

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f586-iqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 13.4, SER Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR	110
Figure 13.5 SER Page Stack Upon Return From PCA Interrupt	111
Figure 13.6, SFR Page Stack Upon Return From CANO Interrupt	112
Figure 15.1. Flash Program Memory Map	141
Figure 17.1. Reset Sources	152
Figure 17.2 Power-On and VDD Monitor Reset Timing	153
Figure 19.1 Oscillator Ontions	176
Figure 19.2 Example Clock Multiplier Output	181
Figure 19.3 External 32 768 kHz Quartz Crystal Oscillator Connection Diagram	186
Figure 20.1 Port I/O Functional Block Diagram	189
Figure 20.2 Port I/O Cell Block Diagram	190
Figure 20.3 Peripheral Availability on Port I/O Pins	103
Figure 20.4 Crossbar Priority Decoder in Example Configuration	194
Figure 21.1 LIN Block Diagram	21/
Figure 22.1. Typical CAN Bus Configuration	217
Figure 22.2. CAN Controller Diagram	237
Figure 22.2. CAN Controller Diagram	23/
Figure 23.1 SMBus Block Diagram	234
Figure 23.2. Typical SMBus Configuration	233
Figure 23.3. SMBus Transaction	240
Figure 23.4 Typical SMBus SCI Concration	241
Figure 23.5. Typical Smbus SOL Generation	240
Figure 23.6. Typical Master Read Sequence	250
Figure 23.7 Typical Master Nead Sequence	252
Figure 23.8 Typical Slave Read Sequence	252
Figure 24.1 LIARTO Block Diagram	256
Figure 24.2. LIARTO Timing Without Parity or Extra Bit	258
Figure 24.3. UARTO Timing With Darity	258
Figure 24.4. LIARTO Timing With Extra Bit	258
Figure 24.5. Typical LIART Interconnect Diagram	250
Figure 24.6. LIART Multi-Processor Mode Interconnect Diagram	200
Figure 26.1 SPI Block Diagram	200
Figure 26.2. Multiple-Master Mode Connection Diagram	275
Figure 26.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diag	ram
1 igure 20.3. 5-Wire Single Master and 5-Wire Single Slave Mode Connection Diag	am
Eigure 26.4.4 Wire Single Macter Mode and 4 Wire Slave Mode Connection Diag	rom
Pigure 20.4. 4-Wile Single Master Mode and 4-Wile Slave Mode Connection Diag	am
Eigure 26.5. Master Mode Data/Clock Timing	277
Figure 26.6. Slave Mode Data/Clock Timing (CKPHA = 0)	272
Figure 26.7. Slave Mode Data/Clock Timing (CKPHA = 0)	270
Figure 26.8 SPI Master Timing (CKPHA = 0)	210
Figure 26.0. SPT Master Timing (OKFTIA = 0)	202
Figure 26.9. SET Waster Timing (OKERA = 1)	202
Figure 26.10. SET Slave Timing (OKERA = 0)	200 202
Figure 27.1 TO Mode O Block Diagram	200 200
	200

