
E·XFL

Intel - EP4CGX50DF27C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

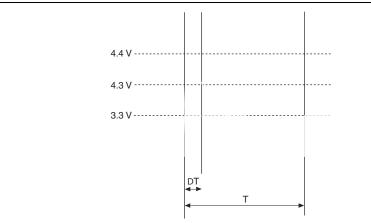
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	3118
Number of Logic Elements/Cells	49888
Total RAM Bits	2562048
Number of I/O	310
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx50df27c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 65% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 65/10ths of a year.

Symbol	Parameter	Condition (V)	Overshoot Duration as % of High Time	Unit
		V ₁ = 4.20	100	%
		V ₁ = 4.25	98	%
		$V_1 = 4.30$	65	%
		C Input Ditage $V_1 = 4.30$ 65 $V_1 = 4.35$ 43 $V_1 = 4.40$ 29 $V_1 = 4.45$ 20	%	
Vi		$V_1 = 4.40$	29	%
	Voltago	$V_1 = 4.45$	20	%
		$V_1 = 4.50$	13	%
		V ₁ = 4.55	9	%
		$V_1 = 4.60$	6	%

Table 1–2. Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame for Cyclone IV Devices

Figure 1–1 shows the methodology to determine the overshoot duration. The overshoot voltage is shown in red and is present on the input pin of the Cyclone IV device at over 4.3 V but below 4.4 V. From Table 1–2, for an overshoot of 4.3 V, the percentage of high time for the overshoot can be as high as 65% over a 10-year period. Percentage of high time is calculated as ([delta T]/T) × 100. This 10-year period assumes that the device is always turned on with 100% I/O toggle rate and 50% duty cycle signal. For lower I/O toggle rates and situations in which the device is in an idle state, lifetimes are increased.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT (")	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
$V_{CCINT} (3) Supply voltage for internal logic,1.2-V operationSupply voltage for internal logic,1.0-V operationSupply voltage for output buffers3.3-V operationSupply voltage for output buffers3.0-V operationSupply voltage for output buffers2.5-V operationSupply voltage for output buffers1.8-V operationSupply voltage for output buffers1.5-V operationSupply voltage for output buffers1.2-V operationSupply (analog) voltage for PLLregulatorSupply (digital) voltage for PLL,1.2-V operationSupply (digital) voltage for PLL,1.0-V operationV_0Output voltageT_JOperating junction temperature$	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	_	2.85	3	3.15	V	
\/ <i>(3). (4)</i>	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (Syn (Syn	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} <i>(3)</i>		_	2.375	2.5	2.625	V
V (3)		—	1.15	1.2	1.25	V
VCCD_PLL		—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	—	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
		For commercial use	0	—	85	°C
т.	Operating junction temperature	For industrial use	-40		100	°C
IJ		For extended temperature	-40	_	125	°C
		For automotive use	-40		125 125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs		50 ms	
		Fast POR (6)	50 µs		3 ms	

Table 1–3.	Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2}	⁹ (Part 2 of 2)
------------	--	----------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enable	_	_		10	mA

Notes to Table 1–3:

 Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades.

(2) V_{CCI0} for all I/O banks must be powered up during device operation. All vCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.

(3) V_{CC} must rise monotonically.

(4) V_{CCI0} powers all input buffers.

(5) The POR time for Standard POR ranges between 50 and 200 ms. Each individual power supply must reach the recommended operating range within 50 ms.

