
E·XFL

Intel - EP4CGX75DF27C8N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	4620
Number of Logic Elements/Cells	73920
Total RAM Bits	4257792
Number of I/O	310
Number of Gates	-
Voltage - Supply	1.16V ~ 1.24V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4cgx75df27c8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cyclone IV E industrial devices I7 are offered with extended operating temperature range.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone IV devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 1–1 lists the absolute maximum ratings for Cyclone IV devices.

Conditions beyond those listed in Table 1–1 cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time have adverse effects on the device.

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Core voltage, PCI Express [®] (PCIe [®]) hard IP block, and transceiver physical coding sublayer (PCS) power supply	-0.5	1.8	V
V _{CCA}	Phase-locked loop (PLL) analog power supply	-0.5	3.75	V
V _{CCD_PLL}	PLL digital power supply	-0.5	1.8	V
V _{CCIO}	I/O banks power supply	-0.5	3.75	V
V _{CC_CLKIN}	Differential clock input pins power supply	-0.5	4.5	V
V _{CCH_GXB}	Transceiver output buffer power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver physical medium attachment (PMA) and auxiliary power supply	-0.5	3.75	V
V _{CCL_GXB}	Transceiver PMA and auxiliary power supply	-0.5	1.8	V
VI	DC input voltage	-0.5	4.2	V
I _{OUT}	DC output current, per pin	-25	40	mA
T _{STG}	Storage temperature	-65	150	°C
TJ	Operating junction temperature	-40	125	°C

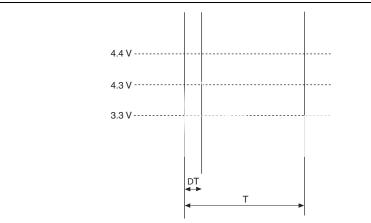
Table 1–1. Absolute Maximum Ratings for Cyclone IV Devices (1)

Note to Table 1–1:

(1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–2 and undershoot to –2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns. Table 1–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device.


A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 65% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 65/10ths of a year.

Symbol	Parameter	Condition (V)	Overshoot Duration as % of High Time	Unit											
	AC Input Voltage	V ₁ = 4.20	100	%											
		VI	V ₁ = 4.25	98	%										
		$V_1 = 4.30$	65	%											
													V ₁ = 4.35	43	%
Vi															
		$V_1 = 4.45$	20	%											
		$V_1 = 4.50$	13	%											
		V ₁ = 4.55	9	%											
		$V_1 = 4.60$	6	%											

Table 1–2. Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame for Cyclone IV Devices

Figure 1–1 shows the methodology to determine the overshoot duration. The overshoot voltage is shown in red and is present on the input pin of the Cyclone IV device at over 4.3 V but below 4.4 V. From Table 1–2, for an overshoot of 4.3 V, the percentage of high time for the overshoot can be as high as 65% over a 10-year period. Percentage of high time is calculated as ([delta T]/T) × 100. This 10-year period assumes that the device is always turned on with 100% I/O toggle rate and 50% duty cycle signal. For lower I/O toggle rates and situations in which the device is in an idle state, lifetimes are increased.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} <i>(3)</i>	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT (")	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
V _{ccio} (3), (4)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
VCCIO (Syn (Syn	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation					
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} <i>(3)</i>	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V (3)	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	1.03	V
VI	Input voltage	—	-0.5	—	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
		For commercial use	0	—	85	°C
TJ	Operating junction temperature	For industrial use	-40		100	°C
		For extended temperature	-40	_	125	°C
		For automotive use	-40		125	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs		50 ms	
		Fast POR (6)	50 µs		3 ms	

		V _{CCIO} (V)												
Parameter Condition		1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	—	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

		Resistance		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
calibration	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

		Calibratio		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature.

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Equation 1–1. Final OCT Resistance ^{(1), (2), (3), (4), (5), (6)}

$$\begin{split} &\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV - (7) \\ &\Delta R_T = (T_2 - T_1) \times dR/dT - (8) \\ &For \ \Delta R_x < 0; \ MF_x = 1/ \ (|\Delta R_x|/100 + 1) - (9) \\ &For \ \Delta R_x > 0; \ MF_x = \Delta R_x/100 + 1 - (10) \\ &MF = MF_V \times MF_T - (11) \\ &R_{final} = R_{initial} \times MF - (12) \end{split}$$

Notes to Equation 1–1:

- (1) T_2 is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript $_x$ refers to both $_V$ and $_T$.
- (7) ΔR_V is a variation of resistance with voltage.
- (8) ΔR_T is a variation of resistance with temperature.
- (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up.