List of Registers

SFR	Definition	6.4. A	ADC0CF: ADC0 Configuration	65
SFR	Definition	6.5. A	ADC0H: ADC0 Data Word MSB	66
SFR	Definition	6.6. A	ADC0L: ADC0 Data Word LSB	66
SFR	Definition	6.7. A	ADC0CN: ADC0 Control	67
SFR	Definition	6.8. A	ADC0TK: ADC0 Tracking Mode Select	68
SFR	Definition	6.9. A	ADC0GTH: ADC0 Greater-Than Data High Byte	69
SFR	Definition	6.10.	ADC0GTL: ADC0 Greater-Than Data Low Byte	69
SFR	Definition	6.11.	ADC0LTH: ADC0 Less-Than Data High Byte	70
SFR	Definition	6.12.	ADC0LTL: ADC0 Less-Than Data Low Byte	70
SFR	Definition	6.13.	ADC0MX: ADC0 Channel Select	73
SFR	Definition	8.1. F	REF0CN: Reference Control	76
SFR	Definition	9.1. C	CPT0CN: Comparator0 Control	79
SFR	Definition	9.2. 0	CPT0MD: Comparator0 Mode Selection	80
SFR	Definition	9.3. 0	CPT1CN: Comparator1 Control	81
SFR	Definition	9.4. 0	CPT1MD: Comparator1 Mode Selection	82
SFR	Definition	9.5. C	CPT2CN: Comparator2 Control	83
SFR	Definition	9.6. 0	CPT2MD: Comparator2 Mode Selection	84
SFR	Definition	9.7. C	CPT0MX: Comparator0 MUX Selection	86
SFR	Definition	9.8. C	CPT1MX: Comparator1 MUX Selection	87
SFR	Definition	9.9. C	CPT2MX: Comparator2 MUX Selection	88
SFR	Definition	10.1.	REG0CN: Regulator Control	90
SFR	Definition	11.1.	DPL: Data Pointer Low Byte	98
SFR	Definition	11.2.	DPH: Data Pointer High Byte	98
SFR	Definition	11.3.	SP: Stack Pointer	99
SFR	Definition	11.4.	ACC: Accumulator	99
SFR	Definition	11.5.	B: B Register	99
SFR	Definition	11.6.	PSW: Program Status Word 1	00
SFR	Definition	11.7.	SNn: Serial Number n 1	01
SFR	Definition	12.1.	PSBANK: Program Space Bank Select 1	04
SFR	Definition	13.1.	SFR0CN: SFR Page Control 1	13
SFR	Definition	13.2.	SFRPAGE: SFR Page1	14
SFR	Definition	13.3.	SFRNEXT: SFR Next 1	15
SFR	Definition	13.4.	SFRLAST: SFR Last 1	16
SFR	Definition	14.1.	IE: Interrupt Enable 1	30
SFR	Definition	14.2.	IP: Interrupt Priority1	31
SFR	Definition	14.3.	EIE1: Extended Interrupt Enable 1 1	32
SFR	Definition	14.4.	EIP1: Extended Interrupt Priority 1 1	33
SFR	Definition	14.5.	EIE2: Extended Interrupt Enable 2 1	34
SFR	Definition	14.6.	EIP2: Extended Interrupt Priority Enabled 2 1	35
SFR	Definition	14.7.	IT01CF: INT0/INT1 Configuration1	37
SFR	Definition	15.1.	PSCTL: Program Store R/W Control 1	43
SFR	Definition	15.2.	FLKEY: Flash Lock and Key 1	44
SFR	Definition	15.3.	FLSCL: Flash Scale 1	45

Name	Pin F580/1/4/5	Pin F588/9- F590/1 (40-pin)	Pin F582/3/6/7	Туре	Description
	(40-011)	(p)	(32-ріп)		
P3.7	19	11	—	D I/O or A In	Port 3.7.
P4.0	18		_	D I/O	Port 4.0. See SFR Definition 20.29 for a description.
P4.1	17	_	—	D I/O	Port 4.1.
P4.2	16	_	—	D I/O	Port 4.2.
P4.3	15	_	—	D I/O	Port 4.3.
P4.4	14	_	—	D I/O	Port 4.4.
P4.5	13	_	—	D I/O	Port 4.5.
P4.6	10	_	—	D I/O	Port 4.6.
P4.7	9	_	—	D I/O	Port 4.7.

Table 3.1. Pin Definitions for the C8051F58x/F59x (Continued)

Figure 6.5. ADC0 Equivalent Input Circuit

6.3. Selectable Gain

ADC0 on the C8051F58x/F59x family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.

For example, three analog sources to be measured have full-scale outputs of 5.0 V, 4.0 V, and 3.0 V, respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting the first source (5.0 V full-scale), a gain value of 0.44 (5 V full scale x 0.44 = 2.2 V full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V. Likewise, a gain value of 0.55 (4 V full scale x 0.55 = 2.2 V full scale) for the second source and 0.73 (3 V full scale x 0.73 = 2.2 V full scale) for the third source provide full-scale ADC0 measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.

6.3.1. Calculating the Gain Value

The ADC0 selectable gain feature is controlled by 13 bits in three registers. ADC0GNH contains the 8 upper bits of the gain value and ADC0GNL contains the 4 lower bits of the gain value. The final GAINADD bit (ADC0GNA.0) controls an optional extra 1/64 (0.016) of gain that can be added in addition to the ADC0GNH and ADC0GNL gain. The ADC0GNA.0 bit is set to 1 after a power-on reset.

