
Intel - EP4CGX30BF14C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1840
Number of Logic Elements/Cells	29440
Total RAM Bits	1105920
Number of I/O	72
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	169-LBGA
Supplier Device Package	169-FBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx30bf14c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT (")	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
Supply vo 3.0-V ope Supply vo	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{ccio} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	1.25 1.03 3.465 3.15 2.625 1.89 1.575 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.25 1.03 3.6 V _{CCI0} 85 100 125 50 ms	V
VCCIO (Syn (Syn	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	—	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	—	1.14	1.2	1.26	V
V _{CCA} <i>(3)</i>	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	—	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
		For commercial use	0	—		°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
IJ		For extended temperature	-40	_	125	°C
		For automotive use	-40		125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs		50 ms	
		Fast POR (6)	50 µs		1.25 1.03 3.465 3.15 2.625 1.89 1.575 1.26 2.625 1.25 1.03 3.6 V _{CCI0} 85 100 125 125	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
VI	DC input voltage	—	-0.5		3.6	V
V ₀	DC output voltage	—	0	—	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0	—	85	°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁷⁾	50 µs	_	50 ms	_
10,000		Fast POR ⁽⁸⁾	50 µs		3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	_	10	mA

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 2 of 2)

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect $V_{CCD PLL}$ to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCI0} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCI0} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCI0} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCI0} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{CC_{CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1–5. ESD for Cyclone IV Devices GPIOs and HSSI I/0
--

Symbol	Parameter	Passing Voltage	Unit
M	ESD voltage using the HBM (GPIOs) ⁽¹⁾	± 2000	V
VESDHBM	ESD using the HBM (HSSI I/Os) ⁽²⁾	± 1000	V
V	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) ⁽²⁾	± 250	V

Notes to Table 1-5:

(1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.

(2) This value is applicable only to Cyclone IV GX devices.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1–6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	_	-10	_	10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 V$ to $V_{CCIOMAX}$		-10		10	μΑ

Notes to Table 1-6:

(1) This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCI0} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).

(2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

 Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2)⁽¹⁾

		V _{CCI0} (V)												
Parameter	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30		-50	_	-70	_	-70	_	μΑ
Bus hold low, overdrive current	$0 V < V_{\rm IN} < V_{\rm CCI0}$	_	125		175	_	200	_	300		500		500	μA
Bus hold high, overdrive current	$0 V < V_{IN} < V_{CCIO}$	_	-125	_	-175		-200		-300		-500		-500	μА

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1–1. Final OCT Resistance ^{(1), (2), (3), (4), (5), (6)}

$$\begin{split} &\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV - (7) \\ &\Delta R_T = (T_2 - T_1) \times dR/dT - (8) \\ &For \ \Delta R_x < 0; \ MF_x = 1/ \ (|\Delta R_x|/100 + 1) - (9) \\ &For \ \Delta R_x > 0; \ MF_x = \Delta R_x/100 + 1 - (10) \\ &MF = MF_V \times MF_T - (11) \\ &R_{final} = R_{initial} \times MF - (12) \end{split}$$

Notes to Equation 1–1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_x$ refers to both $_V$ and $_T$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.

(11) V_2 is final voltage.

(12) V_1 is the initial voltage.

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1–12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
R_PU value of the i/o pin pun-up resistor before and during configuration, as well as user mode if you enable the programmable pull-up resistor option	Value of the I/O nin null-un resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ	
	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ	
	programmable pull-up resistor option	$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
	$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143	351	kΩ	
	Value of the I/O pin pull-down resistor before and during configuration	$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
R_pd		$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
		$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 V \pm 5\%$ (4)	8	50	112	kΩ

Notes to Table 1–12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- $\begin{array}{ll} \text{(3)} & \text{R}_{_{PU}} = (\text{V}_{\text{CCI0}} \text{V}_{\text{I}})/\text{I}_{\text{R}_{_{PU}}} \\ & \text{Minimum condition: } -40^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} + 5\%, \ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 5\% 50 \ \text{mV}; \\ & \text{Typical condition: } 25^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}}, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = 10^{\circ}\text{C}; \ \text{W}_{\text{CO}} = 10^{\circ}\text{C}; \ \text{W$
- $\begin{array}{ll} (4) & R_{_PD} = V_I/I_{R_PD} \\ & \text{Minimum condition:} -40^{\circ}\text{C}; \ V_{CCIO} = V_{CC} + 5\%, \ V_I = 50 \ \text{mV}; \\ & \text{Typical condition:} \ 25^{\circ}\text{C}; \ V_{CCIO} = V_{CC}, \ V_I = V_{CC} 5\%; \\ & \text{Maximum condition:} \ 100^{\circ}\text{C}; \ V_{CCIO} = V_{CC} 5\%, \ V_I = V_{CC} 5\%; \ \text{in which } V_I \ \text{refers to the input voltage at the I/O pin.} \end{array}$

Hot-Socketing

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μA
I _{IOPIN(AC)}	AC current per I/O pin	8 mA <i>(1)</i>
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |IIOPIN| = C dv/dt, in which C is the I/O pin capacitance and dv/dt is the slew rate.

