Silicon Labs - <u>C8051F588-IM Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	33
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f588-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 2.1. Product Selection Guide	23
Table 3.1. Pin Definitions for the C8051F58x/F59x	24
Table 4.1. QFP-48 Package Dimensions	32
Table 4.2. QFP-48 Landing Diagram Dimensions	33
Table 4.3. QFN-48 Package Dimensions	34
Table 4.4. QFN-48 Landing Diagram Dimensions	35
Table 4.5. QFN-40 Package Dimensions	36
Table 4.6. QFN-40 Landing Diagram Dimensions	37
Table 4.7. QFP-32 Package Dimensions	38
Table 4.8. QFP-32 Landing Diagram Dimensions	39
Table 4.9. QFN-32 Package Dimensions	40
Table 4.10. QFN-32 Landing Diagram Dimensions	41
Table 5.1. Absolute Maximum Ratings	42
Table 5.2. Global Electrical Characteristics	43
Table 5.3. Port I/O DC Electrical Characteristics	47
Table 5.4. Reset Electrical Characteristics	48
Table 5.5. Flash Electrical Characteristics	48
Table 5.6. Internal High-Frequency Oscillator Electrical Characteristics	49
Table 5.7. Clock Multiplier Electrical Specifications	50
I able 5.8. Voltage Regulator Electrical Characteristics	50
Table 5.9. ADC0 Electrical Characteristics	51
Table 5.10. Temperature Sensor Electrical Characteristics	52
Table 5.11. Voltage Reference Electrical Characteristics	52
Table 5.12. Comparator 0, 1 and 2 Electrical Characteristics	53
Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)	94
Table 13.1. Special Function Register (SFR) Memory Map for	
Pages 0x00, 0x10, and 0x0F	117
Table 13.2. Special Function Register (SFR) Memory Map for Page 0x0C	119
Table 13.3. Special Function Registers	20
Table 14.1. Interrupt Summary	28
Table 15.1. Flash Security Summary	41
Table 18.1. EMIF PINOUT (C8051F580/1/4/5)	158
Table 18.2. EMIF PInout (C8051F588/9-F590/1) 1 Table 19.2. AO Demonstrate for External Manager Interface 1	159
Table 18.3. AC Parameters for External Memory Interface	173
Table 20.1. Port I/O Assignment for Analog Functions	189
Table 20.2. Port I/O Assignment for Digital Functions	189
Table 20.3. Port I/O Assignment for External Digital Event Capture Functions 1	190
Table 21.1. Baud Rate Calculation Variable Ranges	213
Table 21.2. Manual Baud Rate Parameters Examples	215
Table 21.3. Autobaud Parameters Examples	216
Table 21.4. LIN Registers [*] (Indirectly Addressable)	221
Table 22.1. Background System Information	231
Table 22.2. Standard CAN Registers and Reset Values	234

4.4. QFP-32 Package Specifications

Figure 4.7. QFP-32 Package Drawing

Table 4.7. QFP-32 Package Dimensions

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max	
A	—	—	1.60	E	9.00 BSC.			
A1	0.05	—	0.15	E1		7.00 BSC.		
A2	1.35	1.40	1.45	L	0.45	0.60	0.75	
b	0.30	0.37	0.45	aaa	0.20			
С	0.09	—	0.20	bbb	0.20			
D	9.00 BSC.			CCC		0.10		
D1	7.00 BSC.			ddd		0.20		
е	0.80 BSC.			θ	0°	3.5°	7°	

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

- 3. This drawing conforms to the JEDEC outline MS-026, variation BBA.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 5.7. Clock Multiplier Electrical Specifications

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Frequency (Fcm _{in})		2	—	—	MHz
Output Frequency			_	50	MHz
Power Supply Current		—	1.4	1.9	μA

Table 5.8. Crystal Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Crystal Frequency		0.02		25	MHz
	XOSCMD = 110b				
	XFCN = 000b	—	1.3	—	μA
	XFCN = 001b	—	3.5	—	μA
	XFCN = 010b	—	10	—	μA
Crystal Drive Current	XFCN = 011b	—	27	—	μA
	XFCN = 100b	—	70	—	μA
	XFCN = 101b	—	200	—	μA
	XFCN = 110b	—	800	—	μA
	XFCN = 111b		2.8	_	mA

Table 5.9. Voltage Regulator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units	
Input Voltage Range (V _{REGIN})*		1.8*		5.25	V	
Dropout Voltage (V _{DO})	Maximum Current = 50 mA	_	10	_	mV/mA	
	2.1 V operation (REG0MD = 0)	2.0	2.1	2.25	V	
	2.6 V operation (REG0MD = 1)	2.5	2.6	2.75	V	
Bias Current			1	9	μA	
Dropout Indicator Detection Threshold	With respect to V _{DD}	-0.21	_	-0.02	V	
Output Voltage Temperature Coefficient		_	0.04	_	mV/°C	
VREG Settling Time	50 mA load with $V_{REGIN} = 2.4 V$ and V_{DD} load capacitor of 4.8 μ F	_	450	_	μs	
*Note: The minimum input voltage	is 1.8 V or V _{DD} + V _{DO} (max load), whi	chever is g	greater.		•	