(11) V_2 is final voltage.

(12) V_1 is the initial voltage.

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1–1. Impedance Change

$$\begin{split} \Delta R_V &= (3.15-3) \times 1000 \times -0.026 = -3.83 \\ \Delta R_T &= (85-25) \times 0.262 = 15.72 \\ \text{Because } \Delta R_V \text{ is negative,} \\ MF_V &= 1 \ / \ (3.83/100 + 1) = 0.963 \\ \text{Because } \Delta R_T \text{ is positive,} \\ MF_T &= 15.72/100 + 1 = 1.157 \\ MF &= 0.963 \times 1.157 = 1.114 \\ R_{\text{final}} &= 50 \times 1.114 = 55.71 \ \Omega \end{split}$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C_{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR}	Input capacitance on right dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	21	21	21	pF
C _{VREFTB}	Input capacitance on top and bottom dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	23 <i>(3)</i>	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

(1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.

(2) When you use the vref pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.

(3) C_{VREFTB} for the EP4CE22 device is 30 pF.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
V	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
V _{SCHMITT}	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V		V	_{IL} (V)	V	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA) (4)	(mA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465		0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	$V_{CC10} - 0.2$	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15	_	0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and loH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and loH specifications in the handbook.

• For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the *I/O Features in Cyclone IV Devices* chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	v	V _{CCIO} (V)	V_{Swing}	_{I(DC)} (V)	V _{X(} ,	_{AC)} (V)		V _{Swi}	ng(AC) /)	V _{ox}	_(AC) (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	$V_{CCIO}/2 - 0.2$	_	V _{CCI0} /2 + 0.2	0.7	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 – 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI} 0	V _{CCIO} /2 – 0.125	_	V _{CCI0} /2 + 0.125

Note to Table 1–18:

(1) Differential SSTL requires a V_{REF} input.

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾

	V	V _{CCIO} (V)	V _{DIF(}	_{DC)} (V)	V _{X(AC)} (V)			V	CM(DC)	V)	V _{DIF(AC)} (V)	
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	—	0.95	0.85	—	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71	_	0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	_	0.52 x V _{CCI0}	0.48 x V _{CCIO}	_	0.52 x V _{CCI0}	0.3	0.48 x V _{CCI0}

Note to Table 1-19:

(1) Differential HSTL requires a V_{REF} input.

 Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾ (Part 1 of 2)

I/O Standard		V _{CCIO} (V)		V _{ID} ((mV)		V _{ICM} (V) ⁽²⁾		Vo	_D (mV)	(3)	1	V _{os} (V) ⁽³	3)
i/U Stalluaru	Min	Тур	Max	Min	Max	Min Condition 0.05 Drum < 500 Mbps		Max	Min	Тур	Max	Min	Тур	Max
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVPECL (Row I/Os) (6)	2.375	2.5	2.625	100	_	0.55	$0.55 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	—	_	—	—	_
						1.05	D _{MAX} > 700 Mbps	1.55						
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80						
LVPECL (Column I/Os) <i>(6)</i>	2.375	2.5	2.625	100		0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	—	_	_	_	_
1/03/						1.05	D _{MAX} > 700 Mbps	1.55						
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80						
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq \ 700 \text{ Mbps} \end{array}$	1.80	247	—	600	1.125	1.25	1.375
						1.05	1.05 D _{MAX} > 700 Mbps							

Power Consumption

Use the following methods to estimate power for a design:

- the Excel-based EPE
- the Quartus[®] II PowerPlay power analyzer feature

The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates.