The equivalent gain for the ADC0GNH, ADC0GNL and ADC0GNA registers is as follows:

gain =
$$\left(\frac{\text{GAIN}}{4096}\right)$$
 + GAINADD × $\left(\frac{1}{64}\right)$

Equation 6.2. Equivalent Gain from the ADC0GNH and ADC0GNL Registers

Where:

GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4] *GAINADD* is the value of the GAINADD bit (ADC0GNA.0) *gain* is the equivalent gain value from 0 to 1.016

If the internal voltage regulator is not used, the VREGIN input should be tied to VDD, as shown in Figure 10.2.

Figure 10.2. External Capacitors for Voltage Regulator Input/Output—Regulator Disabled

SFR Definition 10.1. REG0CN: Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	REGDIS	Reserved		REG0MD				DROPOUT
Туре	R/W	R/W	R	R/W	R	R	R	R
Reset	0	1	0	1	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x00

Bit	Name	Function
7	REGDIS	Voltage Regulator Disable Bit.
		0: Voltage Regulator Enabled
		1: Voltage Regulator Disabled
6	Reserved	Read = 1b; Must Write 1b.
5	Unused	Read = 0b; Write = Don't Care.
4	REG0MD	Voltage Regulator Mode Select Bit.
		0: Voltage Regulator Output is 2.1V.
		1: Voltage Regulator Output is 2.6V.
3:1	Unused	Read = 000b. Write = Don't Care.
0	DROPOUT	Voltage Regulator Dropout Indicator.
		0: Voltage Regulator is not in dropout
		1: Voltage Regulator is in or near dropout.

Figure 13.6. SFR Page Stack Upon Return From CAN0 Interrupt

In the example above, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to the SFR Page stack can be useful to enable real-time operating systems to control and manage context switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFR0CN). See SFR Definition 13.1.

SFR Definition 14.4. EIP1: Extended Interrupt Priority 1

Bit	7	6	5	4	3	2	1	0
Name	PLIN0	PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PSMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF6; SFR Page = All Pages

Bit	Name	Function
7	PLIN0	LINO Interrupt Priority Control. This bit sets the priority of the LINO interrupt. 0: LINO interrupts set to low priority level. 1: LINO interrupts set to high priority level.
6	PT3	Timer 3 Interrupt Priority Control.This bit sets the priority of the Timer 3 interrupt.0: Timer 3 interrupts set to low priority level.1: Timer 3 interrupts set to high priority level.
5	PCP1	Comparator0 (CP1) Interrupt Priority Control. This bit sets the priority of the CP1 interrupt. 0: CP1 interrupt set to low priority level. 1: CP1 interrupt set to high priority level.
4	PCP0	Comparator0 (CP0) Interrupt Priority Control. This bit sets the priority of the CP0 interrupt. 0: CP0 interrupt set to low priority level. 1: CP0 interrupt set to high priority level.
3	PPCA0	 Programmable Counter Array (PCA0) Interrupt Priority Control. This bit sets the priority of the PCA0 interrupt. 0: PCA0 interrupt set to low priority level. 1: PCA0 interrupt set to high priority level.
2	PADC0	 ADC0 Conversion Complete Interrupt Priority Control. This bit sets the priority of the ADC0 Conversion Complete interrupt. 0: ADC0 Conversion Complete interrupt set to low priority level. 1: ADC0 Conversion Complete interrupt set to high priority level.
1	PWADC0	 ADC0 Window Comparator Interrupt Priority Control. This bit sets the priority of the ADC0 Window interrupt. 0: ADC0 Window interrupt set to low priority level. 1: ADC0 Window interrupt set to high priority level.
0	PSMB0	 SMBus (SMB0) Interrupt Priority Control. This bit sets the priority of the SMB0 interrupt. 0: SMB0 interrupt set to low priority level. 1: SMB0 interrupt set to high priority level.

SFR Definition 14.6. EIP2: Extended Interrupt Priority Enabled 2

Bit	7	6	5	4	3	2	1	0
Name						PMAT	PCAN0	PREG0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF7; SFR Page = All Pages

