox{ x } V_{\rm CC10} \ \ {}^{(3)} \\ 0.5 \mbox{ x } V_{\rm CC10} \ \ {}^{(4)} \end{array}$	$\begin{array}{l} 0.52 \times V_{\rm CCI0} \ {}^{(3)} \\ 0.53 \times V_{\rm CCI0} \ {}^{(4)} \end{array}$	_	0.5 x V _{CCIO}	_

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.

(2) $\,\,V_{TT}$ of the transmitting device must track V_{REF} of the receiving device.

(3) Value shown refers to DC input reference voltage, $V_{\text{REF(DC)}}.$

(4) Value shown refers to AC input reference voltage, $V_{\text{REF(AC)}}$.

Table 1-17.	Single-Ended SSTL and HST	L I/O Standards Signal S	Specifications for C	yclone IV Devices
-------------	---------------------------	--------------------------	----------------------	-------------------

I/O	V _{IL(}	_(DC) (V)	VIII	_{I(DC)} (V)	V _{IL(}	_{AC)} (V)	VIH	_(AC) (V)	V _{OL} (V)	V _{oh} (V)	I _{OL}	I _{oh}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I		V _{REF} – 0.18	V _{REF} + 0.18	_		V _{REF} – 0.35	V _{REF} + 0.35	—	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	—	_	V _{REF} – 0.35	V _{REF} + 0.35	—	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	—	_	V _{REF} – 0.25	V _{REF} + 0.25	—	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	0.28	V _{CCI0} – 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCI0} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

1/0 Ober devid		V _{CCIO} (V)		V _{ID} ((mV)		V _{ICM} (V) ⁽²⁾			V _{0D} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
I/O Standard	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80							
LVDS (Column I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \mbox{ Mbps} \leq D_{MAX} \\ \leq \mbox{ 700 } \mbox{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1.05	D _{MAX} > 700 Mbps	1.55							
BLVDS (Row I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_	_	_			_	
BLVDS (Column I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_		_	_	_		
mini-LVDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4	
mini-LVDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4	
RSDS® (Row I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5	
RSDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5	
PPDS (Row I/Os) <i>(</i> 5)	2.375	2.5	2.625	—	_		—		100	200	600	0.5	1.2	1.4	
PPDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625				_		100	200	600	0.5	1.2	1.4	

Table 1-20.	Differential I/O Standard S	pecifications for C	yclone IV Devices ⁽¹⁾	(Part 2 of 2)
-------------	-----------------------------	---------------------	----------------------------------	---------------

Notes to Table 1-20:

(1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.

(2) $~V_{IN}$ range: 0 V $\leq V_{IN} \leq$ 1.85 V.

 $(3) \quad R_L \text{ range: } 90 \leq \ R_L \leq \ 110 \ \Omega \, .$

(4) There are no fixed $V_{\rm IN},\,V_{\rm OD},\,\text{and}\,\,V_{\rm OS}$ specifications for BLVDS. They depend on the system topology.

(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.

(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

To For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

Table 1–21 lists the Cyclone IV GX transceiver specifications.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 1 of 4)

Symbol/	0 and 111 and		C6			C7, I7			C 8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock						-		<u>.</u>		<u>.</u>	-
Supported I/O Standards		1.2 V F	PCML, 1.5	V PCML, 3	.3 V PCN	1L, Differe	ntial LVPE	CL, LVD	S, HCSL		
Input frequency from REFCLK input pins	_	50	_	156.25	50	_	156.25	50	_	156.25	MHz
Spread-spectrum modulating clock frequency	Physical interface for PCI Express (PIPE) mode	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PIPE mode	_	0 to 0.5%	_	_	0 to -0.5%	_	_	0 to 0.5%	_	_
Peak-to-peak differential input voltage	_	0.1	_	1.6	0.1	_	1.6	0.1	_	1.6	V
V_{ICM} (AC coupled)	—		1100 ± 5	%		1100 ± 59	%		1100 ± 5	%	mV
V_{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
Transmitter REFCLK Phase Noise ⁽¹⁾	Frequency offset		_	-123	_	_	-123	_	_	-123	dBc/Hz
Transmitter REFCLK Total Jitter ⁽¹⁾	= 1 MHz – 8 MHZ		_	42.3	_	_	42.3	_	_	42.3	ps
R _{ref}			2000 ± 1%		_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock											
cal_blk_clk clock frequency	_	10	_	125	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 <i>(2)</i>	_	50	MHz
Delta time between reconfig_clk	_	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1		_	1	_	_	1	—	μs