(6) The POR time for Fast POR ranges between 3 and 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Core voltage, PCIe hard IP block, and transceiver PCS power supply		1.16	1.2	1.24	V
V _{CCA} (1), (3)	PLL analog power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL} <i>(2)</i>	PLL digital power supply	_	1.16	1.2	1.24	V
	I/O banks power supply for 3.3-V operation	—	3.135	3.3	3.465	V
	Conv Core voltage, PCle hard IP block, and transceiver PCS power supply — 1.16 1.2 Conv 1.16 1.2 1.16 1.2 Conv PLL analog power supply — 2.375 2.5 Conv PLL digital power supply — 1.16 1.2 I/O banks power supply for 3.3-V operation — 3.135 3.3 I/O banks power supply for 3.0-V operation — 2.85 3 I/O banks power supply for 2.5-V operation — 2.375 2.5 I/O banks power supply for 1.8-V operation — 1.71 1.8 I/O banks power supply for 1.5-V operation — 1.425 1.5 I/O banks power supply for 1.2-V operation — 1.14 1.2 I/O banks power supply for 1.2-V operation — 3.135 3.3 I/O banks power supply for 1.2-V operation — 1.14 1.2 I/O banks power supply for 3.0-V operation — 3.135 3.3 I/O banks power supply for 3.0-V operation — 2.85 3 Differen	3.15	V			
\ <i>I</i> (3). (4)		_	1.16 1.2 1.24 V 2.375 2.5 2.625 V 1.16 1.2 1.24 V 3.135 3.3 3.465 V 2.85 3 3.15 V 2.375 2.5 2.625 V 3.135 3.3 3.465 V 2.85 3 3.15 V 2.375 2.5 2.625 V 1.71 1.8 1.89 V 1.425 1.5 1.575 V 1.14 1.2 1.26 V 3.135 3.3 3.465 V 3.135 3.3 3.465 V 3.135 3.3 3.465 V 2.85 3 3.15 V 2.85 3 3.15 V 1.71 1.8 1.89 V 1.71 1.8 1.89 V 1.425 1.5 1.575	V		
VCCIO (S), (S)		—	1.71	1.8	1.89	V
		—	1.425	1.5	1.575	V
		_	1.14	1.2	1.26	V
		—	3.135	3.3	3.465	V
		—	2.85	3	1.24 2.625 1.24 3.465 3.15 2.625 1.89 1.575 1.26 3.465 3.15 2.625 1.89 1.575 1.26 3.465 1.126 1.2625 1.89 1.575 1.2625 1.89 1.575 1.26	V
V _{CC_CLKIN}		—	2.375	2.5	2.625	V
(3), (5), (6)		—	1.71	1.8	1.89	V
		—	1.425	1.5	1.575	V
		—	1.14	1.2	1.26	V
V _{CCH_GXB}	Transceiver output buffer power supply	_	2.375	2.5	2.625	V

Table 1–4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 1 of 2)

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1–6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	_	-10		10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 V$ to $V_{CCIOMAX}$		-10		10	μΑ

Notes to Table 1-6:

(1) This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCI0} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).

(2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

 Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2)⁽¹⁾

							V _{ccio}	(V)						
Parameter	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30		-50	_	-70	_	-70	_	μΑ
Bus hold low, overdrive current	$0 V < V_{\rm IN} < V_{\rm CCI0}$	_	125		175	_	200	_	300		500		500	μA
Bus hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175		-200		-300		-500		-500	μА

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1–1. Final OCT Resistance ^{(1), (2), (3), (4), (5), (6)}

$$\begin{split} &\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV - (7) \\ &\Delta R_T = (T_2 - T_1) \times dR/dT - (8) \\ &For \ \Delta R_x < 0; \ MF_x = 1/ \ (|\Delta R_x|/100 + 1) - (9) \\ &For \ \Delta R_x > 0; \ MF_x = \Delta R_x/100 + 1 - (10) \\ &MF = MF_V \times MF_T - (11) \\ &R_{final} = R_{initial} \times MF - (12) \end{split}$$

Notes to Equation 1–1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_x$ refers to both $_V$ and $_T$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.

(11) V_2 is final voltage.

(12) V_1 is the initial voltage.

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1–1. Impedance Change

$$\begin{split} \Delta R_V &= (3.15-3) \times 1000 \times -0.026 = -3.83 \\ \Delta R_T &= (85-25) \times 0.262 = 15.72 \\ \text{Because } \Delta R_V \text{ is negative,} \\ MF_V &= 1 \ / \ (3.83/100 + 1) = 0.963 \\ \text{Because } \Delta R_T \text{ is positive,} \\ MF_T &= 15.72/100 + 1 = 1.157 \\ MF &= 0.963 \times 1.157 = 1.114 \\ R_{\text{final}} &= 50 \times 1.114 = 55.71 \ \Omega \end{split}$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C_{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR}	Input capacitance on right dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	21	21	21	pF
C _{VREFTB}	Input capacitance on top and bottom dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	23 <i>(3)</i>	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

(1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.