Table 5.10. ADC0 Electrical Characteristics

VDDA = 1.8 to 2.75 V, -40 to +125 °C, VREF = 1.5 V (REFSL=0) unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy				<u> </u>	
Resolution			12		bits
Integral Nonlinearity		—	±0.5	±3	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Offset Error ¹		-10	-1.6	10	LSB
Full Scale Error		-20	-4.2	20	LSB
Offset Temperature Coefficient		—	-2	—	ppm/°C
Dynamic performance (10 kHz s	sine-wave single-ended inpu	it, 1 dB b	elow Full	Scale, 200	ksps)
Signal-to-Noise Plus Distortion		63	66	—	dB
Total Harmonic Distortion	Up to the 5th harmonic	—	81	—	dB
Spurious-Free Dynamic Range		_	-82	—	dB
Conversion Rate					
SAR Conversion Clock			_	3.6	MHz
Conversion Time in SAR Clocks ²		13	—	—	clocks
Track/Hold Acquisition Time ³	VDDA <u>></u> 2.0 V VDDA < 2.0 V	1.5 3.5	—	—	μs
Throughput Rate ⁴	VDDA <u>></u> 2.0 V	—	—	200	ksps
Analog Inputs			1	.11	
ADC Input Voltage Range ⁵	gain = 1.0 (default) gain = n	0 0	—	VREF VREF / n	V
Absolute Pin Voltage with respect to GND		0	_	V _{IO}	V
Sampling Capacitance			29	—	pF
Input Multiplexer Impedance		_	5	—	kΩ
Power Specifications	·				
Power Supply Current (VDDA supplied to ADC0)	Operating Mode, 200 ksps	_	1100	1500	μA
Burst Mode (Idle)			1100	1500	μA
Power-On Time		5			μs
Power Supply Rejection Ratio			-60		mV/V

Notes:

1. Represents one standard deviation from the mean. Offset and full-scale error can be removed through calibration.

2. An additional 2 FCLK cycles are required to start and complete a conversion

3. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "6.2.1. Settling Time Requirements" on page 59

4. An increase in tracking time will decrease the ADC throughput.

5. See Section "6.3. Selectable Gain" on page 60 for more information about the setting the gain.

SFR Definition 9.4. CPT1MD: Comparator1 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP1RIE	CP1FIE			CP1M	ID[1:0]
Туре	R	R	R/W	R/W	R	R	R/W	
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9E; SFR Page = 0x00

Bit	Name	Function					
7:6	Unused	Read = 00b, Write = Don't Care.					
5	CP1RIE	omparator1 Rising-Edge Interrupt Enable. : Comparator1 Rising-edge interrupt disabled. : Comparator1 Rising-edge interrupt enabled.					
4	CP1FIE	Comparator1 Falling-Edge Interrupt Enable. 0: Comparator1 Falling-edge interrupt disabled. 1: Comparator1 Falling-edge interrupt enabled.					
3:2	Unused	Read = 00b, Write = don't care.					
1:0	CP1MD[1:0]	Comparator1 Mode Select. These bits affect the response time and power consumption for Comparator1. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)					

SFR Definition 14.5. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name	ET5	ET4	ECP2	EPCA1	ES1	EMAT	ECAN0	EREG0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7; SFR Page = All Pages

Bit	Name	Function
7	ET5	 Enable Timer 5 Interrupt. This bit sets the masking of the Timer 5 interrupt. 0: Disable Timer 5 interrupts. 1: Enable interrupt requests generated by the TF5L or TF5H flags.
6	ET4	 Enable Timer 4 Interrupt. This bit sets the masking of the Timer 4 interrupt. 0: Disable Timer 4 interrupts. 1: Enable interrupt requests generated by the TF4L or TF4H flags.
5	ECP2	Enable Comparator2 (CP2) Interrupt. This bit sets the masking of the CP2 interrupt. 0: Disable CP2 interrupts. 1: Enable interrupt requests generated by the CP2RIF or CP2FIF flags.
4	EPCA1	 Enable Programmable Counter Array (PCA1) Interrupt. This bit sets the masking of the PCA1 interrupts. 0: Disable all PCA1 interrupts. 1: Enable interrupt requests generated by PCA1
3	ES1	Enable UART1 Interrupt. This bit sets the masking of the UART1 interrupt. 0: Disable UART1 interrupt. 1: Enable UART1 interrupt
2	EMAT	Enable Port Match Interrupt. This bit sets the masking of the Port Match interrupt. 0: Disable all Port Match interrupts. 1: Enable interrupt requests generated by a Port Match
1	ECAN0	Enable CAN0 Interrupts. This bit sets the masking of the CAN0 interrupt. 0: Disable all CAN0 interrupts. 1: Enable interrupt requests generated by CAN0.
0	EREG0	 Enable Voltage Regulator Dropout Interrupt. This bit sets the masking of the Voltage Regulator Dropout interrupt. 0: Disable the Voltage Regulator Dropout interrupt. 1: Enable the Voltage Regulator Dropout interrupt.

