Intel - EP4CGX50CF23I7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	3118
Number of Logic Elements/Cells	49888
Total RAM Bits	2562048
Number of I/O	290
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx50cf23i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express [®] (PCIe [®]) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
TJ	Operating junction temperature	-40	125	°C

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Note to Table 1–1:

(1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to –2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT (")	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.25 1.03 3.465 3.15 2.625 1.89 1.575 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.26 2.625 1.25 1.03 3.6 V _{CCI0} 85 100 125 125	V
V _{ccio} (3). (4)	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (Syn (Syn	Supply voltage for output buffers,	1.71	1.8	1.89	V	
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} <i>(3)</i>	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	—	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
		For commercial use	0	—		°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
IJ		For extended temperature	-40	_	125	°C
		For automotive use	-40		125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs		50 ms	
		Fast POR (6)	50 µs		3 ms	

Table 1-3.	Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2}	⁹ (Part 2 of 2)
------------	--	----------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enable	_	_		10	mA

Notes to Table 1–3:

 Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades.

(2) V_{CCI0} for all I/O banks must be powered up during device operation. All vCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.

(3) V_{CC} must rise monotonically.

(4) V_{CCI0} powers all input buffers.

(5) The POR time for Standard POR ranges between 50 and 200 ms. Each individual power supply must reach the recommended operating range within 50 ms.

(6) The POR time for Fast POR ranges between 3 and 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Core voltage, PCIe hard IP block, and transceiver PCS power supply		1.16	1.2	1.24	V
V _{CCA} (1), (3)	PLL analog power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL} <i>(2)</i>	PLL digital power supply	_	1.16	1.2	1.24	V
ор I/О О Ор Ор Ор Ор Ор Ор Ор Ор Ор	I/O banks power supply for 3.3-V operation	—	3.135	3.3	3.465	V
	I/O banks power supply for 3.0-V operation	—	2.85	3	3.15	V
	I/O banks power supply for 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (S), (S)	I/O banks power supply for 1.8-V operation	—	1.71	1.8	1.89	V
	I/O banks power supply for 1.5-V operation	—	1.425	1.5	1.575	V
	I/O banks power supply for 1.2-V operation	_	1.14	1.2	1.26	V
	Differential clock input pins power supply for 3.3-V operation	—	3.135	3.3	3.465	V
	Differential clock input pins power supply for 3.0-V operation	—	2.85	3	3.15	V
V _{CC_CLKIN}	Differential clock input pins power supply for 2.5-V operation	—	2.375	2.5	2.625	V
(3), (5), (6)	Differential clock input pins power supply for 1.8-V operation	—	1.71	1.8	1.89	V
	Differential clock input pins power supply for 1.5-V operation	—	1.425	1.5	1.575	V
	Differential clock input pins power supply for 1.2-V operation	—	1.14	1.2	1.26	V
V _{CCH_GXB}	Transceiver output buffer power supply	_	2.375	2.5	2.625	V

Table 1–4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA_GXB}	Transceiver PMA and auxiliary power supply	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	_	1.16	1.2	1.24	V
VI	DC input voltage	—	-0.5		3.6	V
V ₀	DC output voltage	—	0	_	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0	—	85	°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁷⁾	50 µs	_	50 ms	_
		Fast POR ⁽⁸⁾	50 µs		3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled	_	_	_	10	mA

Table 1-4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 2 of 2)

Notes to Table 1-4:

- (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.
- (2) You must connect $V_{CCD PLL}$ to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) Power supplies must rise monotonically.
- (4) V_{CCI0} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCI0} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCI0} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCI0} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V.
- (5) You must set $V_{CC_{CLKIN}}$ to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input.
- (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications.
- (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms.
- (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms.

ESD Performance

This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os.

Table 1–5. ESD for Cyclone IV Devices GPIOs and HSSI I/0
--

Symbol	Parameter	Passing Voltage	Unit
M	ESD voltage using the HBM (GPIOs) ⁽¹⁾	± 2000	V
VESDHBM	ESD using the HBM (HSSI I/Os) ⁽²⁾	± 1000	V
V	ESD using the CDM (GPIOs)	± 500	V
VESDCDM	ESD using the CDM (HSSI I/Os) ⁽²⁾	± 250	V

Notes to Table 1-5:

(1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V.

(2) This value is applicable only to Cyclone IV GX devices.