Bit	Name	Function
7	PT5	Timer 5 Interrupt Priority Control.This bit sets the priority of the Timer 5 interrupt.0: Timer 5 interrupts set to low priority level.1: Timer 5 interrupts set to high priority level.
6	PT4	Timer 4 Interrupt Priority Control.This bit sets the priority of the Timer 4 interrupt.0: Timer 4 interrupts set to low priority level.1: Timer 4 interrupts set to high priority level.
5	PCP2	Comparator1 (CP1) Interrupt Priority Control. This bit sets the priority of the CP1 interrupt. 0: CP1 interrupt set to low priority level. 1: CP1 interrupt set to high priority level.
4	PPCA1	 Programmable Counter Array (PCA1) Interrupt Priority Control. This bit sets the priority of the PCA1 interrupt. 0: PCA1 interrupt set to low priority level. 1: PCA1 interrupt set to high priority level.
3	PS1	UART1 Interrupt Priority Control. This bit sets the priority of the UART1 interrupt. 0: UART1 interrupt set to low priority level. 1: UART1 interrupt set to high priority level.
2	PMAT	 Port Match Interrupt Priority Control. This bit sets the priority of the Port Match interrupt. 0: Port Match interrupt set to low priority level. 1: Port Match interrupt set to high priority level.
1	PCAN0	 CAN0 Interrupt Priority Control. This bit sets the priority of the CAN0 interrupt. 0: CAN0 interrupt set to low priority level. 1: CAN0 interrupt set to high priority level.
0	PREG0	 Voltage Regulator Dropout Interrupt Priority Control. This bit sets the priority of the Voltage Regulator Dropout interrupt. 0: Voltage Regulator Dropout interrupt set to low priority level. 1: Voltage Regulator Dropout interrupt set to high priority level.

15.1.2. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 15.2.

15.1.3. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by doing the following: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. **A byte location to be programmed should be erased before a new value is written.** The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- 1. Disable interrupts (recommended).
- 2. If erasing a page in Banks 1, 2, or 3, set the COBANK[1:0] bits (register PSBANK) for the appropriate bank.
- 3. Set the FLEWT bit (register FLSCL).
- 4. Set the PSEE bit (register PSCTL).
- 5. Set the PSWE bit (register PSCTL).
- 6. Write the first key code to FLKEY: 0xA5.
- 7. Write the second key code to FLKEY: 0xF1.
- 8. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
- 9. Clear the PSWE and PSEE bits.

15.1.4. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:

- 1. Disable interrupts (recommended).
- 2. If writing to an address in Banks 1, 2, or 3, set the COBANK[1:0] (register PSBANK) for the appropriate bank.
- 3. Erase the 512-byte Flash page containing the target location, as described in Section 15.1.3.
- 4. Set the FLEWT bit (register FLSCL).
- 5. Set the PSWE bit (register PSCTL).
- 6. Clear the PSEE bit (register PSCTL).
- 7. Write the first key code to FLKEY: 0xA5.
- 8. Write the second key code to FLKEY: 0xF1.
- 9. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.
- 10.Clear the PSWE bit.

16. Power Management Modes

The C8051F58x/F59x devices have three software programmable power management modes: Idle, Stop, and Suspend. Idle mode and Stop mode are part of the standard 8051 architecture, while Suspend mode is an enhanced power-saving mode implemented by the high-speed oscillator peripheral.

Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Suspend mode is similar to Stop mode in that the internal oscillator and CPU are halted, but the device can wake on events, such as a Port Match or Comparator low output. Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode and Suspend mode consume the least power because the majority of the device is shut down with no clocks active. SFR Definition 16.1 describes the Power Control Register (PCON) used to control the C8051F58x/F59x devices' Stop and Idle power management modes. Suspend mode is controlled by the SUSPEND bit in the OSCICN register (SFR Definition 19.2).

Although the C8051F58x/F59x has Idle, Stop, and Suspend modes available, more control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off oscillators lowers power consumption considerably, at the expense of reduced functionality.

16.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode when a future interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction that has two or more opcode bytes, for example:

// in `C':	
PCON $ = 0 \times 01;$	// set IDLE bit
PCON = PCON;	$//$ \ldots followed by a 3-cycle dummy instruction
; in assembly:	
ORL PCON, #01h	; set IDLE bit
MOV PCON, PCON	; followed by a 3-cycle dummy instruction

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "17.6. PCA Watchdog Timer Reset" on page 156 for more information on the use and configuration of the WDT.

SFR Definition 16.1. PCON: Power Control

Bit	7	6	5	4	3	2	1	0
Name		STOP	IDLE					
Туре		R/W	R/W					
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x87; SFR Page = All Pages

Bit	Name	Function
7:2	GF[5:0]	General Purpose Flags 5–0.
		These are general purpose flags for use under software control.
1	STOP	Stop Mode Select. Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0. 1: CPU goes into Stop mode (internal oscillator stopped).
0	IDLE	IDLE: Idle Mode Select. Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0. 1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial Ports, and Analog Peripherals are still active.)