Symbol/	0		C6			C7, I7		C8			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	_			75			75			75	μs
t _{LTR-LTD_Manual} (11)	—	15	_	_	15	—	—	15	_	—	μs
t _{LTD} (12)	—	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	—			4000	—	—	4000			4000	ns
t _{LTD_Auto} (14)		_		4000	_	_	4000	_		4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_			17000	_	_	17000		_	17000	recon fig_c lk cycles
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_		3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_		6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting		650	—	—	650	—	_	650	—	mV
Differential on-chip	100– Ω setting		100		—	100	—	_	100	—	Ω
termination resistors	150– Ω setting		150	_	—	150	—		150	—	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA				·	Complian	t				_
Rise time		50		200	50		200	50		200	ps
Fall time	—	50		200	50	—	200	50	_	200	ps
Intra-differential pair skew	—	_	_	15	-	-	15	_	_	15	ps
Intra-transceiver block skew	—		_	120	-	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	0		C6			C7, 17	7	C8			11 14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Transmit Jitter Gene	ration ⁽³⁾	-		<u>.</u>	-		<u>.</u>			<u>.</u>	
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾	•						•	•		•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	6		> 0.6	;		> 0.6	;	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾	•						•			•
Deterministic jitter	Pattern = CRPAT			0.14			0.14			0.14	UI
(peak-to-peak)	Falleni = UNFAI			0.14		_	0.14	_	_	0.14	01
Total jitter (peak-to-peak)	Pattern = CRPAT	—		0.279	_		0.279			0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4			> 0.4			> 0.4			UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66		> 0.66			> 0.66			UI	

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Performance										
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	Unit		
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz		
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz		

Device		Performance											
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L (1)	A7	– Unit				
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz				
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz				
EP4CE115	_	437.5	402	362	265	437.5	362	—	MHz				
EP4CGX15	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX22	500	437.5	402	_	—	437.5	_		MHz				
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX50	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX75	500	437.5	402	_	—	437.5	_		MHz				
EP4CGX110	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX150	500	437.5	402			437.5			MHz				

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

 Table 1–25. PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (–8L speed grade)	5		362	MHz
	Input clock frequency (–9L speed grade)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MHz		
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600		1300	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
injitter_CCJ (5)	Input clock cycle-to-cycle jitter $F_{REF} \ge 100 \text{ MHz}$	_		0.15	UI
	F _{REF} < 100 MHz	—	_	±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	—		472.5	MHz
	PLL output frequency (-7 speed grade)		_	450	MHz
NDUTY NJITTER_CCJ <i>(5)</i> DUT_EXT (external clock utput) <i>(3)</i> DUT (to global clock)	PLL output frequency (-8 speed grade)	—		402.5	MHz
	PLL output frequency (-8L speed grade)	—		362	MHz
NPFD ICO (4) NDUTY NJITTER_CCJ (5) DUT_EXT (external clock utput) (3) DUT_(to global clock) DUTDUTY	PLL output frequency (-9L speed grade)	—		265	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	1	ms

Symbol	Parameter	Min	Тур	Max	Unit
t _{dlock}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
t _{outjitter_period_dedclk} (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	—	30	mUI
t _{outjitter_ccj_dedclk} (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
t _{outjitter_period_10} (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{outjitter_ccj_io} <i>(6)</i>	Regular I/O cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_		ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{scanclk}	scanclk frequency	—	—	100	MHz
t _{casc_outjitter_period_dedclk}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} < 100 \text{ MHz}$)	_		42.5	mUI

Table 1-25.	PLL Specifications	s for Cyclone IV Devices ^{(1),}	⁽²⁾ (Part 2 of 2)
-------------	--------------------	--	------------------------------

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{\text{CCD_PLL}}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{C0} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{C0} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VC0} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.

