

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	3118
Number of Logic Elements/Cells	49888
Total RAM Bits	2562048
Number of I/O	290
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx50cf23i7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express® (PCIe®) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
T _J	Operating junction temperature	-40	125	°C

Note to Table 1-1:

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to -2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1-2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

⁽¹⁾ Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT 19	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{CCIO} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (5% (5)	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	_	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	_	0.97	1.0	1.03	V
V _I	Input voltage	_	-0.5	_	3.6	V
V_0	Output voltage	_	0	_	V _{CCIO}	V
		For commercial use	0	_	85	°C
т	Operating junction temperature	For industrial use	-40	_	100	°C
T_J	Operating junction temperature	For extended temperature	-40	_	125	°C
		For automotive use	-40	_	125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) (5)	50 μs	_	50 ms	_
		Fast POR (6)	50 μs	_	3 ms	_

Operating Conditions

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1-1. Impedance Change

$$\Delta R_V = (3.15 - 3) \times 1000 \times -0.026 = -3.83$$

$$\Delta R_T = (85 - 25) \times 0.262 = 15.72$$

Because ΔR_V is negative,

$$MF_V = 1 / (3.83/100 + 1) = 0.963$$

Because ΔR_T is positive,

$$MF_T = 15.72/100 + 1 = 1.157$$

$$MF = 0.963 \times 1.157 = 1.114$$

$$R_{final} = 50 \times 1.114 = 55.71 \Omega$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Table 1–11. Pin Capacitance for Cyclone IV Devices (1)

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C _{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR} (2)	Input capacitance on right dual-purpose $\ensuremath{\mathtt{VREF}}$ pin when used as V_{REF} or user I/O pin	21	21	21	pF
C _{VREFTB} (2)	Input capacitance on top and bottom dual-purpose ${\tt VREF}$ pin when used as $V_{{\tt REF}}$ or user I/O pin	23 (3)	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

- (1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.
- (2) When you use the VREF pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.
- (3) C_{VREFTB} for the EP4CE22 device is 30 pF.

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1-12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
R_PU be	Value of the I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
	before and during configuration, as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
	well as user mode if you enable the programmable pull-up resistor option	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
	Value of the 1/O air well decreased as	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
R_PD	Value of the I/O pin pull-down resistor before and during configuration	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
	201010 and daring bonnigaration	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (4)	8	50	112	kΩ

Notes to Table 1-12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.
- (3) $R_{PU} = (V_{CC10} V_1)/I_{R_PU}$ Minimum condition: $-40^{\circ}C$; $V_{CC10} = V_{CC} + 5\%$, $V_1 = V_{CC} + 5\% 50$ mV; Typical condition: $25^{\circ}C$; $V_{CC10} = V_{CC}$, $V_1 = 0$ V; $V_2 = 0$ V; $V_3 = 0$ V; $V_4 = 0$ V and $V_5 = 0$ V and $V_6 = 0$ V and $V_7 = 0$ V and $V_8 = 0$ V and $V_$

Maximum condition: 100°C ; $V_{\text{CCIO}} = V_{\text{CC}} - 5\%$, $V_{\text{I}} = 0$ V; in which V_{I} refers to the input voltage at the I/O pin.

(4) $R_{PD} = V_I/I_{RPD}$

Minimum condition: -40°C; $V_{CCIO} = V_{CC} + 5\%$, $V_I = 50$ mV;

Typical condition: 25°C; $V_{CCIO} = V_{CC}$, $V_1 = V_{CC} - 5\%$; Maximum condition: 100°C; $V_{CCIO} = V_{CC} - 5\%$, $V_1 = V_{CC} - 5\%$; in which V_1 refers to the input voltage at the I/O pin.

Hot-Socketing

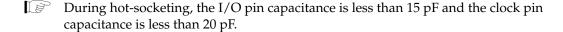

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN(AC)}	AC current per I/O pin	8 mA (1)
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|IIOPIN| = C \frac{dv}{dt}$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported $V_{\rm CCIO}$ range for Schmitt trigger inputs in Cyclone IV devices.