(2) When you use the vref pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.

(3) C_{VREFTB} for the EP4CE22 device is 30 pF.

I/O		V _{ccio} (V))		V _{REF} (V)	V _{TT} (V) <i>(2)</i>				
Standard	^{1dard} Min Typ Max Min		Тур	Max	Min	Тур	Max			
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95	
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79	
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 x V _{CCI0} (3) 0.47 x V _{CCI0} (4)	$\begin{array}{c} 0.5 \mbox{ x } V_{\rm CC10} \ \ {}^{(3)} \\ 0.5 \mbox{ x } V_{\rm CC10} \ \ {}^{(4)} \end{array}$	$\begin{array}{l} 0.52 \times V_{\rm CCI0} \ {}^{(3)} \\ 0.53 \times V_{\rm CCI0} \ {}^{(4)} \end{array}$	_	0.5 x V _{CCIO}	_	

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.

(2) $~V_{TT}$ of the transmitting device must track V_{REF} of the receiving device.

(3) Value shown refers to DC input reference voltage, $V_{\text{REF(DC)}}.$

(4) Value shown refers to AC input reference voltage, $V_{\text{REF(AC)}}$.

Table 1-17.	Single-Ended SSTL and HST	L I/O Standards Signal S	Specifications for C	yclone IV Devices
-------------	---------------------------	--------------------------	----------------------	-------------------

I/O	V _{IL(}	_(DC) (V)	VIII	_{I(DC)} (V)	V _{IL(}	_{AC)} (V)	VIH	_(AC) (V)	V _{OL} (V)	V _{oh} (V)	I _{OL}	I _{oh}
Standard	Min	Max	Min	Max	Min Max		Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I		V _{REF} – 0.18	V _{REF} + 0.18	_		V _{REF} – 0.35	V _{REF} + 0.35	—	V _{ττ} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	—	_	V _{REF} – 0.35	V _{REF} + 0.35	—	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	—	_	V _{REF} – 0.25	V _{REF} + 0.25	—	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	0.28	V _{CCI0} – 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCI0} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	—	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

To For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Symbol/	Oggelitions		C6			C7, I7			C 8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Receiver					•	•		•	•		
Supported I/O Standards	1.4 V PCML, 1.5 V PCML, 2.5 V PCML, LVPECL, LVDS										
Data rate (F324 and smaller package) ⁽¹⁵⁾	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package) ⁽¹⁵⁾	—	600	_	3125	600	_	3125	600	_	2500	Mbps
Absolute V _{MAX} for a receiver pin <i>(3)</i>	—	_	_	1.6	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	—	_	_	1.5	_	_	1.5	_	_	1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Peak-to-peak differential input voltage V _{ID} (diff p-p)	V _{ICM} = 0.82 V setting, Data Rate = 600 Mbps to 3.125 Gbps	0.1	_	2.7	0.1	_	2.7	0.1	_	2.7	V
V _{ICM}	V _{ICM} = 0.82 V setting	_	820 ± 10%	_	_	820 ± 10%	_	_	820 ± 10%	_	mV
Differential on-chip	100– Ω setting		100	—	_	100		_	100	—	Ω
termination resistors	150– Ω setting	—	150	_	_	150		_	150	—	Ω
Differential and common mode return loss	PIPE, Serial Rapid I/O SR, SATA, CPRI LV, SDI, XAUI					Compliant	Ľ				_
Programmable ppm detector ⁽⁴⁾	—				± 62.5	, 100, 128 250, 300					ppm
Clock data recovery (CDR) ppm tolerance (without spread-spectrum clocking enabled)				±300 <i>(5)</i> , ±350 <i>(6)</i> , <i>(7)</i>			±300 (5), ±350 (6), (7)		_	±300 (5), ±350 (6), (7)	ppm
CDR ppm tolerance (with synchronous spread-spectrum clocking enabled) ⁽⁸⁾	_	_	_	350 to 5350 (7), (9)	_		350 to 5350 (7), (9)	_		350 to 5350 (7), (9)	ppm
Run length	—		80		—	80	_	—	80		UI
	No Equalization		—	1.5	—	_	1.5	—	_	1.5	dB
Programmable	Medium Low		_	4.5	_	_	4.5	_		4.5	dB
equalization	Medium High		_	5.5	—		5.5	—	_	5.5	dB
	High	—		7	-	_	7	-	_	7	dB