During hot-socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
V _{SCHMITT}	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V		V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) (4)	(mA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465		0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	$V_{CC10} - 0.2$	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

To For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

Table 1–21 lists the Cyclone IV GX transceiver specifications.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 1 of 4)

Symbol/	0 and 111 and		C6			C7, I7			C 8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock						-		<u>.</u>		<u>.</u>	-
Supported I/O Standards		1.2 V F	PCML, 1.5	V PCML, 3	.3 V PCN	1L, Differe	ntial LVPE	CL, LVD	S, HCSL		
Input frequency from REFCLK input pins	_	50	_	156.25	50	_	156.25	50	_	156.25	MHz
Spread-spectrum modulating clock frequency	Physical interface for PCI Express (PIPE) mode	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PIPE mode	_	0 to 0.5%	_	_	0 to -0.5%	_	_	0 to 0.5%	_	_
Peak-to-peak differential input voltage	_	0.1	_	1.6	0.1	_	1.6	0.1	_	1.6	V
V_{ICM} (AC coupled)	—		1100 ± 5	%		1100 ± 59	%		1100 ± 5	mV	
V_{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
Transmitter REFCLK Phase Noise ⁽¹⁾	Frequency offset		_	-123	_	_	-123	_	_	-123	dBc/Hz
Transmitter REFCLK Total Jitter ⁽¹⁾	= 1 MHz – 8 MHZ		_	42.3	_	_	42.3	_	_	42.3	ps
R _{ref}			2000 ± 1%		_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock											
cal_blk_clk clock frequency	_	10	_	125	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 <i>(2)</i>	_	50	MHz
Delta time between reconfig_clk	_	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1		_	1	_	_	1	—	μs

Symbol/	Ocaditions		C6			C7, I7			C 8		11
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit Mbps Mbps V V V V V V Ω Ω Ω Ω ppm
Receiver					•	•		•	•		
Supported I/O Standards	1.4 V PCML, 1.5 V PCML, 2.5 V PCML, LVPECL, LVDS										
Data rate (F324 and smaller package) ⁽¹⁵⁾	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package) ⁽¹⁵⁾	—	600	_	3125	600	_	3125	600	_	2500	Mbps
Absolute V _{MAX} for a receiver pin <i>(3)</i>	—	_	_	1.6	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	—	_	_	1.5	_	_	1.5	_	_	1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Peak-to-peak differential input voltage V _{ID} (diff p-p)	V _{ICM} = 0.82 V setting, Data Rate = 600 Mbps to 3.125 Gbps	0.1	_	2.7	0.1	_	2.7	0.1	_	2.7	V
V _{ICM}	V _{ICM} = 0.82 V setting	_	820 ± 10%	_	_	820 ± 10%	_	_	820 ± 10%	_	mV
Differential on-chip	100– Ω setting		100	—	_	100		_	100	—	Ω
termination resistors	150– Ω setting	—	150	_	_	150		_	150	—	Ω
Differential and common mode return loss	PIPE, Serial Rapid I/O SR, SATA, CPRI LV, SDI, XAUI					Compliant	Ľ				_
Programmable ppm detector ⁽⁴⁾	—				± 62.5	, 100, 128 250, 300					ppm
Clock data recovery (CDR) ppm tolerance (without spread-spectrum clocking enabled)				±300 <i>(5)</i> , ±350 <i>(6)</i> , <i>(7)</i>			±300 (5), ±350 (6), (7)		_	±300 (5), ±350 (6), (7)	ppm
CDR ppm tolerance (with synchronous spread-spectrum clocking enabled) ⁽⁸⁾	_	_		350 to 5350 (7), (9)	_		350 to 5350 (7), (9)	_		350 to 5350 (7), (9)	ppm
Run length	—		80		—	80	_	—	80		UI
	No Equalization		_	1.5	—	_	1.5	—	_	1.5	dB
Programmable	Medium Low		_	4.5	_	_	4.5	_		4.5	dB
equalization	Medium High		_	5.5	—		5.5	—	_	5.5	dB
	High	—		7	-	_	7	-	_	7	dB

Table 1–21.	Transceiver S	necification fo	r Cyclone	IV GX Devices	(Part 2 of 4)
	Inalisourior o	poontioution to		11 UN DU11003	(1 41 (2 01 4)