Table 1–14. Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		$V_{CCIO} = 3.3$	200	mV
V	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5	200	mV
V _{SCHMITT}	input	V _{CCIO} = 1.8	140	mV
		V _{CCIO} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

I/O Ctondovd		V _{CCIO} (V)	V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) <i>(4)</i>	(mA) (4)
3.3-V LVTTL (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15	_	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Notes to Table 1-15:

- (1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1-15, refer to "Glossary" on page 1-37.
- (2) AC load CL = 10 pF
- (3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.
- (4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

Table 1–16. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Cyclone IV Devices (1)

1/0	,	V _{CCIO} (V)		V _{REF} (V)	V _{TT} (V) ⁽²⁾				
Standard	tandard Min Typ Max Min		Min	Тур	Min	Тур	Max			
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95	
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79	
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCIO} (3) 0.47 x V _{CCIO} (4)	0.5 x V _{CCIO} (3) 0.5 x V _{CCIO} (4)	0.52 x V _{CCIO} (3) 0.53 x V _{CCIO} (4)	_	0.5 x V _{CCIO}	_	

Notes to Table 1-16:

- (1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.
- (2) V_{TT} of the transmitting device must track V_{REF} of the receiving device.
- (3) Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- (4) Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Table 1-17. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone IV Devices

I/O	V _{IL(}	_{DC)} (V)	VIH	_{I(DC)} (V)	V _{IL(}	_(AC) (V)	V _{IH}	(AC) (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_		V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I		V _{REF} – 0.125	V _{REF} + 0.125	_		V _{REF} – 0.25	V _{REF} + 0.25	_	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_		V _{REF} – 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} - 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_		V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_		V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the I/O Features in Cyclone IV Devices chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	V	_{CC10} (V	')	V _{Swing}	_{J(DC)} (V)	V _{X(AC)} (V)			V _{Swi}	ng(AC) /)	V _{OX(AC)} (V)			
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min Max		Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.7	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125	
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125	

Note to Table 1-18:

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices (1)

	V	V _{CC10} (V)			_{DC)} (V)	V _{X(AC)} (V)			V _{CM(DC)} (V)				_{F(AC)} (V)
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85		0.95	0.85	_	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71		0.79	0.71	_	0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.48 x V _{CCIO}		0.52 x V _{CCIO}	0.3	0.48 x V _{CCIO}

Note to Table 1-19:

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 1 of 2)

I/O Standard		V _{CCIO} (V)		V _{ID}	(mV)		V _{ICM} (V) ⁽²⁾		Vo	_D (mV)	(3)	V _{0S} (V) ⁽³⁾		
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
L) (DEOL						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVPECL (Row I/Os)	2.375	2.5	2.625	100	_	$ \begin{array}{c c} 0.55 & 500 \text{ Mbps} \leq D_{MAX} \\ \leq 700 \text{ Mbps} \\ \hline 1.05 & D_{MAX} > 700 \text{ Mbps} \\ \end{array} $		1.80	_	_	_	_	_	_
						IWIFUX		1.55						
IV/DEOL						0.05 D _{MAX} ≤ 500 Mbps		1.80						
LVPECL (Column I/Os) (6)	2.375	2.5	2.625	100	_	$\begin{array}{c c} 0.05 & D_{MAX} \leq 500 \text{ Mbps} \\ \hline 0.55 & 500 \text{ Mbps} \leq D_{MAX} \\ \leq 700 \text{ Mbps} \end{array}$		1.80	_	_	_	_	_	_
1,00)						1.05	D _{MAX} > 700 Mbps	1.55						
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \; \text{Mbps} \leq D_{\text{MAX}} \\ \leq \; 700 \; \text{Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375
						1.05 D _{MAX} > 700 Mbps		1.55						

⁽¹⁾ Differential SSTL requires a V_{REF} input.

⁽¹⁾ Differential HSTL requires a V_{REF} input.

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus® II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

Table 1–21 lists the Cyclone IV GX transceiver specifications.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 1 of 4)

Symbol/	Oouditions.	C6 Min Typ Max				C7, I7			C8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock											
Supported I/O Standards		1.2 V F	PCML, 1.5	V PCML, 3.	3 V PCN	1L, Differe	ntial LVPE	CL, LVD	S, HCSL		
Input frequency from REFCLK input pins	_	50	_	156.25	50	_	156.25	50	_	156.25	MHz
Spread-spectrum modulating clock frequency	Physical interface for PCI Express (PIPE) mode	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PIPE mode	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
Peak-to-peak differential input voltage	_	0.1	_	1.6	0.1	_	1.6	0.1	_	1.6	V
V _{ICM} (AC coupled)	_		1100 ± 5	5%		1100 ± 5%	%		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
Transmitter REFCLK Phase Noise (1)	Frequency offset	_	_	-123	_	_	-123	_	_	-123	dBc/Hz
Transmitter REFCLK Total Jitter (1)	= 1 MHz – 8 MHZ	_	_	42.3	_	_	42.3	_	_	42.3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock											
cal_blk_clk clock frequency	_	10	_	125	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	_	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(2)</i>	_	50	2.5/ 37.5 (2)	_	50	2.5/ 37.5 (2)	_	50	MHz
Delta time between reconfig_clk	_	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1	_	_	1	_	_	1	_	μs