							V _{ccio}	(V)						
Parameter	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	—	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

		Resistance		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

		Calibratio	n Accuracy	
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1–12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
	Value of the I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
R	before and during configuration, as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
R_pu	well as user mode if you enable the	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
	programmable pull-up resistor option	$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143		kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
R_PD	Value of the I/O pin pull-down resistor before and during configuration	$V_{CCIO} = 2.5 V \pm 5\%$ (4)	6	25	43	kΩ
		$V_{CCIO} = 1.8 V \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 V \pm 5\%$ (4)	$n = 1.5 V \pm 5\%$ (2). (3) 13 82 $n = 1.2 V \pm 5\%$ (2). (3) 19 143 $n = 3.3 V \pm 5\%$ (4) 6 19 $n = 3.0 V \pm 5\%$ (4) 6 22 $n = 2.5 V \pm 5\%$ (4) 6 25 $n = 1.8 V \pm 5\%$ (4) 7 35	50	112	kΩ

Notes to Table 1–12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- $\begin{array}{ll} \text{(3)} & \text{R}_{_{PU}} = (\text{V}_{\text{CCI0}} \text{V}_{\text{I}})/\text{I}_{\text{R}_{_{PU}}} \\ & \text{Minimum condition: } -40^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} + 5\%, \ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 5\% 50 \ \text{mV}; \\ & \text{Typical condition: } 25^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}}, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CCI0}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CC}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = \text{V}_{\text{CO}} 5\%, \ \text{V}_{\text{I}} = 0 \ \text{V}; \\ & \text{Maximum condition: } 100^{\circ}\text{C}; \ \text{V}_{\text{CO}} = 10^{\circ}\text{C}; \ \text{V}_{\text{CO}} = 10^{\circ$
- $\begin{array}{ll} (4) & R_{_PD} = V_I/I_{R_PD} \\ & \text{Minimum condition:} -40^{\circ}\text{C}; \ V_{CCIO} = V_{CC} + 5\%, \ V_I = 50 \ \text{mV}; \\ & \text{Typical condition:} \ 25^{\circ}\text{C}; \ V_{CCIO} = V_{CC}, \ V_I = V_{CC} 5\%; \\ & \text{Maximum condition:} \ 100^{\circ}\text{C}; \ V_{CCIO} = V_{CC} 5\%, \ V_I = V_{CC} 5\%; \ \text{in which } V_I \ \text{refers to the input voltage at the I/O pin.} \end{array}$

Hot-Socketing

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μA
I _{IOPIN(AC)}	AC current per I/O pin	8 mA <i>(1)</i>
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |IIOPIN| = C dv/dt, in which C is the I/O pin capacitance and dv/dt is the slew rate.

During hot-socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
V	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
V _{SCHMITT}	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V		V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) (4)	(mA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465		0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	$V_{CC10} - 0.2$	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

1/0 Ober devid		V _{CCIO} (V)		V _{ID} ((mV)		V _{ICM} (V) ⁽²⁾		Vo	_D (mV)	(3)	V _{0S} (V) ⁽³⁾		IJ
I/O Standard	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80						
LVDS (Column I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \mbox{ Mbps} \leq D_{MAX} \\ \leq \mbox{ 700 } \mbox{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS (Row I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_	_	_			_
BLVDS (Column I/Os) ⁽⁴⁾	2.375	2.5	2.625	100	_	_	_	_	_		_	_	_	
mini-LVDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_			300	_	600	1.0	1.2	1.4
mini-LVDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_		_	_	300	_	600	1.0	1.2	1.4
RSDS® (Row I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
RSDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) <i>(</i> 5)	2.375	2.5	2.625	—	_				100	200	600	0.5	1.2	1.4
PPDS (Column I/Os) ⁽⁵⁾	2.375	2.5	2.625				_		100	200	600	0.5	1.2	1.4

Table 1-20.	Differential I/O Standard S	pecifications for C	yclone IV Devices ⁽¹⁾	(Part 2 of 2)
-------------	-----------------------------	---------------------	----------------------------------	---------------

Notes to Table 1-20:

(1) For an explanation of terms used in Table 1–20, refer to "Glossary" on page 1–37.

(2) $~V_{IN}$ range: 0 V $\leq V_{IN} \leq$ 1.85 V.

 $(3) \quad R_L \text{ range: } 90 \leq \ R_L \leq \ 110 \ \Omega \, .$

(4) There are no fixed $V_{\rm IN},\,V_{\rm OD},\, and\,V_{\rm OS}$ specifications for BLVDS. They depend on the system topology.

(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.

(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

To For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

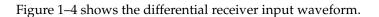
- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/ Description	Conditions	C6			C7, I7			C8			Unit
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PLD-Transceiver Interface											
Interface speed (F324 and smaller package)	_	25	_	125	25	_	125	25	_	125	MHz
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Digital reset pulse width	_		Minimum is 2 parallel clock cycles								

Notes to Table 1–21:

(1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.


(2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.

- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll_locked goes high after pll_powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx_analogreset deasserts and before rx_locktodata is asserted in manual mode.

(12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3).

(13) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode.

- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.



Figure 1–5 shows the transmitter output waveform.