Table 1–21.	Transceiver S	necification fo	r Cyclone	IV GX Devices	(Part 2 of 4)
	Inalisourior o	poontioution to		11 UN DU11003	(1 41 (2 01 4)

Symbol/	0		C6			C7, I7					
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	_			75			75			75	μs
t _{LTR-LTD_Manual} (11)	—	15	_	_	15	—	—	15	_	—	μs
t _{LTD} (12)	—	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	—			4000	—	—	4000			4000	ns
t _{LTD_Auto} (14)		_		4000	_	_	4000	_		4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_			17000	_	_	17000		_	17000	recon fig_c lk cycles
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_		3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_		6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting		650	—	—	650	—	_	650	—	mV
Differential on-chip	100– Ω setting		100		—	100	—	_	100	—	Ω
termination resistors	150– Ω setting		150	_	—	150	—		150	—	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA				·	Complian	t				_
Rise time		50		200	50		200	50		200	ps
Fall time	—	50		200	50	—	200	50	_	200	ps
Intra-differential pair skew	—	_	_	15	-	-	15	_	_	15	ps
Intra-transceiver block skew	—		_	120	-	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Figure 1–2 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

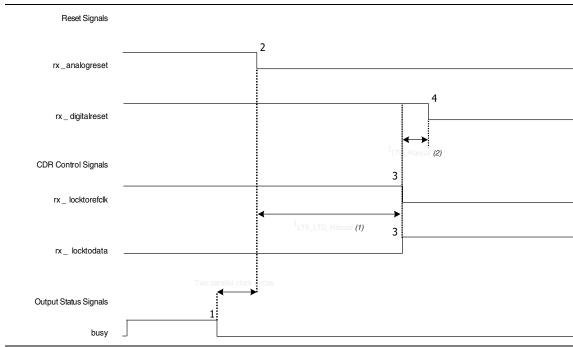
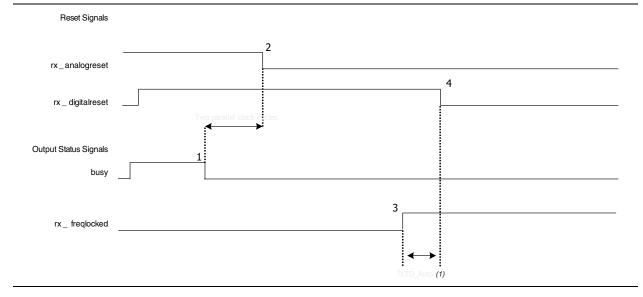
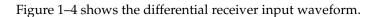




Figure 1–2. Lock Time Parameters for Manual Mode

Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1–3. Lock Time Parameters for Automatic Mode

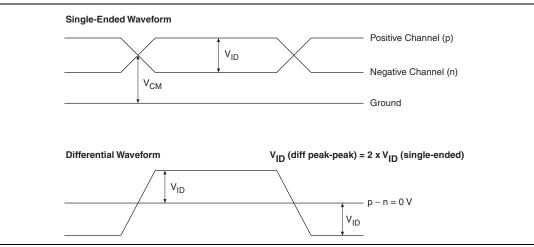


Figure 1–5 shows the transmitter output waveform.

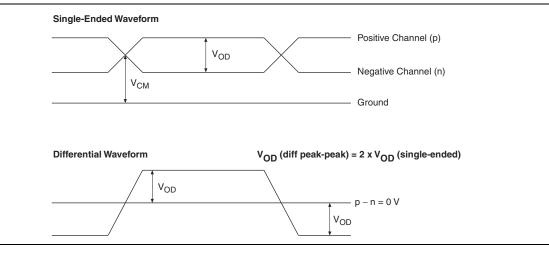


Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Symbol V _{OD} differential peak	V _{OD} Setting (mV)												
Symbol	1	2	3	4 (1)	5	6							
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200							

Note to Table 1-22:

(1) This setting is required for compliance with the PCIe protocol.