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/	Oanditions		C6			C7, I7			C8		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Receiver			•				•			<u> </u>	
Supported I/O Standards	1.4 V PCML, 1.5 V PCML, 2.5 V PCML, LVPECL, LVDS										
Data rate (F324 and smaller package) (15)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package) (15)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
Absolute V _{MAX} for a receiver pin (3)	_	_	_	1.6	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	_	_	1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Peak-to-peak differential input voltage V _{ID} (diff p-p)	V _{ICM} = 0.82 V setting, Data Rate = 600 Mbps to 3.125 Gbps	0.1	_	2.7	0.1	_	2.7	0.1	_	2.7	V
V _{ICM}	V _{ICM} = 0.82 V setting	_	820 ± 10%	_	_	820 ± 10%	_	_	820 ± 10%	_	mV
Differential on-chip	100–Ω setting	_	100	_	_	100	_	_	100	_	Ω
termination resistors	150– Ω setting	_	150	_	_	150	_	_	150	_	Ω
Differential and common mode return loss	PIPE, Serial Rapid I/O SR, SATA, CPRI LV, SDI, XAUI					Compliant	i				_
Programmable ppm detector ⁽⁴⁾	_				± 62.5	, 100, 125 250, 300	5, 200,				ppm
Clock data recovery (CDR) ppm tolerance (without spread-spectrum clocking enabled)	_		_	±300 (5), ±350 (6), (7)		_	±300 (5), ±350 (6), (7)	_	_	±300 (5), ±350 (6), (7)	ppm
CDR ppm tolerance (with synchronous spread-spectrum clocking enabled) (8)	_	_	_	350 to -5350 (7), (9)	_	_	350 to -5350 (7), (9)	_	_	350 to -5350 (7), (9)	ppm
Run length	_		80	_	_	80	_		80		UI
	No Equalization	_	_	1.5	_	_	1.5	_	_	1.5	dB
Programmable	Medium Low	_	_	4.5	_	_	4.5		_	4.5	dB
equalization	Medium High	_	_	5.5	_	_	5.5		_	5.5	dB
	High	_	_	7	_	_	7	_		7	dB

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Symbol/	0 1111		C6			C7, I7			C8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	_	_	_	75	_	_	75	_	_	75	μs
t _{LTR-LTD_Manual} (11)	_	15	_	_	15	_	_	15	_	_	μs
t _{LTD} (12)	_	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	_		_	4000	_		4000	_		4000	ns
t _{LTD_Auto} (14)	_		_	4000	_		4000	_		4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_		_	17000	_	_	17000	_	_	17000	recon fig_c lk cycles
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting	_	650	_	_	650	_	_	650	_	mV
Differential on-chip	100–Ω setting	_	100	_	_	100	_	_	100	_	Ω
termination resistors	150– Ω setting	_	150	_	_	150	_	_	150	_	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA					Complian	į			,	_
Rise time	_	50	_	200	50	_	200	50	_	200	ps
Fall time	_	50	_	200	50	_	200	50	_	200	ps
Intra-differential pair skew	_	_	_	15	_	_	15	_	_	15	ps
Intra-transceiver block skew	_	_	_	120	_	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/	Conditions		C6			C7, I7				Unit	
Description	Collultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
PLD-Transceiver Inte	rface										
Interface speed (F324 and smaller package)	_	25	_	125	25	_	125	25	_	125	MHz
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Digital reset pulse width	_	Minimum is 2 parallel clock cycles									

Notes to Table 1-21:

- (1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.
- (2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll locked goes high after pll powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx analogreset deasserts and before rx locktodata is asserted in manual mode.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3).
- (13) Time taken to recover valid data after the $rx_locktodata$ signal is asserted in manual mode.
- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–2. Lock Time Parameters for Manual Mode

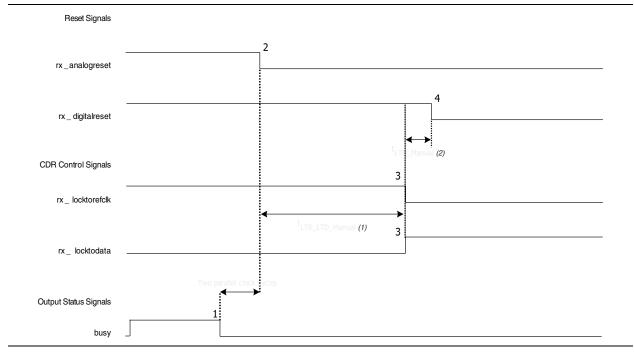


Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1-3. Lock Time Parameters for Automatic Mode

