

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	4620
Number of Logic Elements/Cells	73920
Total RAM Bits	4257792
Number of I/O	290
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx75cf23c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express [®] (PCIe [®]) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V_{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V_{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	0°
TJ	Operating junction temperature	-40	125	O°

Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Note to Table 1–1:

(1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to –2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.

Table 1-3.	Recommended Operating Conditions for Cyclone IV E Devices (1), (2	²⁾ (Part 2 of 2)
------------	---	-----------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enable	_	_	_	10	mA

Notes to Table 1-3:

 Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades.

(2) V_{CCI0} for all I/O banks must be powered up during device operation. All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time.

(3) V_{CC} must rise monotonically.

(4) V_{CCI0} powers all input buffers.

(5) The POR time for Standard POR ranges between 50 and 200 ms. Each individual power supply must reach the recommended operating range within 50 ms.

(6) The POR time for Fast POR ranges between 3 and 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} (3)	Core voltage, PCIe hard IP block, and transceiver PCS power supply	—	1.16	1.2	1.24	V
V _{CCA} (1), (3)	PLL analog power supply	—	2.375	2.5	2.625	V
V _{CCD_PLL} (2)	PLL digital power supply	—	1.16	1.2	1.24	V
	I/O banks power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	I/O banks power supply for 3.0-V operation	_	2.85	3	3.15	V
\/ (3). (4)	I/O banks power supply for 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO	I/O banks power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	I/O banks power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	I/O banks power supply for 1.2-V operation	_	1.14	1.2	1.26	V
	Differential clock input pins power supply for 3.3-V operation	_	3.135	3.3	3.465	V
	Differential clock input pins power supply for 3.0-V operation	_	2.85	3	3.15	V
V _{CC_CLKIN}	Differential clock input pins power supply for 2.5-V operation	_	2.375	2.5	2.625	V
(3), (5), (6)	Differential clock input pins power supply for 1.8-V operation	_	1.71	1.8	1.89	V
	Differential clock input pins power supply for 1.5-V operation	_	1.425	1.5	1.575	V
	Differential clock input pins power supply for 1.2-V operation	—	1.14	1.2	1.26	V
V _{CCH_GXB}	Transceiver output buffer power supply	—	2.375	2.5	2.625	V

Table 1–4. Recommended Operating Conditions for Cyclone IV GX Devices (Part 1 of 2)

			V _{CCI0} (V)											
Parameter	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	—	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1-8.	Series OCT	Without	Calibration	Specifications	for C	vclone IV Devices

		Resistance	Tolerance	
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
	2.5	±30	±40	%
series UCT without	1.8	±40	±50	%
calibration	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9.	Series OCT with	th Calibration at	Device P	ower-Up \$	Specifications	for Cycl	one IV	Devices
------------	-----------------	-------------------	-----------------	------------	-----------------------	----------	--------	---------

		Calibration	n Accuracy	
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Table 1-10.	OCT Variation Afte	r Calibration at Device	Power-Up for C	yclone IV Devices
-------------	---------------------------	-------------------------	----------------	-------------------

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1–1. Final OCT Resistance ^{(1), (2), (3), (4), (5), (6)}

$$\begin{split} &\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV - (7) \\ &\Delta R_T = (T_2 - T_1) \times dR/dT - (8) \\ &For \ \Delta R_x < 0; \ MF_x = 1/ \ (|\Delta R_x|/100 + 1) - (9) \\ &For \ \Delta R_x > 0; \ MF_x = \Delta R_x/100 + 1 - (10) \\ &MF = MF_V \times MF_T - (11) \\ &R_{final} = R_{initial} \times MF - (12) \end{split}$$

Notes to Equation 1–1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_x$ refers to both $_V$ and $_T$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.

(11) V_2 is final voltage.

(12) V_1 is the initial voltage.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
V	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
V SCHMITT	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V)	V,	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	l _{oL}	I _{OH}
i/u Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(IIIA) (4)	(IIIA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	—	0.8	1.7	3.6	0.2	$V_{CCI0} - 0.2$	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	$V_{CCIO} + 0.3$	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	$V_{CCIO} + 0.3$	0.2	$V_{CCI0} - 0.2$	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	$V_{CCIO} + 0.3$	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	$0.1 ext{ x V}_{\text{CCIO}}$	0.9 x V _{CCIO}	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and IoH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and IoH specifications in the handbook.