(8) The cascaded PLLs specification is applicable only with the following conditions:

- $\blacksquare \quad Upstream \ PLL {----}0.59 \ MHz \leq Upstream \ PLL \ bandwidth < 1 \ MHz$
- Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

- ***** For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to *Section III: System Performance Specifications* of the *External Memory Interfaces Handbook*.
- Actual achievable frequency depends on design- and system-specific factors. Perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

Table 1–31 through Table 1–36 list the high-speed I/O timing for Cyclone IV devices. For definitions of high-speed timing specifications, refer to "Glossary" on page 1–37.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 1 of 2)

0 milest			C6			C7, I	7		C8, A7			C8L, I8L			C9L		
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5		180	5		155.5	5		155.5	5		155.5	5	—	132.5	MHz
	×8	5		180	5		155.5	5		155.5	5		155.5	5		132.5	MHz
f _{HSCLK} (input clock	×7	5	_	180	5	_	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
(input clock frequency)	×4	5	_	180	5	_	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
1 37	×2	5		180	5		155.5	5		155.5	5		155.5	5		132.5	MHz
	×1	5	_	360	5		311	5	_	311	5	_	311	5		265	MHz
	×10	100	_	360	100		311	100	_	311	100	_	311	100	_	265	Mbps
	×8	80		360	80		311	80		311	80		311	80	—	265	Mbps
Device operation in	×7	70		360	70	—	311	70		311	70		311	70	—	265	Mbps
Mbps	×4	40		360	40	—	311	40		311	40		311	40	—	265	Mbps
	×2	20	_	360	20		311	20	_	311	20	_	311	20	—	265	Mbps
	×1	10		360	10	—	311	10		311	10		311	10	—	265	Mbps
t _{DUTY}	—	45		55	45		55	45		55	45		55	45		55	%
Transmitter channel-to- channel skew (TCCS)	_	_		200	_	_	200	_	_	200	_		200	_	_	200	ps
Output jitter (peak to peak)	—	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500		_	500		ps
t _{FALL}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500		ps

• For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to *Section III: System Performance Specifications* of the *External Memory Interface Handbook*.

Table 1–37 lists the memory output clock jitter specifications for Cyclone IV devices.

Table 1–37. Memory Output Clock Jitter Specifications for Cyclone IV Devices (1), (2)

Parameter	Symbol	Min	Max	Unit
Clock period jitter	t _{JIT(per)}	-125	125	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	-200	200	ps
Duty cycle jitter	t _{JIT(duty)}	-150	150	ps

Notes to Table 1-37:

(1) Memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock (GCLK) network.

Duty Cycle Distortion Specifications

Table 1–38 lists the worst case duty cycle distortion for Cyclone IV devices.

Table 1–38. Duty Cycle Distortion on Cyclone IV Devices I/O Pins (1), (2), (3)

Symbol	C	6	C7	, 17	C8, I8	BL, A7	C	Unit	
	Min	Max	Min	Max	Min	Max	Min	Max	UIIIL
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Notes to Table 1-38:

(1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and IOE driving the dedicated and general purpose I/O pins.

(2) Cyclone IV devices meet the specified duty cycle distortion at the maximum output toggle rate for each combination of I/O standard and current strength.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

OCT Calibration Timing Specification

Table 1–39 lists the duration of calibration for series OCT with calibration at device power-up for Cyclone IV devices.