To For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary".
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Symbol/	0		C6			C7, I7			C 8		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	_			75			75			75	μs
t _{LTR-LTD_Manual} (11)	—	15	_	_	15	—	—	15	_	—	μs
t _{LTD} (12)	—	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} (13)	—			4000	—	—	4000			4000	ns
t _{LTD_Auto} (14)		_		4000	_	_	4000	_		4000	ns
Receiver buffer and CDR offset cancellation time (per channel)	_			17000	_	_	17000		_	17000	recon fig_c lk cycles
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_		3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_		6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting		650	—	—	650	—	_	650	—	mV
Differential on-chip	100– Ω setting		100		—	100	—	_	100	—	Ω
termination resistors	150– Ω setting		150	_	—	150	—		150	—	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA				·	Complian	t				_
Rise time		50		200	50		200	50		200	ps
Fall time	—	50		200	50	—	200	50	_	200	ps
Intra-differential pair skew	—	_	_	15	-	-	15	_	_	15	ps
Intra-transceiver block skew	—		_	120	-	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	0		C6			C7, 17	7		C 8		
Description	Conditions		Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Transmit Jitter Gene	ration ⁽³⁾	-		<u>.</u>	-		<u>.</u>			<u>.</u>	
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Toler	ance ⁽³⁾	•						•	•		•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6	6		> 0.6	;		> 0.6	;	UI
GIGE Transmit Jitter Gene	ration ⁽⁴⁾	•						•			•
Deterministic jitter	Pattern = CRPAT			0.14			0.14			0.14	UI
(peak-to-peak)	Falleni = UNFAI			0.14		_	0.14	_	_	0.14	01
Total jitter (peak-to-peak)	Pattern = CRPAT	—		0.279	_		0.279	_		0.279	UI
GIGE Receiver Jitter Toler	ance ⁽⁴⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4	ļ		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.6	6		> 0.66	6		> 0.6	6	UI

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Performance													
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	Unit					
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz					
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz					

Symbol	Parameter	Min	Тур	Max	Unit
t _{dlock}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
t _{outjitter_period_dedclk} (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	—	30	mUI
t _{outjitter_ccj_dedclk} (6)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
t _{outjitter_period_10} (6)	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{outjitter_ccj_io} <i>(6)</i>	Regular I/O cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_		ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)		SCANCLK cycles
f _{scanclk}	scanclk frequency	—	—	100	MHz
t _{casc_outjitter_period_dedclk}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} < 100 \text{ MHz}$)	_		42.5	mUI

Table 1-25.	PLL Specifications	s for Cyclone IV Devices ^{(1),}	⁽²⁾ (Part 2 of 2)
-------------	--------------------	--	------------------------------

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{\text{CCD_PLL}}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{C0} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{C0} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VC0} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.

(8) The cascaded PLLs specification is applicable only with the following conditions:

- $\blacksquare \quad Upstream \ PLL {----}0.59 \ MHz \leq Upstream \ PLL \ bandwidth < 1 \ MHz$
- Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Symbol Modes			C6			C 7, I	7		C8, A	7		C8L, I	BL		C9L		Unit
Symbol	WOUCS	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
t _{LOCK} (3)				1	—	—	1	—	_	1		—	1			1	ms

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (2), (4)} (Part 2 of 2)

Notes to Table 1-31:

(1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.

(2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is supported at the output pin of all I/O Banks. Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is only supported at the

pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.
(3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Gumbal	Madac		C6			C7, 17	,		C8, A7	7	(C8L, 18	SL		C9L		Unit
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
	×10	5	—	85	5	—	85	5		85	5		85	5	—	72.5	MHz
	×8	5		85	5		85	5	-	85	5	_	85	5	—	72.5	MHz
f _{HSCLK} (input clock	×7	5	—	85	5	_	85	5	_	85	5	_	85	5	—	72.5	MHz
frequency)	×4	5		85	5		85	5	_	85	5	_	85	5	—	72.5	MHz
,	×2	5	_	85	5	_	85	5		85	5		85	5	_	72.5	MHz
	×1	5	_	170	5	_	170	5	_	170	5	_	170	5	—	145	MHz
	×10	100		170	100		170	100	_	170	100	_	170	100	—	145	Mbps
	×8	80	—	170	80		170	80	_	170	80	_	170	80	—	145	Mbps
Device operation in	×7	70	—	170	70		170	70	_	170	70	_	170	70	—	145	Mbps
Mbps	×4	40	—	170	40	_	170	40	_	170	40	_	170	40	—	145	Mbps
	×2	20	_	170	20		170	20	_	170	20	_	170	20	—	145	Mbps
	×1	10	_	170	10	_	170	10	_	170	10	_	170	10	—	145	Mbps
t _{DUTY}	—	45	_	55	45	-	55	45	_	55	45	_	55	45	—	55	%
TCCS	—	—	_	200	_		200	_	_	200	_	_	200	_	—	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	500	_	_	550	_	_	600	_		700	ps
	20-80%,																
t _{RISE}	C _{LOAD} = 5 pF	-	500		_	500		_	500		_	500		_	500	—	ps
t _{FALL}	20 - 80%, C _{LOAD} =	_	500	_	_	500	_	_	500	_	_	500	_	_	500		ps
	5 pF																