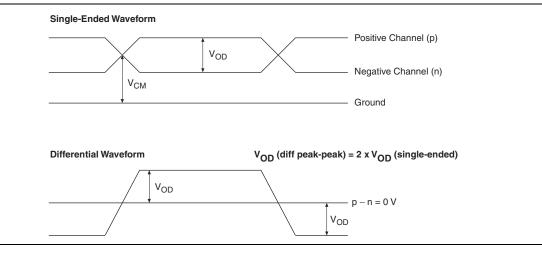


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{0D} Setting, Tx Term = 100 Ω

Symbol	V _{oD} Setting (mV)									
Symbol	1	2	3	4 (1)	5	6				
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200				

Note to Table 1-22:

(1) This setting is required for compliance with the PCIe protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	0		C6		C7, I7			C8			Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Transmit Jitter Gene	ration ⁽³⁾	-		<u>.</u>	-		<u>.</u>			<u>.</u>	
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾	•						•	•		•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	ompliance pattern > 0.6				> 0.6			> 0.6		
GIGE Transmit Jitter Gene	ration ⁽⁴⁾	•						•			•
Deterministic jitter	Pattern = CRPAT			0.14			0.14			0.14	UI
(peak-to-peak)	Falleni = UNFAI			0.14		_	0.14	_	_	0.14	01
Total jitter (peak-to-peak)	Pattern = CRPAT	—		0.279	_		0.279	_		0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4			> 0.4			> 0.4			UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66			> 0.66				UI		

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Performance											
Device	C6 (C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	Unit			
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz			

Barlas		Performance												
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L (1)	A7	– Unit					
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz					
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz					
EP4CE115	_	437.5	402	362	265	437.5	362	—	MHz					
EP4CGX15	500	437.5	402	—	—	437.5	—	—	MHz					
EP4CGX22	500	437.5	402	_	—	437.5	_		MHz					
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz					
EP4CGX50	500	437.5	402	—	—	437.5	—	—	MHz					
EP4CGX75	500	437.5	402	_	—	437.5	_		MHz					
EP4CGX110	500	437.5	402	—	—	437.5	—	—	MHz					
EP4CGX150	500	437.5	402			437.5			MHz					

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

 Table 1–25. PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (–8L speed grade)	5		362	MHz
	Input clock frequency (–9L speed grade)	5	_	265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600		1300	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
t _{INJITTER_CCJ} (5)	Input clock cycle-to-cycle jitter $F_{REF} \ge 100 \text{ MHz}$	_		0.15	UI
-	F _{REF} < 100 MHz	—	_	±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	—		472.5	MHz
	PLL output frequency (-7 speed grade)		_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	—		402.5	MHz
	PLL output frequency (-8L speed grade)	—		362	MHz
	PLL output frequency (-9L speed grade)	—		265	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	1	ms

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mode	Resources Used		I	Performance	9		Unit
Mode	Number of Multipliers	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
9 × 9-bit multiplier	1	340	300	260	240	175	MHz
18 × 18-bit multiplier	1	287	250	200	185	135	MHz

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

		Resou	rces Used						
Memory	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
	FIFO 256 × 36	47	1	315	274	238	200	157	MHz
MOK Block	Single-port 256 × 36	0	1	315	274	238	200	157	MHz
M9K Block	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passive Serial (PS)	1.0 <i>(3</i>)	66	MHz
rassive Seliai (rS)	1.2	133	MHz
Fast Dassing Dansliel (EDD) (2)	1.0 ⁽³⁾	66	MHz
Fast Passive Parallel (FPP) ⁽²⁾	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) V_{CCINT} = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.

Symbol	Madaa	C	6	C 7	, 17	C 8,	, A7	C8L	, 18L	C	9L	11
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max 250 250 250 250 250 250 250 250 250 250 250 250 250 250 265 500 500 500 500 500 265 500 200 700 1	Unit
	×10	5	420	5	370	5	320	5	320	5	250	MHz
	×8	5	420	5	370	5	320	5	320	5	250	MHz
f _{HSCLK} (input	×7	5	420	5	370	5	320	5	320	5	250	MHz
clock frequency)	×4	5	420	5	370	5	320	5	320	5	250	MHz
	×2	5	420	5	370	5	320	5	320	5	265 MHz	MHz
	×1	5	420	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	840	100	740	100	640	100	640	100	500	Mbps
	×8	80	840	80	740	80	640	80	640	80	500	Mbps
	×7	70	840	70	740	70	640	70	640	70	500	Mbps
HSIODR	×4	40	840	40	740	40	640	40	640	40	500	Mbps
	×2	20	840	20	740	20	640	20	640	20	500	Mbps
	×1	10	420	10	402.5	10	402.5	10	362	10	265	Mbps
t _{DUTY}	—	45	55	45	55	45	55	45	55	45	55	%
TCCS	—	_	200	_	200	—	200		200	—	200	ps
Output jitter (peak to peak)	_	_	500	_	500	_	550		600	_	700	ps
t _{LOCK} (2)	—	—	1	—	1		1	—	1	—	1	ms