15.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note that MOVX read instructions always target XRAM.

15.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the ones complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are 1) and locked when any other Flash pages are locked (any bit of the Lock Byte is 0). See example in Figure 15.1.

Security Lock Byte:	11111101b
1s Complement:	00000010b
Flash pages locked:	3 (First two Flash pages + Lock Byte Page)

Figure 15.1. Flash Program Memory Map

SFR Definition 17.1. VDM0CN: V_{DD} Monitor Control

Bit	7	6	5	4	3	2	1	0
Name	VDMEN	VDDSTAT	VDMLVL					
Туре	R/W	R	R/W	R	R	R	R	R
Reset	Varies	Varies	0	0	0	0	0	0

SFR Address = 0xFF; SFR Page = 0x00

Bit	Name	Function
7	VDMEN	V _{DD} Monitor Enable.
		This bit turns the V _{DD} monitor circuit on/off. The V _{DD} Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 17.2). Selecting the V _{DD} monitor as a reset source before it has stabilized may generate a system reset. 0: V _{DD} Monitor Disabled. 1: V _{DD} Monitor Enabled.
6	VDDSTAT	V _{DD} Status.
		This bit indicates the current power supply status (V_{DD} Monitor output). 0: V_{DD} is at or below the V_{DD} monitor threshold. 1: V_{DD} is above the V_{DD} monitor threshold.
5	VDMLVL	V _{DD} Monitor Level Select.
		0: V_{DD} Monitor Threshold is set to VRST-LOW 1: V_{DD} Monitor Threshold is set to VRST-HIGH. This setting is required for any system includes code that writes to and/or erases Flash.
4:0	Unused	Read = 00000b; Write = Don't care.

17.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 5.4 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

17.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low formore than the value specified in Table 5.4, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

17.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting

20.1. Port I/O Modes of Operation

Port pins P0.0–P3.7 use the Port I/O cell shown in Figure 20.2. Each of these Port I/O cells can be configured by software for analog I/O or digital I/O using the PnMDIN registers. P4.0-P4.7 use a similar cell, except that they can only be configured as digital I/O pins and do not have a corresponding PnMDIN or PnSKIP register. On reset, all Port I/O cells default to a high impedance state with weak pull-ups enabled until the Crossbar is enabled (XBARE = 1).

20.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC inputs, external oscillator inputs, or VREF should be configured for analog I/O (PnMDIN.n = 0). When a pin is configured for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. Port pins configured for analog I/O will always read back a value of 0.

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended and may result in measurement errors.

20.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture functions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the PnMDOUT registers.

Push-pull outputs (PnMDOUT.n = 1) drive the Port pad to the VIO or GND supply rails based on the output logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high low drivers turned off) when the output logic value is 1.

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to the VIO supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting WEAKPUD to 1. The user should ensure that digital I/O are always internally or externally pulled or driven to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P0.0 if VREF is used, P0.1 if the ADC is configured to use the external conversion start signal (CNVSTR), P0.3 and/or P0.2 if the external oscillator circuit is enabled, and any selected ADC or Comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin.

Figure 20.3. Peripheral Availability on Port I/O Pins

Registers XBR0, XBR1, XBR2, and XBR3 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); and similarly when the UART, CAN or LIN are selected, the Crossbar assigns both pins associated with the peripheral (TX and RX).

SFR Definition 20.9. P2MASK: Port 2 Mask Register

Bit	7	6	5	4	3	2	1	0
Name	P2MASK[7:0]							
Туре				R/	W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xB2; SFR Page = 0x00

Bit	Name	Function
7:0	P2MASK[7:0]	Port 2 Mask Value.
		Selects P2 pins to be compared to the corresponding bits in P2MAT. 0: P2.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P2.n pin logic value is compared to P2MAT.n.

SFR Definition 20.10. P2MAT: Port 2 Match Register

Bit	7	6	5	4	3	2	1	0
Name	P2MAT[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xB1; SFR Page = 0x00

Bit	Name	Function
7:0	P2MAT[7:0]	Port 2 Match Value.
		Match comparison value used on Port 2 for bits in P2MAT which are set to 1. 0: P2.n pin logic value is compared with logic LOW. 1: P2.n pin logic value is compared with logic HIGH.

