

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1840
Number of Logic Elements/Cells	29440
Total RAM Bits	1105920
Number of I/O	72
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	169-LBGA
Supplier Device Package	169-FBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx30bf14c8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT 19	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (5% (5)	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	_	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	_	0.97	1.0	1.03	V
V _I	Input voltage	_	-0.5	_	3.6	V
V_0	Output voltage	_	0	_	V _{CCIO}	V
		For commercial use	0	_	85	°C
т	Operating junction temperature	For industrial use	-40	_	100	°C
T_J	Operating junction temperature	For extended temperature	-40	_	125	°C
		For automotive use	-40	_	125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (5)	50 μs	_	50 ms	_
		Fast POR (6)	50 μs	_	3 ms	_

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enable	_	_	_	10	mA

Notes to Table 1-3:

- (1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades.
- (2) V_{CCIO} for all I/O banks must be powered up during device operation. All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (3) V_{CC} must rise monotonically.
- (4) V_{CCIO} powers all input buffers.
- (5) The POR time for Standard POR ranges between 50 and 200 ms. Each individual power supply must reach the recommended operating range within 50 ms.
- (6) The POR time for Fast POR ranges between 3 and 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Core voltage, PCIe hard IP block, and transceiver PCS power supply	_	1.16	1.2	1.24	V
V _{CCA} (1), (3)	PLL analog power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL} (2)	PLL digital power supply	_	1.16	1.2	1.24	V
	I/O banks power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	I/O banks power supply for 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	I/O banks power supply for 2.5-V operation	_	2.375	2.5	2.625	V
vccio (2)	I/O banks power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	I/O banks power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	I/O banks power supply for 1.2-V operation	_	1.14	1.2	1.26	V
	Differential clock input pins power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	Differential clock input pins power supply for 3.0-V operation	_	2.85	3	3.15	V
V _{CC_CLKIN}	Differential clock input pins power supply for 2.5-V operation	_	2.375	2.5	2.625	V
(3), (5), (6)	Differential clock input pins power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	Differential clock input pins power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	Differential clock input pins power supply for 1.2-V operation	_	1.14	1.2	1.26	V
$V_{\text{CCH_GXB}}$	Transceiver output buffer power supply	_	2.375	2.5	2.625	V

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1-6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_I = 0 V \text{ to } V_{CCIOMAX}$		-10	_	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$		-10	_	10	μΑ

Notes to Table 1-6:

- This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).
- (2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2) (1)

							V _{CCIO}	(V)						
Parameter	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μА
Bus hold low, overdrive current	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА
Bus hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μА

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2) (1)

Parameter	Condition		V _{CCIO} (V)											
		1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1-8. Series OCT Without Calibration Specifications for Cyclone IV Devices

		Resistance	Resistance Tolerance					
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit				
	3.0	±30	±40	%				
0 · 00 T ···	2.5	±30	±40	%				
Series OCT without calibration	1.8	±40	±50	%				
ounbration	1.5	±50	±50	%				
	1.2	±50	±50	%				

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9. Series OCT with Calibration at Device Power-Up Specifications for Cyclone IV Devices

		Calibration	n Accuracy	
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1-1. Final OCT Resistance (1), (2), (3), (4), (5), (6)

Notes to Equation 1-1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_{\rm X}$ refers to both $_{\rm V}$ and $_{\rm T}$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- (11) V2 is final voltage.
- (12) V_1 is the initial voltage.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported $V_{\rm CCIO}$ range for Schmitt trigger inputs in Cyclone IV devices.

Table 1–14. Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
V _{SCHMITT}		$V_{CCIO} = 3.3$	200	mV
	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5	200	mV
	input	V _{CCIO} = 1.8	140	mV
		V _{CCIO} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

I/O Ctondovd	V _{CCIO} (V)			V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) <i>(4)</i>	(mA) (4)
3.3-V LVTTL (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15	_	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Notes to Table 1-15:

- (1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1-15, refer to "Glossary" on page 1-37.
- (2) AC load CL = 10 pF
- (3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.
- (4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 2 of 2)

I/O Standard		V _{CCIO} (V)		V _{ID} (mV)			V _{ICM} (V) ⁽²⁾	Vo	_D (mV)	(3)	V _{0S} (V) ⁽³⁾			
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVDS						0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.80						
(Column I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; Mbps \leq D_{MAX} \\ \leq \; 700 \; Mbps \end{array}$	1.80	247	_	600	1.125	1.25	1.375
1,00)						1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS (Row I/Os) (4)	2.375	2.5	2.625	100		_	_	_	_	_	_		_	_
BLVDS (Column I/Os) (4)	2.375	2.5	2.625	100		_	_	_	_	_	_		_	_
mini-LVDS (Row I/Os)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4
mini-LVDS (Column I/Os) (5)	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4
RSDS® (Row I/Os) (5)	2.375	2.5	2.625	_		_	_	_	100	200	600	0.5	1.2	1.5
RSDS (Column I/Os) (5)	2.375	2.5	2.625	_			_		100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4
PPDS (Column I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4