Device				Perfor	mance				
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L (1)	A7	– Unit
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE115	_	437.5	402	362	265	437.5	362	—	MHz
EP4CGX15	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX22	500	437.5	402	_	—	437.5	_		MHz
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX50	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX75	500	437.5	402	_	—	437.5	_		MHz
EP4CGX110	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX150	500	437.5	402			437.5			MHz

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

 Table 1–25. PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (–8L speed grade)	5		362	MHz
	Input clock frequency (–9L speed grade)	5	_	265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600		1300	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
t _{injitter_CCJ} (5)	Input clock cycle-to-cycle jitter $F_{REF} \ge 100 \text{ MHz}$	_		0.15	UI
-	F _{REF} < 100 MHz	—	_	±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	—		472.5	MHz
	PLL output frequency (-7 speed grade)		_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	—		402.5	MHz
	PLL output frequency (-8L speed grade)	—		362	MHz
	PLL output frequency (-9L speed grade)	—		265	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	1	ms

- ***** For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to *Section III: System Performance Specifications* of the *External Memory Interfaces Handbook*.
- Actual achievable frequency depends on design- and system-specific factors. Perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

Table 1–31 through Table 1–36 list the high-speed I/O timing for Cyclone IV devices. For definitions of high-speed timing specifications, refer to "Glossary" on page 1–37.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 1 of 2)

0 milest			C6			C7, I	7		C8, A7			C8L, I	8L	C9L			Unit
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
	×10	5		180	5		155.5	5		155.5	5		155.5	5	—	132.5	MHz
	×8	5		180	5		155.5	5		155.5	5		155.5	5		132.5	MHz
f _{HSCLK} (input clock	×7	5	_	180	5	—	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
(input clock frequency)	×4	5	_	180	5	—	155.5	5	_	155.5	5	_	155.5	5	_	132.5	MHz
1 37	×2	5		180	5		155.5	5		155.5	5		155.5	5		132.5	MHz
	×1	5	_	360	5		311	5	_	311	5	_	311	5		265	MHz
	×10	100	_	360	100		311	100	_	311	100	_	311	100	_	265	Mbps
	×8	80		360	80		311	80		311	80		311	80		265	Mbps
Device	×7	70		360	70	—	311	70		311	70		311	70	—	265	Mbps
operation in Mbps	×4	40		360	40	—	311	40		311	40		311	40	—	265	Mbps
	×2	20	_	360	20		311	20	_	311	20	_	311	20	—	265	Mbps
	×1	10		360	10	—	311	10		311	10		311	10	—	265	Mbps
t _{DUTY}	—	45		55	45		55	45		55	45		55	45		55	%
Transmitter channel-to- channel skew (TCCS)	_	_		200	_	_	200	_	_	200	_		200	_	_	200	ps
Output jitter (peak to peak)	—	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500		_	500		ps
t _{FALL}	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500		ps

• For more information about the supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to *Section III: System Performance Specifications* of the *External Memory Interface Handbook*.

Table 1–37 lists the memory output clock jitter specifications for Cyclone IV devices.

Table 1–37. Memory Output Clock Jitter Specifications for Cyclone IV Devices (1), (2)

Parameter	Symbol	Min	Max	Unit
Clock period jitter	t _{JIT(per)}	-125	125	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	-200	200	ps
Duty cycle jitter	t _{JIT(duty)}	-150	150	ps

Notes to Table 1-37:

(1) Memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock (GCLK) network.

Duty Cycle Distortion Specifications

Table 1–38 lists the worst case duty cycle distortion for Cyclone IV devices.

Table 1–38. Duty Cycle Distortion on Cyclone IV Devices I/O Pins (1), (2), (3)

Symbol	C	C6		C7, I7		C8, I8L, A7		C9L	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Notes to Table 1-38:

(1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and IOE driving the dedicated and general purpose I/O pins.

(2) Cyclone IV devices meet the specified duty cycle distortion at the maximum output toggle rate for each combination of I/O standard and current strength.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

OCT Calibration Timing Specification

Table 1–39 lists the duration of calibration for series OCT with calibration at device power-up for Cyclone IV devices.