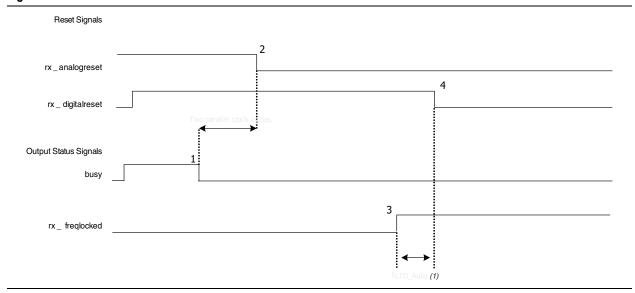


Figure 1–4 shows the differential receiver input waveform.

Figure 1-4. Receiver Input Waveform

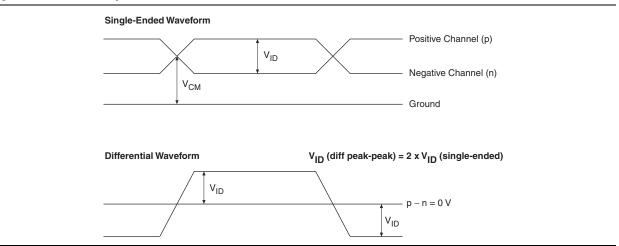


Figure 1–5 shows the transmitter output waveform.

Figure 1-5. Transmitter Output Waveform

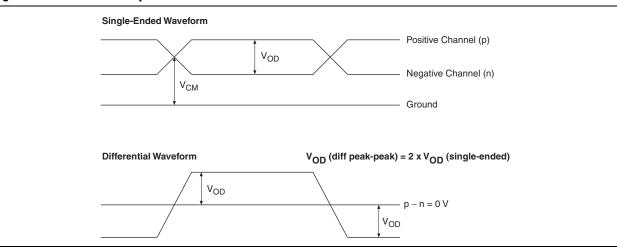


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω

Cumbal			V _{op} Sett	ing (mV)		
Symbol	1	2	3	4 (1)	5	6
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200

Note to Table 1-22:

(1) This setting is required for compliance with the PCle protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Symbol/	Conditions		C6			C7, I7	7			II.a.i.k	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Transmit Jitter Gene	ration ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	;		> 0.6	i		> 0.6	;	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾										
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	_	_	0.14	UI
Total jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	= CJPAT > 0.4		}	> 0.4				> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66		> 0.66				UI		

Notes to Table 1-23:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers specified are valid for the stated conditions only.
- (3) The jitter numbers for PIPE are compliant to the PCle Base Specification 2.0.
- (4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Davisa				Perfor	mance				11!4
Device	C6	C7	C8	C8L (1)	C9L (1)	17	I8L ⁽¹⁾	A7	Unit
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz

Table 1–34. True LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (3	ue LVDS Transmitter Timing Specifications	for Cyclone IV Devices (1), (3)
--	---	---------------------------------

Cumbal	Madaa	C	6	C7	, I7	C8,	, A7	C8L	, I8L	C	9L	llmit
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	420	5	370	5	320	5	320	5	250	MHz
	×8	5	420	5	370	5	320	5	320	5	250	MHz
f _{HSCLK} (input	×7	5	420	5	370	5	320	5	320	5	250	MHz
clock frequency)	×4	5	420	5	370	5	320	5	320	5	250	MHz
, ,,,	×2	5	420	5	370	5	320	5	320	5	250	MHz
	×1	5	420	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	840	100	740	100	640	100	640	100	500	Mbps
	×8	80	840	80	740	80	640	80	640	80	500	Mbps
HSIODR	×7	70	840	70	740	70	640	70	640	70	500	Mbps
nolubh	×4	40	840	40	740	40	640	40	640	40	500	Mbps
	×2	20	840	20	740	20	640	20	640	20	500	Mbps
	×1	10	420	10	402.5	10	402.5	10	362	10	265	Mbps
t _{DUTY}	_	45	55	45	55	45	55	45	55	45	55	%
TCCS	_	_	200	_	200	_	200	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	_	_	1	_	1	_	1	_	1	_	1	ms

Notes to Table 1-34:

- (1) Cyclone IV E—true LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Cyclone IV GX—true LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6.
- (2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.
- (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Combal	Madaa	C	6	C7,	, I7	C8,	A7	C8L,	, I8L	C	9L	IIi4
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	320	5	320	5	275	5	275	5	250	MHz
	×8	5	320	5	320	5	275	5	275	5	250	MHz
f _{HSCLK} (input clock	×7	5	320	5	320	5	275	5	275	5	250	MHz
frequency)	×4	5	320	5	320	5	275	5	275	5	250	MHz
, ,,	×2	5	320	5	320	5	275	5	275	5	250	MHz
	×1	5	402.5	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	640	100	640	100	550	100	550	100	500	Mbps
	×8	80	640	80	640	80	550	80	550	80	500	Mbps
HSIODR	×7	70	640	70	640	70	550	70	550	70	500	Mbps
HOIODI	×4	40	640	40	640	40	550	40	550	40	500	Mbps
	×2	20	640	20	640	20	550	20	550	20	500	Mbps
	×1	10	402.5	10	402.5	10	402.5	10	362	10	265	Mbps

Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.

Table 1-42. IOE Programmable Delay on Column Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

		Number					Max (Offset				
Parameter	Paths Affected	of	Min Offset	Fa	ast Corn	er		SI	ow Corn	er		Unit
		Setting		C6	17	A7	C6	C 7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.211	1.211	2.177	2.340	2.433	2.388	2.508	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.307	1.203	1.203	2.19	2.387	2.540	2.430	2.545	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.437	0.402	0.402	0.747	0.820	0.880	0.834	0.873	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.693	0.665	0.665	1.200	1.379	1.532	1.393	1.441	ns

Notes to Table 1-42:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

		Number					Max	Offset				
Parameter	Paths Affected	of Setting	Min Offset	Fa	ast Corn	er	Slow Corner					Unit
				C6	17	A7	C6	C 7	C8	17	A7	1
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.209	1.209	2.201	2.386	2.510	2.429	2.548	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.207	1.207	2.202	2.402	2.558	2.447	2.557	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.458	0.419	0.419	0.783	0.861	0.924	0.875	0.915	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.686	0.657	0.657	1.185	1.360	1.506	1.376	1.422	ns

Notes to Table 1-43:

- (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Table 1–44. IOE Programmable Delay on Column Pins for Cyclone IV GX Devices (1), (2)

		Number of Settings	Min Offset	Max Offset						
Parameter	Paths Affected			Fast (Corner	Slow Corner				Unit
				C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1-45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

	Paths Affected	Number of Settings	Min Offset	Max Offset						
Parameter				Fast (Corner	Slow Corner				Unit
				C6	17	C6	C 7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Notes to Table 1-45:

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions									
	R_L	Receiver differential input discrete resistor (external to Cyclone IV devices).									
		Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform									
		Positive Channel (p) = V _{IH}									
		Negative Channel (n) = V _{IL}									
R	Receiver Input Waveform	Ground									
		Differential Waveform (Mathematical Function of Positive & Negative Channel)									
		V _{ID} 0 V									
		V _{ID} p-n									
	Receiver input skew margin (RSKM)	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.									
		V _{CGIO}									
	Single-ended voltage- referenced I/O Standard	V _{IH(DC)}									
		V_{REF} $V_{IL(DC)}$									
		Vil(AC)									
S		$\overline{V_{ ext{OL}}}$									
		The JEDEC standard for SSTI and HSTL I/O standards defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform <i>ringing</i> .									
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window									

Table 1-46. Glossary (Part 4 of 5)

tter	Term	Definitions									
	t _C	High-speed receiver and transmitter input and output clock period.									
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew. The clock is included in the TCCS measurement.									
	t _{cin}	Delay from the clock pad to the I/O input register.									
	t _{co}	Delay from the clock pad to the I/O output.									
	t _{cout}	Delay from the clock pad to the I/O output register.									
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.									
	t _{FALL}	Signal high-to-low transition time (80–20%).									
	t _H	Input register hold time.									
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w)$.									
	t _{INJITTER}	Period jitter on the PLL clock input.									
	t _{OUTJITTER_DEDCLK}	Period jitter on the dedicated clock output driven by a PLL.									
	t _{OUTJITTER_IO}	Period jitter on the general purpose I/O driven by a PLL.									
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.									
т	t _{pllcout}	Delay from the PLL inclk pad to the I/O output register.									
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel)									
	t _{RISE}	Signal low-to-high transition time (20–80%).									
	t _{SU}	Input register setup time.									
IJ	-50										