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 1 of 2)

Symbol	Modes	C	6	C7,	, 17	C8,	A7	C8L,	, 18L	C9L		Unit
Symbol	WIUUES	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	UIII
t _{DUTY}	—	45	55	45	55	45	55	45	55	45	55	%
TCCS	—	_	200	—	200	_	200	_	200	—	200	ps
Output jitter (peak to peak)	_		500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	_		1	_	1		1		1	_	1	ms

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 2 of 2)

Notes to Table 1-35:

(1) Cyclone IV E—emulated LVDS transmitter is supported at the output pin of all I/O Banks.

Cyclone IV GX—emulated LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Gumbal	Madaa	C6		C7,	, 17	C8,	A7	C8L	, 18L	C9L		11:4
Symbol	Modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	10	437.5	10	370	10	320	10	320	10	250	MHz
	×8	10	437.5	10	370	10	320	10	320	10	250	MHz
f _{HSCLK} (input clock	×7	10	437.5	10	370	10	320	10	320	10	250	MHz
frequency)	×4	10	437.5	10	370	10	320	10	320	10	250	MHz
, ,,	×2	10	437.5	10	370	10	320	10	320	10	250	MHz
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	MHz
	×10	100	875	100	740	100	640	100	640	100	500	Mbps
	×8	80	875	80	740	80	640	80	640	80	500	Mbps
HSIODR	×7	70	875	70	740	70	640	70	640	70	500	Mbps
HOIDDN	×4	40	875	40	740	40	640	40	640	40	500	Mbps
	×2	20	875	20	740	20	640	20	640	20	500	Mbps
	×1	10	437.5	10	402.5	10	402.5	10	362	10	265	Mbps
SW	—	_	400	_	400	_	400	_	550	—	640	ps
Input jitter tolerance	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	—	—	1	—	1	—	1	—	1	—	1	ms

Table 1–36. LVDS Receiver Timing Specifications for Cyclone IV Devices (1), (3)

Notes to Table 1-36:

(1) Cyclone IV E—LVDS receiver is supported at all I/O Banks.

Cyclone IV GX—LVDS receiver is supported at I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

External Memory Interface Specifications

The external memory interfaces for Cyclone IV devices are auto-calibrating and easy to implement.

IOE Programmable Delay

Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V core voltage devices.

		Number			Γ	Nax Offse	t		
Parameter	Paths Affected	of	Min Offset	Fast (Corner	S	low Corne	er	Unit
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.054	1.924	3.387	4.017	3.411	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.010	1.875	3.341	4.252	3.367	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.641	0.631	1.111	1.377	1.124	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.971	0.931	1.684	2.298	1.684	ns

Notes to Table 1-40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number			I	Max Offse	t		Unit ns ns ns ns
Parameter	Paths Affected	of	Min Offset	Fast (Corner	S	low Corn	er	
		Setting		C8L	18L	C8L	C9L	18L	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	2.057	1.921	3.389	4.146	3.412	ns
Input delay from pin to input register	Pad to I/O input register	8	0	2.059	1.919	3.420	4.374	3.441	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.670	0.623	1.160	1.420	1.168	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.960	0.919	1.656	2.258	1.656	ns

Notes to Table 1-41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

		Number				Max	Offset			Unit ns ns ns ns
Parameter	Paths Affected	of Settings	Min Offset	Fast (Corner		Slow (Corner		
				C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number				Max	Offset			Unit ns ns ns ns
Parameter	Paths Affected	of	Min Offset	Fast (Corner		Slow (Corner		
		Settings		C6	17	C6	C 7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software

Table 1-46. Glossary (Part 3 of 5)

Letter	Term	Definitions
	RL	Receiver differential input discrete resistor (external to Cyclone IV devices).
R	Receiver Input Waveform Receiver input skew margin (RSKM)	Receiver input waveform for LVDS and LVPECL differential standards: Single-Ended Waveform V_{ID} V_{CM} Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V_{ID} V_{ID} V_{ID} V_{ID}
		High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.
S	Single-ended voltage- referenced I/O Standard	VCCIO VOH VIH(DC) VIH(DC) VIL(AC) Values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform <i>ringing</i> .
	SW (Sampling Window)	High-speed I/O block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.