18.6.1.3. 8-bit MOVX with Bank Select: EMI0CF[4:2] = 110

Figure 18.6. Non-multiplexed 8-bit MOVX with Bank Select Timing

SFR Definition 19.1. CLKSEL: Clock Select

Bit	7	6	5	4	3	2	1	0
Name							CLKS	5L[1:0]
Туре	R	R	R	R	R	R	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8F; SFR Page = 0x0F;

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care
1:0	CLKSL[1:0]	System Clock Source Select Bits.
		 00: SYSCLK derived from the Internal Oscillator and scaled per the IFCN bits in register OSCICN. 01: SYSCLK derived from the External Oscillator circuit. 10: SYSCLK derived from the Clock Multiplier. 11: reserved.

SFR Definition 19.6. OSCXCN: External Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	XTLVLD	×	(OSCMD[2:0)]			XFCN[2:0]	
Туре	R		R/W				R/W	
Reset	0	0	0 0 0			0	0	0

SFR Address = 0x9F; SFR Page = 0x0F;

Bit	Name			Function						
7	XTLVLD	Crystal	Crystal Oscillator Valid Flag.							
		(Read c	Read only when XOSCMD = 11x.)							
		0: Cryst	al Oscillator is unused of	r not yet stable.						
		1: Cryst	al Oscillator is running a	nd stable.						
6:4	XOSCMD[2:0]	Externa	al Oscillator Mode Sele	ct.						
		00x: Ex	ternal Oscillator circuit of	f.						
		010: Ex	ternal CMOS Clock Mod	e.						
		011: Ex	ternal CMOS Clock Mod	e with divide by 2 stage.						
		100: RC	COscillator Mode.							
		101: Ca	pacitor Oscillator Mode.							
		110: Cry	stal Oscillator Mode.	divide by 2 stage						
				i ulvide by 2 stage.						
3	Unused	Read =	0b; Write =0b							
2:0	XFCN[2:0]	Externa	al Oscillator Frequency	Control Bits.						
		Set acc	ording to the desired free	quency for Crystal or RC	mode.					
		Set acc	ording to the desired K F	actor for C mode.						
		XFCN	Crystal Mode	RC Mode	C Mode					
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87					
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6					
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7					
		011	011 225 kHz < f \leq 590 kHz 100 kHz < f \leq 200 kHz K Factor = 22							
		100	$00 \qquad 590 \text{ kHz} < f \le 1.5 \text{ MHz} 200 \text{ kHz} < f \le 400 \text{ kHz} \text{K Factor} = 65$							
		101	$1.5 \text{ MHz} < f \le 4 \text{ MHz}$	400 kHz < f ≤ 800 kHz	K Factor = 180					
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz < f ≤ 1.6 MHz	K Factor = 664					
		111	$10 \text{ MHz} < f \le 30 \text{ MHz}$	$1.6 \text{ MHz} < f \le 3.2 \text{ MHz}$	K Factor = 1590					

LIN Register Definition 21.4. LIN0DTn: LIN0 Data Byte n

Bit	7	6	5	4	3	2	1	0		
Nam	e	DATAn[7:0]								
Туре	9			R/	W					
Rese	set 0 0 0 0 0 0 0 0 0						0			
Indire LIN0D	ct Address: LIN 0T6 = 0x05, LIN	10DT1 = 0x0 10DT7 = 0x0	0, LIN0DT2)6, LIN0DT8	= 0x01, LIN(= 0x07	DT3 = 0x02	, LIN0DT4 =	0x03, LIN0	DT5 = 0x04,		
Bit	Name	Function								
7:0	DATAn[7:0]	LIN Data E	LIN Data Byte n.							
		Serial Data	Byte that is	received or	transmitted	across the L	IN interface.			

24. UART0

UART0 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates (details in Section "24.1. Baud Rate Generator" on page 256). A received data FIFO allows UART0 to receive up to three data bytes before data is lost and an overflow occurs.

UART0 has six associated SFRs. Three are used for the Baud Rate Generator (SBCON0, SBRLH0, and SBRLL0), two are used for data formatting, control, and status functions (SCON0, SMOD0), and one is used to send and receive data (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete). If additional bytes are available in the Receive FIFO, the RI0 bit cannot be cleared by software.