I/O	,	V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V) <i>(2)</i>				
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04		
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04		
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95		
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79		
HSTL-12	1 14	12	1 26	0.48 x V _{CCI0} <i>(3)</i>	0.5 x V _{CCIO} <i>(3)</i>	0.52 x V _{CCIO} <i>(3)</i>	_	0.5 x			
Class I, II	1.14	1.2	1.20	0.47 x V _{CCI0} (4)	0.5 x V _{CCIO} ⁽⁴⁾	0.53 x V _{CCI0} (4)		V _{CCIO}			

Table 1–16.	Single-Ended SSTL and HSTL	I/O Reference Voltag	e Specifications for C	vclone IV Devices ⁽¹⁾
			30 opoonnoutiono ioi o	Joiono 11 Bothooo

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.

(2) $\,\,V_{TT}$ of the transmitting device must track V_{REF} of the receiving device.

(3) Value shown refers to DC input reference voltage, $V_{\text{REF(DC)}}.$

(4) Value shown refers to AC input reference voltage, $V_{\text{REF(AC)}}$.

Table 1–17.	Single-Ended SSTL	and HSTL I/O	Standards Signal S	Specifications for C	yclone IV Devices
-------------	-------------------	--------------	---------------------------	----------------------	-------------------

I/0	V _{IL(}	_{DC)} (V)	VII	_{I(DC)} (V)	V _{IL(}	_(AC) (V)	VIH	_(AC) (V)	V _{OL} (V)	V _{oh} (V)	IOL	I _{OH}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_	—	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	_	—	V _{REF} – 0.25	V _{REF} + 0.25	_	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	—	V _{REF} – 0.25	V _{REF} + 0.25	_	0.28	V _{CCI0} – 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	—	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	14	-14

• For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the *I/O Features in Cyclone IV Devices* chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	V	V _{CCIO} (V) V _{Swing(DC)} (V		_{I(DC)} (V)	V _{X(} ,	_{AC)} (V)		V _{Swi} (ng(AC) V)	V _{OX(AC)} (V)				
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	$V_{CC10}/2 - 0.2$	_	V _{CCI0} /2 + 0.2	0.7	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125	
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 – 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125	

Note to Table 1–18:

(1) Differential SSTL requires a V_{REF} input.

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾

	V _{CCIO} (V)			V _{DIF(}	_{DC)} (V)	Vx	(V)		V _{CM(DC)} (V)		V _{DII}	_{F(AC)} (V)	
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85		0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71		0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	_	0.52 x V _{CCI0}	0.48 x V _{CCIO}		0.52 x V _{CCI0}	0.3	0.48 x V _{CCI0}

Note to Table 1-19:

(1) Differential HSTL requires a V_{REF} input.

 Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾ (Part 1 of 2)

I/O Stondard		V _{ccio} (V)		V _{ID} ((mV)		V _{ICM} (V) ⁽²⁾			V _{0D} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
i/U Stailuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
(Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{ D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	—	—	—	
						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80							
(Column	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	_	—	—	
1,00)						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq \ 700 \text{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375	
						1.05	D _{MAX} > 700 Mbps	1.55							