Notes to Table 1-20:

- (1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.
- (2) V_{IN} range: $0 \text{ V} \leq V_{IN} \leq 1.85 \text{ V}$.
- (3) $R_L \text{ range: } 90 \leq R_L \leq 110 \ \Omega$.
- (4) There are no fixed V_{IN} , V_{OD} , and V_{OS} specifications for BLVDS. They depend on the system topology.
- (5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.
- (6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/	Oanditions		C6			C7, I7		C8				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Receiver			•				•			<u> </u>		
Supported I/O Standards	1.4 V PCML, 1.5 V PCML, 2.5 V PCML, LVPECL, LVDS											
Data rate (F324 and smaller package) (15)	_	600	_	2500	600	_	2500	600	_	2500	Mbps	
Data rate (F484 and larger package) (15)	_	600	_	3125	600	_	3125	600	_	2500	Mbps	
Absolute V _{MAX} for a receiver pin (3)	_	_	_	1.6	_	_	1.6	_	_	1.6	V	
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	_	_	1.5	V	
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V	
Peak-to-peak differential input voltage V _{ID} (diff p-p)	V _{ICM} = 0.82 V setting, Data Rate = 600 Mbps to 3.125 Gbps	0.1	_	2.7	0.1	_	2.7	0.1	_	2.7	V	
V _{ICM}	V _{ICM} = 0.82 V setting	_	820 ± 10%	_	_	820 ± 10%	_	_	820 ± 10%	_	mV	
Differential on-chip	100–Ω setting	_	100	_	_	100	_	_	100	_	Ω	
termination resistors	150– Ω setting	_	150	_	_	150	_	_	150	_	Ω	
Differential and common mode return loss	PIPE, Serial Rapid I/O SR, SATA, CPRI LV, SDI, XAUI					Compliant	i				_	
Programmable ppm detector ⁽⁴⁾	_				± 62.5	, 100, 125 250, 300	5, 200,				ppm	
Clock data recovery (CDR) ppm tolerance (without spread-spectrum clocking enabled)	_		_	±300 (5), ±350 (6), (7)		_	±300 (5), ±350 (6), (7)	_	_	±300 (5), ±350 (6), (7)	ppm	
CDR ppm tolerance (with synchronous spread-spectrum clocking enabled) (8)	_	_	_	350 to -5350 (7), (9)	_	_	350 to -5350 (7), (9)	_	_	350 to -5350 (7), (9)	ppm	
Run length	_		80	_	_	80	_		80		UI	
	No Equalization	_	_	1.5	_	_	1.5	_	_	1.5	dB	
Programmable	Medium Low	_	_	4.5	_	_	4.5		_	4.5	dB	
equalization	Medium High	_	_	5.5	_	_	5.5		_	5.5	dB	
	High	_	_	7	_	_	7	_		7	dB	

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–2. Lock Time Parameters for Manual Mode

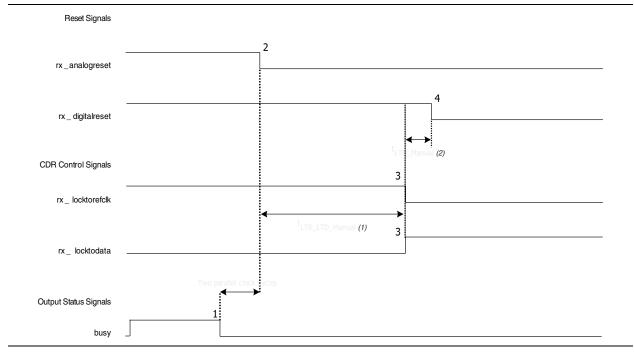


Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1-3. Lock Time Parameters for Automatic Mode

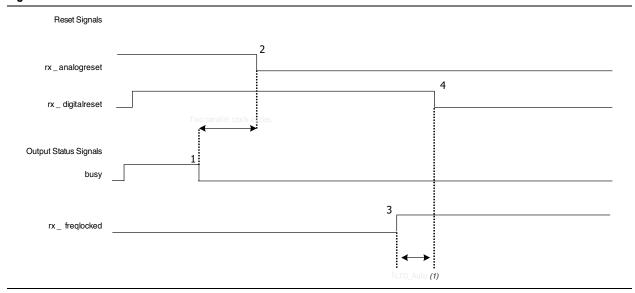


Figure 1–4 shows the differential receiver input waveform.