Letter	Term	Definitions								
	t _C	High-speed receiver and transmitter input and output clock period.								
	Channel-to- channel-skew (TCCS)	 High-speed I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement. Delay from the clock pad to the I/O input register. 								
	t _{cin}									
	t _{co}	Delay from the clock pad to the I/O output.								
	t _{cout}	Delay from the clock pad to the I/O output register.								
	t _{DUTY}	ligh-speed I/O block: Duty cycle on high-speed transmitter output clock.								
	t _{FALL}	Signal high-to-low transition time (80–20%).								
	t _H	Input register hold time.								
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.								
	t _{INJITTER}	Period jitter on the PLL clock input.								
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.								
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.								
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.								
т	t _{plicout}	Delay from the PLL inclk pad to the I/O output register. Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O								
	Transmitter Output Waveform	Standards: Single-Ended Waveform V_{OD} V_{OD} V_{OD} V_{OD} V_{OD} V_{OD} V_{OD} V_{OD} V_{OD} Ground Differential Waveform (Mathematical Function of Positive & Negative Channel) V_{OD} V								
	t _{RISE}	Signal low-to-high transition time (20–80%).								
	t _{SU}	Input register setup time.								
U	l —	_								

Table 1–46. Glossary (Part 4 of 5)

Table 1-46. Glossary (Part 5 of 5)

Letter	Term	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage.
	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low.
	V _{IL (AC)}	Low-level AC input voltage.
	V _{IL (DC)}	Low-level DC input voltage.
	V _{IN}	DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{0D} = V_{0H} - V_{0L}$.
	V _{OH}	Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level.
	V _{OL}	Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level.
	V _{os}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
	V _{OX (AC)}	AC differential output cross point voltage: the voltage at which the differential output signals must cross.
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.
	V _{SWING (AC)}	AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{SWING (DC)}	DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms.
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.
	V _{X (AC)}	AC differential input cross point voltage: The voltage at which the differential input signals must cross.
W	—	_
X	—	—
Y	—	_
Z	—	_

Document Revision History

Table 1–47 lists the revision history for this chapter.

Date	Version	Changes
March 2016	2.0	Updated note (5) in Table 1–21 to remove support for the N148 package.
Ostobor 2014	1.9	Updated maximum value for V _{CCD_PLL} in Table 1–1.
October 2014		Removed extended temperature note in Table 1–3.
December 2013	1.8	Updated Table 1–21 by adding Note (15).
May 2013	1.7	Updated Table 1–15 by adding Note (4).
	1.6	■ Updated the maximum value for V _I , V _{CCD_PLL} , V _{CCI0} , V _{CC_CLKIN} , V _{CCH_GXB} , and V _{CCA_GXB} Table 1–1.
		■ Updated Table 1–11 and Table 1–22.
October 2012		 Updated Table 1–21 to include peak-to-peak differential input voltage for the Cyclone IV GX transceiver input reference clock.
		■ Updated Table 1–29 to include the typical DCLK value.
		 Updated the minimum f_{HSCLK} value in Table 1–31, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
	1.5	 Updated "Maximum Allowed Overshoot or Undershoot Voltage", "Operating Conditions", and "PLL Specifications" sections.
November 2011		 Updated Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–8, Table 1–9, Table 1–15, Table 1–18, Table 1–19, and Table 1–21.
		■ Updated Figure 1–1.
		 Updated for the Quartus II software version 10.1 release.
December 2010	1.4	■ Updated Table 1–21 and Table 1–25.
		 Minor text edits.
	1.3	Updated for the Quartus II software version 10.0 release:
		■ Updated Table 1–3, Table 1–4, Table 1–21, Table 1–25, Table 1–28, Table 1–30, Table 1–40, Table 1–41, Table 1–42, Table 1–43, Table 1–44, and Table 1–45.
July 2010		■ Updated Figure 1–2 and Figure 1–3.
		 Removed SW Requirement and TCCS for Cyclone IV Devices tables.
		 Minor text edits.
	1.2	Updated to include automotive devices:
		 Updated the "Operating Conditions" and "PLL Specifications" sections.
March 2010		 Updated Table 1–1, Table 1–8, Table 1–9, Table 1–21, Table 1–26, Table 1–27, Table 1–31, Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–36, Table 1–37, Table 1–38, Table 1–40, Table 1–42, and Table 1–43.
		 Added Table 1–5 to include ESD for Cyclone IV devices GPIOs and HSSI I/Os.
		 Added Table 1–44 and Table 1–45 to include IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.
		 Minor text edits.