Table 1–39. Timing Specification for Series OCT with Calibration at Device Power-Up for Cyclone IV Devices $^{(1)}$

Symbol	Description	Maximum	Units	
t _{octcal}	Duration of series OCT with calibration at device power-up	20	μs	

Note to Table 1-39:

(1) OCT calibration takes place after device configuration and before entering user mode.

Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.

		Number					Max	Offset				
Parameter	Paths Affected	of	Min Offset	East Lorner				SI	ow Corn	er		Unit
		Setting		C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.211	1.211	2.177	2.340	2.433	2.388	2.508	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.307	1.203	1.203	2.19	2.387	2.540	2.430	2.545	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.437	0.402	0.402	0.747	0.820	0.880	0.834	0.873	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.693	0.665	0.665	1.200	1.379	1.532	1.393	1.441	ns

Notes to Table 1-42:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number					Max	Offset				
Parameter	Paths Affected	of	Min Offset	Fact Lorner				SI	ow Corn	er		Unit
		Setting		C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.209	1.209	2.201	2.386	2.510	2.429	2.548	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.207	1.207	2.202	2.402	2.558	2.447	2.557	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.458	0.419	0.419	0.783	0.861	0.924	0.875	0.915	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.686	0.657	0.657	1.185	1.360	1.506	1.376	1.422	ns

Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

Notes to Table 1-43:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Parameter		Number	hor	Max Offset								
	Paths Affected	of Settings	of	of	of	Min Offset	Fast (Corner		Slow (Corner	
				C6	17	C6	C7	C8	17			
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns		
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns		
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns		
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns		

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Parameter Paths		Number of Settings	Min Offset	Max Offset						
	Paths Affected			Fast Corner		Slow Corner				Unit
				C6	17	C6	C 7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software

I/O Timing

Use the following methods to determine I/O timing:

- the Excel-based I/O Timing
- the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get a timing budget estimation as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices Literature website.

Glossary

Table 1–46 lists the glossary for this chapter.

Letter	Term	Definitions					
Α	—	—					
В	—	—					
C	—	_					
D	—	—					
E	—	—					
F	f _{HSCLK}	High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.					
G	GCLK	Input pin directly to Global Clock network.					
u	GCLK PLL	Input pin to Global Clock network through the PLL.					
Н	HSIODR	High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).					
I	Input Waveforms for the SSTL Differential I/O Standard	Vswing Vswing V _{IH} V _{REF} V _{IL}					

Table 1-46. Glossary (Part 1 of 5)

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions					
	R _L	Receiver differential input discrete resistor (external to Cyclone IV devices).					
R	Receiver Input Waveform	Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform V_{ID} Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V_{ID} V_{ID} V_{ID} V_{ID}					
	Receiver input skew margin (RSKM)	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.					
S	Single-ended voltage- referenced I/O Standard	VCCIO VOH VIH(DC) VIH(DC) VIH(DC) VIL(AC) Vol Vol					
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.					

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions			
	V _{CM(DC)}	DC common mode input voltage.			
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.			
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching			
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.			
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.			
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.			
	V _{IH(AC)}	High-level AC input voltage.			
	V _{IH(DC)}	High-level DC input voltage.			
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.			
	V _{IL (AC)}	Low-level AC input voltage.			
	V _{IL (DC)}	Low-level DC input voltage.			
	V _{IN}	DC input voltage.			
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.			
V	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.			
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers accepted as the minimum positive high level.			
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers i accepted as the maximum positive low level.			
	V _{os}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.			
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.			
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.			
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. V _{REF(AC)} = V _{REF(DC)} + noise. The peak-to-peak AC noise on V _{REF} must not exceed 2% of V _{REF(DC)} .			
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.			
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.			
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.			
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.			
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.			
W	—	_			
X	—	—			
Y	—	_			
Z	—	_			