Figure 1-4. Receiver Input Waveform

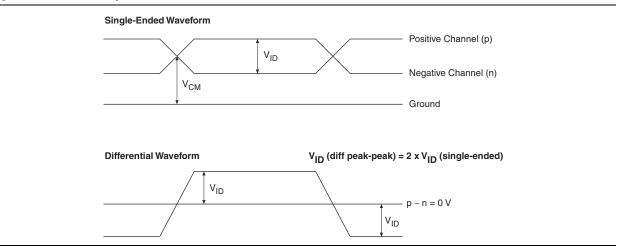


Figure 1–5 shows the transmitter output waveform.

Figure 1-5. Transmitter Output Waveform

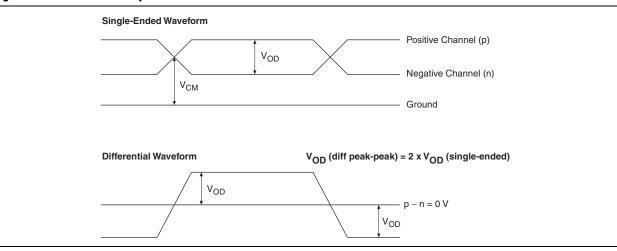


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω

Cumbal		V _{op} Setting (mV)											
Symbol	1	2	3	4 (1)	5	6							
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200							

Note to Table 1-22:

(1) This setting is required for compliance with the PCle protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Symbol/	Conditions		C6			C7, I7	7		Unit		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PCIe Transmit Jitter Gene	ration ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_		0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	6		> 0.6	i		> 0.6	6	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾										
Deterministic jitter	Pattern = CRPAT		_	0.14			0.14			0.14	UI
(peak-to-peak)	Tattom - On 70			0.11			0.11			0.11	01
Total jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4		> 0.4				> 0.4	ļ	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66		> 0.66				UI			

Notes to Table 1-23:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers specified are valid for the stated conditions only.
- (3) The jitter numbers for PIPE are compliant to the PCle Base Specification 2.0.
- (4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Davis		Performance													
Device	C6	C 7	C8	C8 C8L (1) C9L (1)		17	I8L ⁽¹⁾	A7	Unit						
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz						
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz						
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz						
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz						
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz						
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz						

Table 1-25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
toutjitter_period_dedclk (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_ccj_dedclk (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_period_io (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
toutjitter_ccj_io <i>(6)</i>	Regular I/O cycle-to-cycle jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
	F _{OUT} < 100 MHz	_	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_	_	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{CASC_OUTJITTER_PERIOD_DEDCLK}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)	_	_	42.5	mUI

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{CCD\ PLL}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{CO} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{CO} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.
- $\begin{tabular}{ll} (8) & The cascaded PLLs specification is applicable only with the following conditions: \end{tabular}$
 - Upstream PLL—0.59 MHz \leq Upstream PLL bandwidth < 1 MHz
 - Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) (1)	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1–30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	_	ns
t _{JCH}	TCK clock high time	19	_	ns
t _{JCL}	TCK clock low time	19	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	_	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t_{JPH}	JTAG port hold time	10	_	ns
t _{JPCO}	JTAG port clock to output (2), (3)	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output (2), (3)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2), (3)	_	15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

- (1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1-37.
- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol	Modes	C6			C7, I7			C8, A7			C8L, I8L			C9L			Unit
Syllibul	Mones	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (3)	_	_		1	_	_	1	_		1	_	_	1	_		1	ms

Notes to Table 1-31:

- (1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
- (2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks.

 Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
- (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Ob.al	Madaa		C6			C7, 17	'	C8, A7		(C8L, 18	BL			11!4		
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	_	85	5		85	5		85	5		85	5	_	72.5	MHz
	×8	5	_	85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	5	_	85	5	_	85	5	_	72.5	MHz
frequency)	×4	5	_	85	5	_	85	5		85	5		85	5	_	72.5	MHz
	×2	5		85	5	_	85	5	_	85	5		85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5		170	5	_	145	MHz
	×10	100	_	170	100	_	170	100	_	170	100	_	170	100		145	Mbps
	×8	80	_	170	80	_	170	80	_	170	80	_	170	80	_	145	Mbps
Device operation in	×7	70	_	170	70	_	170	70	_	170	70		170	70	_	145	Mbps
Mbps	×4	40	_	170	40		170	40	_	170	40	_	170	40	_	145	Mbps
	×2	20	1	170	20	_	170	20		170	20		170	20		145	Mbps
	×1	10	-	170	10		170	10		170	10		170	10	_	145	Mbps
t _{DUTY}	_	45	_	55	45		55	45	_	55	45	_	55	45	_	55	%
TCCS	_	_	1	200	_	_	200	_		200	_		200	_		200	ps
Output jitter (peak to peak)	_	_		500	_	_	500	_		550	_	_	600	_		700	ps
	20 – 80%,																
t _{RISE}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
	20 – 80%,																
t _{FALL}	C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_		500	_	ps

For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to *Section III: System Performance Specifications* of the *External Memory Interface Handbook*.