Symbol/	0		C6			C7, 17			C8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	—	_	_	75		_	75		_	75	μs
t _{LTR-LTD_Manual} (11)	—	15		_	15	—		15		—	μs
t _{LTD} (12)	—	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	—	_		4000			4000		_	4000	ns
t _{LTD_Auto} (14)	—	_		4000	—		4000		_	4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_	_	_	17000	_	_	17000	_	_	17000	recon fig_c lk cycles
	DC Gain Setting = 0		0	_	_	0	_		0	_	dB
Programmable DC gain	DC Gain Setting = 1		3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2		6	_	_	6	_		6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600		2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting	_	650	_		650			650	_	mV
Differential on-chip	100– Ω setting	_	100	_		100		_	100	—	Ω
termination resistors	150– Ω setting	_	150	_		150		_	150	—	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA					Compliant	t				_
Rise time	—	50	—	200	50	_	200	50		200	ps
Fall time	—	50	—	200	50	—	200	50	—	200	ps
Intra-differential pair skew	_	—		15	_	_	15		_	15	ps
Intra-transceiver block skew	_			120	_	_	120		_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	Conditions		C6			C 7, I7	7			Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
PCIe Transmit Jitter Gene	ration ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	;		> 0.6			> 0.6	j	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾										
Deterministic jitter	Pattern - CRPAT			0.1/			0.1/			0.1/	111
(peak-to-peak)				0.14			0.14			0.14	01
Total jitter (peak-to-peak)	Pattern = CRPAT	_	—	0.279	-	—	0.279	_	_	0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4	ļ		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.6	6		> 0.6	6		> 0.6	6	UI

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24.
 Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Performance											
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	Unit			
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz			
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz			

Dovice				Perfor	mance				Unit
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	Unit
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE115	—	437.5	402	362	265	437.5	362	—	MHz
EP4CGX15	500	437.5	402		—	437.5	_	—	MHz
EP4CGX22	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX50	500	437.5	402		—	437.5	_	—	MHz
EP4CGX75	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX110	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX150	500	437.5	402		—	437.5		_	MHz

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

 Table 1–25.
 PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	—	472.5	MHz
f _{IN} (3)	Input clock frequency (-8L speed grade)	5	_	362	MHz
	Input clock frequency (–9L speed grade)	5	—	265	MHz
f _{INPFD}	PFD input frequency	5	_	325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600	—	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	—	60	%
t _{injitter_CCJ} <i>(5)</i>	Input clock cycle-to-cycle jitter $F_{REF} \geq 100 \mbox{ MHz}$	_	_	0.15	UI
	F _{REF} < 100 MHz		_	±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency		_	472.5	MHz
	PLL output frequency (-6 speed grade)	_	_	472.5	MHz
	PLL output frequency (-7 speed grade)	_	—	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)		_	402.5	MHz
	PLL output frequency (-8L speed grade)		—	362	MHz
	PLL output frequency (-9L speed grade)		—	265	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	1	ms

Table 1–29 lists the active configuration mode specifications for Cyclone IV devices.

Programming Mode	DCLK Range	Typical DCLK	Unit
Active Parallel (AP) (1)	20 to 40	33	MHz
Active Serial (AS)	20 to 40	33	MHz

Table 1–29. Active Configuration Mode Specifications for Cyclone IV Devices

Note to Table 1-29:

(1) AP configuration mode is only supported for Cyclone IV E devices.

Table 1-30 lists the JTAG timing parameters and values for Cyclone IV devices.

Table 1–30. JTAG Timing Parameters for Cyclone IV Devices (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	—	ns
t _{JCH}	TCK clock high time	19	—	ns
t _{JCL}	TCK clock low time	19	—	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	1	—	ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	—	ns
t _{JPH}	JTAG port hold time	10	—	ns
t _{JPC0}	JTAG port clock to output ^{(2), (3)}	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output ^{(2), (3)}	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance ^{(2), (3)}	_	15	ns
t _{JSSU}	Capture register setup time	5	_	ns
t _{JSH}	Capture register hold time	10	—	ns
t _{JSC0}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Notes to Table 1-30:

(1) For more information about JTAG waveforms, refer to "JTAG Waveform" in "Glossary" on page 1–37.

- (2) The specification is shown for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 16 ns.
- (3) For EP4CGX22, EP4CGX30 (F324 and smaller package), EP4CGX110, and EP4CGX150 devices, the output time specification for 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of JTAG pins is 16 ns. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the output time specification is 18 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/Os using the SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speeds. I/Os using general-purpose I/O standards such as 3.3-, 3.0-, 2.5-, 1.8-, or 1.5-LVTTL/LVCMOS are capable of a typical 200 MHz interfacing frequency with a 10 pF load.

Symbol Modes	Modos		C6			C7, I	7		C8, A	7		C8L, I	8L		C9L		Ilnit
	WOUCS	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{LOCK} (3)	_			1			1	_		1			1	_		1	ms

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (2), (4)} (Part 2 of 2)

Notes to Table 1-31:

(1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.