Table 1–39. Timing Specification for Series OCT with Calibration at Device Power-Up for Cyclone IV Devices $^{(1)}$

Symbol	Description	Maximum	Units	
t _{octcal}	Duration of series OCT with calibration at device power-up	20	μs	

Note to Table 1-39:

(1) OCT calibration takes place after device configuration and before entering user mode.

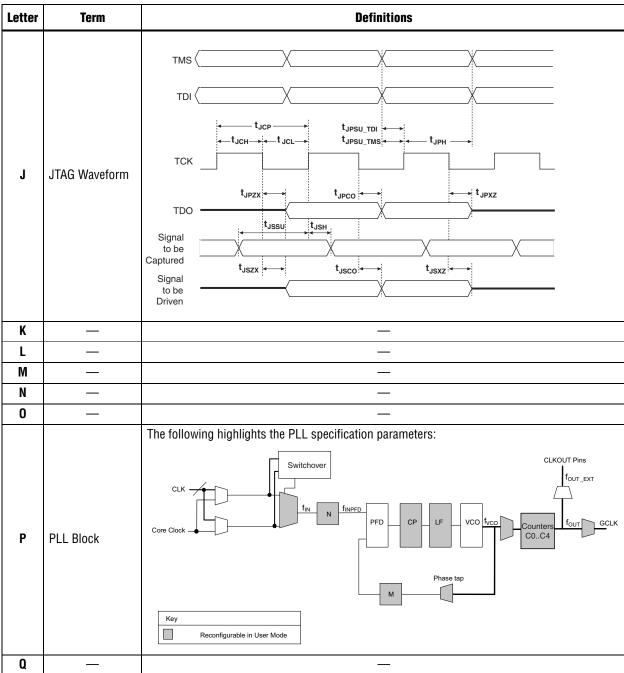
IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

		Number		Max Offset					
Parameter	Paths Affected	of Setting	Min Offset	Fast Corner		Slow Corner			Unit
				C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.


(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number			I	Max Offse	t		
Parameter	Paths Affected	of Setting	Min Offset	Fast Corner		Slow Corner			Unit
				C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1-46. Glossary (Part 2 of 5)

Letter	Term	Definitions							
	t _C	High-speed receiver and transmitter input and output clock period.							
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.							
	t _{cin}	Delay from the clock pad to the I/O input register.							
	t _{co}	Delay from the clock pad to the I/O output.							
	t _{cout}	Delay from the clock pad to the I/O output register.							
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.							
	t _{FALL}	Signal high-to-low transition time (80–20%).							
	t _H	Input register hold time.							
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.							
	t _{INJITTER}	Period jitter on the PLL clock input.							
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.							
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.							
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.							
т	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.							
	Transmitter Output Waveform	Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform V_{OD} $V_{$							
	t _{RISE}	Signal low-to-high transition time (20–80%).							
	t _{SU}	Input register setup time.							
U	— —	_							

Table 1–46. Glossary (Part 4 of 5)

Document Revision History

Table 1–47 lists the revision history for this chapter.

Date	Version	Changes
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.
Ostobor 2014	1.0	Updated maximum value for V _{CCD_PLL} in Table 1–1.
October 2014	1.9	Removed extended temperature note in Table 1–3.
December 2013	1.8	Updated Table 1–21 by adding Note (15).
May 2013	1.7	Updated Table 1–15 by adding Note (4).
		■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCI0} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.
		■ Updated Table 1–11 and Table 1–22.
October 2012	1.6	 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock.
		■ Updated Table 1–29 to include the typical DCLK value.
		 Updated the minimum f_{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
		 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections.
November 2011	1.5	 Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.
		■ Updated Figure 1–1.
		 Updated for the Quartus II software version 10.1 release.
December 2010	1.4	■ Updated Table 1–21 and Table 1–25.
		 Minor text edits.
		Updated for the Quartus II software version 10.0 release:
		■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.
July 2010	1.3	■ Updated Figure 1–2 and Figure 1–3.
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables.
		 Minor text edits.
		Updated to include automotive devices:
		 Updated the "Operating Conditions" and "PLL Specifications" sections.
March 2010	1.2	 Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.
		 Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.
		 Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.
		 Minor text edits.

Table 1–47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.