Symbol/	0		C6			C7, I7			C 8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	_			75			75			75	μs
t _{LTR-LTD_Manual} (11)	—	15	_	_	15	—	—	15	_	—	μs
t _{LTD} (12)	—	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	—			4000	—	—	4000			4000	ns
t _{LTD_Auto} (14)		_		4000	_	_	4000	_		4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_			17000	_	_	17000		_	17000	recon fig_c lk cycles
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_		3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_		6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting		650	—	—	650	—	_	650	—	mV
Differential on-chip	100– Ω setting		100		—	100	—	_	100	—	Ω
termination resistors	150– Ω setting		150	_	—	150	—		150	—	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA		Compliant							_	
Rise time		50		200	50		200	50		200	ps
Fall time	—	50		200	50	—	200	50		200	ps
Intra-differential pair skew	—	_	_	15	-	-	15	_	_	15	ps
Intra-transceiver block skew	—		_	120	-	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Symbol	Parameter	Min	Тур	Max	Unit
t _{dlock}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
t _{outjitter_period_dedclk} (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	—	30	mUI
t _{outjitter_ccj_dedclk} (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
t _{outjitter_period_10} (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	riod jitter			
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{outjitter_ccj_io} <i>(6)</i>	Regular I/O cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_		ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{scanclk}	scanclk frequency	—	—	100	MHz
t _{casc_outjitter_period_dedclk}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} < 100 \text{ MHz}$)	_		42.5	mUI

Table 1-25.	PLL Specifications	s for Cyclone IV Devices ^{(1),}	⁽²⁾ (Part 2 of 2)
-------------	--------------------	--	------------------------------

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{\text{CCD_PLL}}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{C0} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{C0} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VC0} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- (8) The cascaded PLLs specification is applicable only with the following conditions:
 - $\blacksquare \quad Upstream \ PLL {----}0.59 \ MHz \leq Upstream \ PLL \ bandwidth < 1 \ MHz$
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mada	Resources Used		I	Performance	9		Unit
Mode	Number of Multipliers	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
9 × 9-bit multiplier	1	340	300	260	240	175	MHz
18 × 18-bit multiplier	1	287	250	200	185	135	MHz

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

			rces Used	Performance					
Memory	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
	FIFO 256 × 36	47	1	315	274	238	200	157	MHz
M9K Block	Single-port 256 × 36	0	1	315	274	238	200	157	MHz
INIAK DIOCK	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passive Serial (PS)	1.0 <i>(3</i>)	66	MHz
	1.2	133	MHz
East Dessive Derellel (EDD) (2)	1.0 <i>(3)</i>	66	MHz
Fast Passive Parallel (FPP) ⁽²⁾	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) V_{CCINT} = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) ⁽¹⁾	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1-30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	—	ns
t _{JCH}	TCK clock high time	19	_	ns
t _{JCL}	TCK clock low time	19	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	_	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t _{JPH}	JTAG port hold time	10	_	ns
t _{JPC0}	JTAG port clock to output ^{(2), (3)}	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output ^{(2), (3)}	—	15	ns
t _{JPXZ}	JTAG port valid output to high impedance ^{(2), (3)}	—	15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSC0}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

(1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1–37.

- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

Symbol	Modes		C6			C7, 17			C8, A7	7		C8L, 18	L		C9L		Unit
əyiinui	WIUUES	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (2)	_	—		1		—	1	_		1	—		1		—	1	ms

Table 1–32. Emulated RSDS_E	1R Transmitter Timing	Specifications for C	vclone IV Devices ^{(1), (3)}	(Part 2 of 2)
		• • • • • • • • • • • • • • • • •		(

Notes to Table 1-32:

(1) Emulated RSDS_E_1R transmitter is supported at the output pin of all I/O Banks of Cyclone IV E devices and I/O Banks 3, 4, 5, 6, 7, 8, and 9 of Cyclone IV GX devices.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Gumbal	Modes		C6			C7, 17	7		C8, A	7		C8L, I	8L	C9L			Unit
Symbol	woues	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	200	5	—	155.5	5	—	155.5	5	_	155.5	5	_	132.5	MHz
	×8	5	_	200	5	_	155.5	5	—	155.5	5	_	155.5	5	_	132.5	MHz
f _{HSCLK} (input clock	×7	5	_	200	5	_	155.5	5	—	155.5	5	_	155.5	5	_	132.5	MHz
frequency)	×4	5	_	200	5	—	155.5	5	—	155.5	5		155.5	5		132.5	MHz
,	×2	5	_	200	5	_	155.5	5	—	155.5	5	_	155.5	5	_	132.5	MHz
	×1	5	_	400	5	_	311	5	—	311	5	_	311	5	_	265	MHz
	×10	100	_	400	100	_	311	100	—	311	100		311	100		265	Mbps
	×8	80	_	400	80	_	311	80	—	311	80	_	311	80	_	265	Mbps
Device operation in	×7	70	_	400	70	—	311	70	—	311	70	_	311	70	—	265	Mbps
Mbps	×4	40	—	400	40	—	311	40	—	311	40	_	311	40	—	265	Mbps
	×2	20		400	20		311	20	_	311	20		311	20	_	265	Mbps
	×1	10	_	400	10	—	311	10		311	10	_	311	10		265	Mbps
t _{DUTY}	—	45	_	55	45	_	55	45	—	55	45		55	45		55	%
TCCS	—	_	_	200	_	_	200	_	—	200	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_		550	_	_	600		_	700	ps
t _{RISE}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{LOCK} (3)				1			1			1			1			1	ms

Table 1–33. Mini-LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4)

Notes to Table 1-33:

(1) Applicable for true and emulated mini-LVDS transmitter.

(2) Cyclone IV E—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated mini-LVDS transmitter is supported at the output pin of all I/O banks.
Cyclone IV GY—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of Row I/O Banks 5.

Cyclone IV GX—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

		Number		Max Offset						
Parameter	Paths Affected	of	Min Offset	Fast (Corner	S	Unit			
		Setting		C8L	18L	C8L	C9L	18L		
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns	
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns	
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns	
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns	

Notes to Table 1-40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number	mhor		Max Offset						
Parameter	Paths Affected	of	f Offeet	Fast (Corner	S	Unit				
	56111	Setting Setting	C8L	18L	C8L	C9L	18L				
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns		
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns		
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns		
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns		

Notes to Table 1-41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions
	RL	Receiver differential input discrete resistor (external to Cyclone IV devices).
R	Receiver Input Waveform	Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform V_{ID} V_{CM} Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V_{ID} V_{ID} V_{ID} V_{ID}
	Receiver input skew margin (RSKM)	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.
S	Single-ended voltage- referenced I/O Standard	VCCIO VOH VIH(DC) VIH(DC) VIL(AC) Values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform <i>ringing</i> .
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.

Letter	Term	Definitions							
	t _C	High-speed receiver and transmitter input and output clock period.							
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew. The clock is included in the TCCS measurement.							
	t _{cin}	Delay from the clock pad to the I/O input register.							
	t _{co}	Delay from the clock pad to the I/O output.							
	t _{cout}	Delay from the clock pad to the I/O output register.							
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.							
	t _{FALL}	Signal high-to-low transition time (80–20%).							
	t _H	Input register hold time.							
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.							
	t _{INJITTER}	Period jitter on the PLL clock input.							
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.							
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.							
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.							
т	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.							
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform V_{OD} $V_{$							
	t _{RISE}	Signal low-to-high transition time (20–80%).							
	t _{SU}	Input register setup time.							
U	l —	_							

Table 1–46. Glossary (Part 4 of 5)

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage.
	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.
	V _{IL (AC)}	Low-level AC input voltage.
	V _{IL (DC)}	Low-level DC input voltage.
	V _{IN}	DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{0D} = V_{0H} - V_{0L}$.
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.
	V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.
W	_	_
X		—
Y	_	_
Z	—	_

Document Revision History

Table 1–47 lists the revision history for this chapter.

Date	Version	Changes
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.
October 2014	1.9	Updated maximum value for V _{CCD_PLL} in Table 1–1.
		Removed extended temperature note in Table 1–3.
December 2013	1.8	Updated Table 1–21 by adding Note (15).
May 2013	1.7	Updated Table 1–15 by adding Note (4).
October 2012	1.6	■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCI0} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.
		■ Updated Table 1–11 and Table 1–22.
		 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock.
		■ Updated Table 1–29 to include the typical DCLK value.
		 Updated the minimum f_{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
	1.5	 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections.
November 2011		 Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.
		■ Updated Figure 1–1.
	1.4	 Updated for the Quartus II software version 10.1 release.
December 2010		■ Updated Table 1–21 and Table 1–25.
		 Minor text edits.
	1.3	Updated for the Quartus II software version 10.0 release:
		■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.
July 2010		■ Updated Figure 1–2 and Figure 1–3.
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables.
		 Minor text edits.
	1.2	Updated to include automotive devices:
		 Updated the "Operating Conditions" and "PLL Specifications" sections.
March 2010		 Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.
		Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.
		 Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.
		 Minor text edits.

Table 1–47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.