(2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks. Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the

pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
(3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Ormshall	Madaa		C6			C7, 17	1		C8, A	7		C8L, I8	BL	C9L		11	
Symbol	wodes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	×10	5	—	85	5	—	85	5	—	85	5	—	85	5	—	72.5	MHz
	×8	5	—	85	5	—	85	5	—	85	5	—	85	5	—	72.5	MHz
f _{HSCLK} (input	×7	5	—	85	5	—	85	5	—	85	5	—	85	5	—	72.5	MHz
frequency)	×4	5	—	85	5	—	85	5	—	85	5	—	85	5	—	72.5	MHz
	×2	5	—	85	5	—	85	5	—	85	5	—	85	5	—	72.5	MHz
	×1	5	—	170	5	—	170	5	—	170	5	—	170	5	—	145	MHz
	×10	100	—	170	100	—	170	100	—	170	100	—	170	100	—	145	Mbps
	×8	80	—	170	80	—	170	80	—	170	80	—	170	80	—	145	Mbps
Device	×7	70	—	170	70	—	170	70	—	170	70	—	170	70	—	145	Mbps
Mbps	×4	40	—	170	40	—	170	40	—	170	40	—	170	40	—	145	Mbps
	×2	20	—	170	20	—	170	20	—	170	20	—	170	20	—	145	Mbps
	×1	10	—	170	10	—	170	10	—	170	10	—	170	10	—	145	Mbps
t _{DUTY}	_	45	—	55	45	—	55	45	—	55	45	—	55	45	—	55	%
TCCS	_	—	—	200	—	—	200	—	—	200	—	—	200	—	—	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_	_	550	_	_	600	_	_	700	ps
t _{RISE}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	_	500	_	ps

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 1 of 2)

Symbol	Madaa	C6		C7, I7		C8, A7		C8L	, 18L	C9L		Unit
	MUUUUUS	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	UIII
t _{DUTY}	—	45	55	45	55	45	55	45	55	45	55	%
TCCS	_	—	200	_	200	_	200		200	_	200	ps
Output jitter (peak to peak)	-	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)		—	1	_	1	_	1	_	1	—	1	ms

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 2 of 2)

Notes to Table 1-35:

(1) Cyclone IV E—emulated LVDS transmitter is supported at the output pin of all I/O Banks.

Cyclone IV GX—emulated LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Gumbal	Madaa	C6		C7,	C7, I7		C8, A7		, 18L	C9L		llnit
Symbol	modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	10	437.5	10	370	10	320	10	320	10	250	MHz
	×8	10	437.5	10	370	10	320	10	320	10	250	MHz
f _{HSCLK} (input	×7	10	437.5	10	370	10	320	10	320	10	250	MHz
frequency)	×4	10	437.5	10	370	10	320	10	320	10	250	MHz
1 57	×2	10	437.5	10	370	10	320	10	320	10	250	MHz
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	MHz
	×10	100	875	100	740	100	640	100	640	100	500	Mbps
	×8	80	875	80	740	80	640	80	640	80	500	Mbps
	×7	70	875	70	740	70	640	70	640	70	500	Mbps
HOIDDA	×4	40	875	40	740	40	640	40	640	40	500	Mbps
	×2	20	875	20	740	20	640	20	640	20	500	Mbps
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	Mbps
SW	—	_	400	_	400	_	400	_	550	_	640	ps
Input jitter tolerance	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	—	—	1	—	1	—	1	—	1	—	1	ms

Table 1–36. LVDS Receiver Timing Specifications for Cyclone IV Devices (1), (3)

Notes to Table 1-36:

(1) Cyclone IV E—LVDS receiver is supported at all I/O Banks.

Cyclone IV GX—LVDS receiver is supported at I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

External Memory Interface Specifications

The external memory interfaces for Cyclone IV devices are auto-calibrating and easy to implement.