Figure 24.1. UART0 Block Diagram

24.1. Baud Rate Generator

The UART0 baud rate is generated by a dedicated 16-bit timer which runs from the controller's core clock (SYSCLK) and has prescaler options of 1, 4, 12, or 48. The timer and prescaler options combined allow for a wide selection of baud rates over many clock frequencies.

The baud rate generator is configured using three registers: SBCON0, SBRLH0, and SBRLL0. The UART0 Baud Rate Generator Control Register (SBCON0, SFR Definition 24.4) enables or disables the baud rate generator, selects the clock source for the baud rate generator, and selects the prescaler value for the timer. The baud rate generator must be enabled for UART0 to function. Registers SBRLH0 and SBRLL0 contain a 16-bit reload value for the dedicated 16-bit timer. The internal timer counts up from the reload value on every clock tick. On timer overflows (0xFFFF to 0x0000), the timer is reloaded. The baud rate for UART0 is defined in Equation 24.1, where "BRG Clock" is the baud rate generator's selected clock source. For reliable UART operation, it is recommended that the UART baud rate is not configured for baud rates faster than SYSCLK/16.

25.1. Enhanced Baud Rate Generation

The UART1 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 25.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Figure 25.2. UART1 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "27.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 288). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART1 baud rate is determined by Equation 25.1-A and Equation 25.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 25.1. UART1 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "27. Timers" on page 285. A quick reference for typical baud rates and system clock frequencies is given in Table 25.1. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

SFR Definition 26.3. SPI0CKR: SPI0 Clock Rate

Bit	7	6	5	4	3	2	1	0		
Name SCR[7:0]								I		
Туре		R/W								
Reset	0	0	0 0 0 0 0 0 0							
SFR A	ddress = 0xA2	2; SFR Page	e = 0x00	I	I		1	I		
Bit	Name				Functio	n				
7:0	SCR[7:0]	These bits configured sion of the the syster register. for 0 <= S Example: fSCK =	s determine to for master e system clock n clock freque $= \frac{SY}{2 \times (SPI0)}$ PI0CKR <= If SYSCLK = 2000000 2 \times (4 + 1)	the frequency mode opera ck, and is gi uency and S <u>SCLK</u> CKR[7:0] + 255 = 2 MHz and f _{St}	ey of the SC tion. The S ven in the f PIOCKR is 1) I SPIOCKR	CK output wh CK clock fre ollowing equ the 8-bit valu = 0x04,	hen the SPI0 i equency is a d lation, where ue held in the	module is livided ver- SYSCLK is SPI0CKR		

SFR Definition 26.4. SPI0DAT: SPI0 Data

Bit	7	6	5	4	3	2	1	0		
Name	SPI0DAT[7:0]									
Туре		R/W								
Reset	0	0	0	0	0	0	0	0		

SFR Address = 0xA3; SFR Page = 0x00

Bit	Name	Function
7:0	SPI0DAT[7:0]	SPI0 Transmit and Receive Data.
		The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPI0DAT returns the contents of the receive buffer.

27.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

27.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 27.7, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x000.

Figure 27.7. Timer 3 16-Bit Mode Block Diagram

27.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 27.8. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

ТЗМН	T3XCLK	TMR3H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

SFR Definition 29.7. PCA1CPLn: PCA1 Capture Module Low Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA1C	Pn[7:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA1CPL6 = 0xFB, PCA1CPL7 = 0xE9, PCA1CPL8 = 0xEB, PCA1CPL9 = 0xED, PCA1CPL10 = 0xFD, PCA1CPL11 = 0xCE; SFR Page (all registers) = 0x10

Bit	Name	Function			
7:0	PCA1CPn[7:0]	PCA1 Capture Module Low Byte.			
		The PCA1CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding PCA1 channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL1 bit in register PCA1PWM controls which register is accessed.			
Note:	ote: A write to this register will clear the module's ECOM1n bit to a 0.				

SFR Definition 29.8. PCA1CPHn: PCA1 Capture Module High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA1CPn[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA1CPH6 = 0xFC, PCA1CPH7 = 0xEA, PCA1CPH8 = 0xEC, PCA1CPH9 = 0xEE, PCA1CPH10 = 0xFE, PCA1CPH11 = 0xCF; SFR Page (all registers) = 0x10

Bit	Name	Function					
7:0	PCA1CPn[15:8]	PCA1 Capture Module High Byte.					
		The PCA1CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA1 channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL1 bit in register PCA1PWM controls which register is accessed.					
Note	Note: A write to this register will set the module's ECOM1n bit to a 1.						