Table 1–34. True LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)}

Notes to Table 1-34:

(1) Cyclone IV E—true LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Cyclone IV GX—true LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 1 of 2)

Gumbal	Madaa	C	6	C7,	, 17	C8,	A7	C8L	, 18L	C	9L	Unit
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	320	5	320	5	275	5	275	5	250	MHz
	×8	5	320	5	320	5	275	5	275	5	250	MHz
f _{HSCLK} (input clock	×7	5	320	5	320	5	275	5	275	5	250	MHz
frequency)	×4	5	320	5	320	5	275	5	275	5	250	MHz
1 37	×2	5	320	5	320	5	275	5	275	5	250	MHz
	×1	5	402.5	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	640	100	640	100	550	100	550	100	500	Mbps
	×8	80	640	80	640	80	550	80	550	80	500	Mbps
HSIODR	×7	70	640	70	640	70	550	70	550	70	500	Mbps
HOIDDN	×4	40	640	40	640	40	550	40	550	40	500	Mbps
	×2	20	640	20	640	20	550	20	550	20	500	Mbps
	×1	10	402.5	10	402.5	10	402.5	10	362	10	265	Mbps

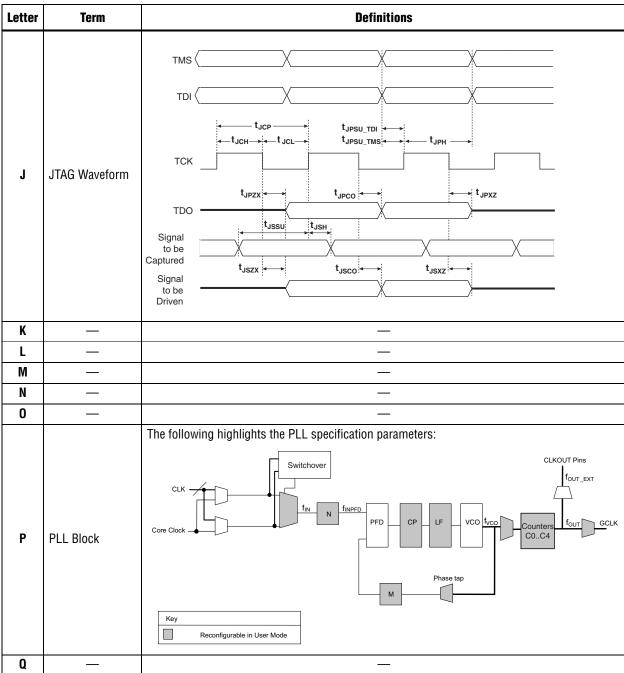
IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

Parameter		Number of		Max Offset					
	Paths Affected		Min Offset	Fast Corner		Slow Corner			Unit
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.


(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

	Paths Affected	Number of Setting	Min Offset	Max Offset					
Parameter				Fast Corner		Slow Corner			Unit
				C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1-46. Glossary (Part 2 of 5)

Letter	Term	Definitions						
	t _C	High-speed receiver and transmitter input and output clock period.						
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew. The clock is included in the TCCS measurement.						
	t _{cin}	Delay from the clock pad to the I/O input register.						
	t _{co}	Delay from the clock pad to the I/O output.						
	t _{cout}	Delay from the clock pad to the I/O output register.						
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.						
	t _{FALL}	Signal high-to-low transition time (80–20%).						
	t _H	Input register hold time.						
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.						
	t _{INJITTER}	Period jitter on the PLL clock input.						
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.						
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.						
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.						
T	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.						
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform V_{OD} $V_{$						
	t _{RISE}	Signal low-to-high transition time (20–80%).						
	t _{SU}	Input register setup time.						
U	—	_						

Table 1–46. Glossary (Part 4 of 5)

Table 1-46. Glossary (Part 5 of 5)

Letter	er Term Definitions				
	V _{CM(DC)}	DC common mode input voltage.			
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.			
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.			
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.			
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.			
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.			
	V _{IH(AC)}	High-level AC input voltage.			
	V _{IH(DC)}	High-level DC input voltage.			
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.			
	V _{IL (AC)}	Low-level AC input voltage.			
	V _{IL (DC)}	Low-level DC input voltage.			
	V _{IN}	DC input voltage.			
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.			
V	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{0D} = V_{0H} - V_{0L}$.			
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.			
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.			
	V _{os}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.			
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.			
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.			
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.			
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.			
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.			
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.			
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.			
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.			
W	—	_			
X	—	—			
Y	—	_			
Z	—	_			

Table 1–47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.