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

Table 1–40. IOE Programmable Delay on Column Pins for Cyclone IV E 1.0 V Core Voltage Device
--

		Number			N	Nax Offse	t		Unit ns ns ns
Parameter	Paths Affected	of	Min Offset	Fast (orner	S	low Corne	er	Unit
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Numbor			N	Nax Offse	t		Unit ns ns ns ns
Parameter	Paths Affected	Of	Min Offset	Fast (Corner	S	low Corn	er	
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1-46. Glossary (Part 2 of 5)

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions		
	RL	Receiver differential input discrete resistor (external to Cyclone IV devices).		
		Receiver input waveform for LVDS and LVPECL differential standards:		
		Single-Ended Waveform		
		Positive Channel (p) = V _{IH}		
		V_{nL} Negative Channel (n) = V_{1L}		
		Ground		
_	Waveform			
R	Wateren			
		Differential Waveform (Mathematical Function of Positive & Negative Channel)		
		p-n		
	Receiver input	High-speed I/O block: The total margin left after accounting for the sampling window and TCCS.		
	(RSKM)	RSKM = (TUI - SW - TCCS) / 2.		
S	Single-ended voltage- referenced I/O Standard SW (Sampling Window)			

Letter	Term	Definitions		
	t _C	High-speed receiver and transmitter input and output clock period.		
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including t _{CO} variation and clock skew. The clock is included in the TCCS measurement.		
	t _{cin}	Delay from the clock pad to the I/O input register.		
	t _{co}	Delay from the clock pad to the I/O output.		
	t _{cout}	Delay from the clock pad to the I/O output register.		
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.		
	t _{FALL}	Signal high-to-low transition time (80–20%).		
	t _H	Input register hold time.		
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_c/w)$.		
	t _{INJITTER}	Period jitter on the PLL clock input.		
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.		
t_OUTJITTER_IOPeriod jitter on the general purpose I/O driven by a PLL.t_pllcinDelay from the PLL inclk pad to the I/O input register.		Period jitter on the general purpose I/O driven by a PLL.		
		Delay from the PLL inclk pad to the I/O input register.		
т	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.		
T	Transmitter Output Waveform	Iransmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform Vob Vob Vob Vob Vob Vob Vob Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) Vob Vob Vob Positive Channel		
	t _{RISE}	Signal low-to-high transition time (20–80%).		
	t _{SU}	Input register setup time.		
U		_		

Table 1–46. Glossary (Part 4 of 5)

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions		
	V _{CM(DC)}	DC common mode input voltage.		
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.		
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.		
	V _{IH(AC)}	High-level AC input voltage.		
	V _{IH(DC)}	High-level DC input voltage.		
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.		
	V _{IL (AC)}	Low-level AC input voltage.		
	V _{IL (DC)}	Low-level DC input voltage.		
	V _{IN}	DC input voltage.		
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.		
v	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.		
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.		
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.		
	V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.		
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.		
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.		
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.		
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.		
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.		
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.		
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.		
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.		
W	_	—		
X	—	—		
Y	—	—		
Z		—		

Document Revision History

Table 1–47 lists the revision history for this chapter.

Date	Version	Changes
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.
October 2014	10	Updated maximum value for V _{CCD_PLL} in Table 1–1.
Uclober 2014	1.9	Removed extended temperature note in Table 1–3.
December 2013	1.8	Updated Table 1–21 by adding Note (15).
May 2013	1.7	Updated Table 1–15 by adding Note (4).
	1.6	■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCIO} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.
		■ Updated Table 1–11 and Table 1–22.
October 2012		 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock.
		■ Updated Table 1–29 to include the typical DCLK value.
		■ Updated the minimum f _{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
		 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections.
November 2011	1.5	■ Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.
		■ Updated Figure 1–1.
	1.4	 Updated for the Quartus II software version 10.1 release.
December 2010		■ Updated Table 1–21 and Table 1–25.
		Minor text edits.
		Updated for the Quartus II software version 10.0 release:
	1.3	■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.
July 2010		■ Updated Figure 1–2 and Figure 1–3.
		Removed SW Requirement and TCCS for Cyclone IV Devices tables.
		 Minor text edits.
		Updated to include automotive devices:
	1.2	 Updated the "Operating Conditions" and "PLL Specifications" sections.
March 2010		■ Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.
		Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.
		 Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.
		 Minor text edits.