Table 1–37 lists the memory output clock jitter specifications for Cyclone IV devices.

Table 1–37. Memory Output Clock Jitter Specifications for Cyclone IV Devices (1), (2)

Parameter	Symbol	Min	Max	Unit
Clock period jitter	t _{JIT(per)}	-125	125	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	-200	200	ps
Duty cycle jitter	t _{JIT(duty)}	-150	150	ps

Notes to Table 1-37:

- Memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 standard.
- (2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock (GCLK) network.

Duty Cycle Distortion Specifications

Table 1–38 lists the worst case duty cycle distortion for Cyclone IV devices.

Table 1–38. Duty Cycle Distortion on Cyclone IV Devices I/O Pins (1), (2), (3)

Symbol	C	6	C7	, 1 7	C8, I8	BL, A7	C	Unit	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Ullit
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Notes to Table 1-38:

- (1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and IOE driving the dedicated and general purpose I/O pins.
- (2) Cyclone IV devices meet the specified duty cycle distortion at the maximum output toggle rate for each combination of I/O standard and current strength.
- (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

OCT Calibration Timing Specification

Table 1–39 lists the duration of calibration for series OCT with calibration at device power-up for Cyclone IV devices.

Table 1–39. Timing Specification for Series OCT with Calibration at Device Power-Up for Cyclone IV Devices $^{(1)}$

Symbol	Maximum	Units	
t _{OCTCAL}	Duration of series OCT with calibration at device power-up	20	μs

Note to Table 1-39:

(1) OCT calibration takes place after device configuration and before entering user mode.

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

Table 1–40. IOE Programmable Delay on Column Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

		Number		Max Offset					
Parameter	Paths Affected	of	Min Offset	Fast Corner		Slow Corner			Unit
		Setting		C8L	I8L	C8L	C9L	I8L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations Pad to global clock network		12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1–41. IOE Programmable Delay on Row Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

		Number		Max Offset					
Parameter	Paths Affected	of	Min Offset	Fast Corner		Slow Corner			Unit
	Setting			C8L	I8L	C8L	C9L	I8L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting $\bf 0$ as available in the Quartus II software.

Table 1-46. Glossary (Part 4 of 5)

ter	Term	Definitions						
	t _C	High-speed receiver and transmitter input and output clock period.						
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.						
	t _{cin}	Delay from the clock pad to the I/O input register.						
	t _{co}	Delay from the clock pad to the I/O output.						
	t _{cout}	Delay from the clock pad to the I/O output register.						
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.						
	t _{FALL}	Signal high-to-low transition time (80–20%).						
	t _H	Input register hold time.						
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w)$.						
	t _{INJITTER}	Period jitter on the PLL clock input.						
	t _{OUTJITTER_DEDCLK}	Period jitter on the dedicated clock output driven by a PLL.						
	t _{OUTJITTER_IO}	Period jitter on the general purpose I/O driven by a PLL.						
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.						
T	t _{pllcout}	Delay from the PLL inclk pad to the I/O output register.						
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V _{OD} 0 V p - n						
	t _{RISE}	Signal low-to-high transition time (20–80%).						
	t _{SU}	Input register setup time.						
J	_	_						

Document Revision History

Table 1–47 lists the revision history for this chapter.

Table 1–47. Document Revision History

Date	Version	Changes
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.
October 2014	1.9	Updated maximum value for V _{CCD_PLL} in Table 1–1.
October 2014		Removed extended temperature note in Table 1–3.
December 2013	1.8	Updated Table 1–21 by adding Note (15).
May 2013	1.7	Updated Table 1–15 by adding Note (4).
		■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCIO} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.
		■ Updated Table 1–11 and Table 1–22.
October 2012	1.6	 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock.
		■ Updated Table 1–29 to include the typical DCLK value.
		■ Updated the minimum f _{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
	011 1.5	 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections.
November 2011		■ Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.
		■ Updated Figure 1–1.
		■ Updated for the Quartus II software version 10.1 release.
December 2010	1.4	■ Updated Table 1–21 and Table 1–25.
		■ Minor text edits.
		Updated for the Quartus II software version 10.0 release:
	1.3	■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.
July 2010		■ Updated Figure 1–2 and Figure 1–3.
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables.
		■ Minor text edits.
	1.2	Updated to include automotive devices:
		Updated the "Operating Conditions" and "PLL Specifications" sections.
March 2010		■ Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.
		■ Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.
		 Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.
		Minor text edits.

Table 1-47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.