SFR Definition 20.14. P0MDIN: Port 0 Input Mode

Bit	7	6	5	4	3	2	1	0
Name	P0MDIN[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF1; SFR Page = 0x0F

Bit	Name	Function
7:0	P0MDIN[7:0]	Analog Configuration Bits for P0.7–P0.0 (respectively).
		 Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P0MDOUT register. 0: Corresponding P0.n pin is configured for analog mode. 1: Corresponding P0.n pin is not configured for analog mode.

SFR Definition 20.15. P0MDOUT: Port 0 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P0MDOUT[7:0]							
Туре				R/	W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA4; SFR Page = 0x0F

Bit	Name	Function
7:0	P0MDOUT[7:0]	Output Configuration Bits for P0.7–P0.0 (respectively).
		These bits are ignored if the corresponding bit in register P0MDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull.

SFR Definition 23.2. SMB0CN: SMBus Control

Bit	7	6	5	4	3	2	1	0
Name	MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI
Туре	R	R	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC0; Bit-Addressable; SFR Page =0x00

Bit	Name	Description	Read	Write
7	MASTER	SMBus Master/Slave Indicator. This read-only bit indicates when the SMBus is operating as a master.	0: SMBus operating in slave mode. 1: SMBus operating in master mode.	N/A
6	TXMODE	SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.	0: SMBus in Receiver Mode. 1: SMBus in Transmitter Mode.	N/A
5	STA	SMBus Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a Master, initiates a START or repeated START.
4	STO	SMBus Stop Flag.	0: No Stop condition detected.1: Stop condition detected (if in Slave Mode) or pend- ing (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ	SMBus Acknowledge Request.	0: No Ack requested 1: ACK requested	N/A
2	ARBLOST	SMBus Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK	SMBus Acknowledge.	0: NACK received. 1: ACK received.	0: Send NACK 1: Send ACK
0	SI	SMBus Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initiate next state machine event.1: Force interrupt.

24.2. Data Format

UART0 has a number of available options for data formatting. Data transfers begin with a start bit (logic low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop bit length is selectable between 1 and 2 bit times, and a multi-processor communication mode is available for implementing networked UART buses. All of the data formatting options can be configured using the SMOD0 register, shown in SFR Definition 24.2. Figure 24.2 shows the timing for a UART0 transaction with parity enabled (PE0 = 1). Figure 24.4 is an example of a UART0 transaction when the extra bit is enabled (XBE0 = 1). Note that the extra bit feature is not available when parity is enabled, and the second stop bit is only an option for data lengths of 6, 7, or 8 bits.

Figure 24.2. UART0 Timing Without Parity or Extra Bit

Figure 24.3. UART0 Timing With Parity

Figure 24.4. UART0 Timing With Extra Bit

is set.RI0 can only be cleared to '0' by software when there is no more information in the FIFO. The recommended procedure to empty the FIFO contents is as follows:

- 1. Clear RI0 to 0.
- 2. Read SBUF0.
- 3. Check RI0, and repeat starting at step 1 if RI0 is set to 1.

If the extra bit function is enabled (XBE0 = 1) and the parity function is disabled (PE0 = 0), the extra bit for the oldest byte in the FIFO can be read from the RBX0 bit (SCON0.2). If the extra bit function is not enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBX0. When the parity function is enabled (PE0 = 1), hardware will check the received parity bit against the selected parity type (selected with S0PT[1:0]) when receiving data. If a byte with parity error is received, the PERR0 flag will be set to 1. This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not available.

Note: The UART Receive FIFO pointer can be corrupted if the UART receives a byte and firmware reads a byte from the FIFO at the same time. When this occurs, firmware will lose the received byte and the FIFO receive overrun flag (OVR0) will also be set to 1. Systems using the UART Receive FIFO should ensure that the FIFO isn't accessed by hardware and firmware at the same time. In other words, firmware should ensure to read the FIFO before the next byte is received.

24.3.3. Multiprocessor Communications

UART0 supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0.

Setting the MCE0 bit (SMOD0.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBX0 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 24.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 24.1. SCON0: Serial Port 0 Control

Bit	7	6	5	4	3	2	1	0			
Name	OVR0	PERR0	THRE0	REN0	TBX0	RBX0	TI0	RI0			
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W			
Reset	t 0	0	1	0	0	0	0	0			
SFR A	ddress = 0	x98: Bit-Addressable: SFR Page = 0x00									
Bit	Name	Function									
7	OVR0	 Receive FIFO Overrun Flag. 0: Receive FIFO Overrun has not occurred 1: Receive FIFO Overrun has occurred; A received character has been discarded due to a full FIFO. 									
6	PERR0	Parity Error Flag. When parity is enabled, this bit indicates that a parity error has occurred. It is set to 1 when the parity of the oldest byte in the FIFO does not match the selected Parity Type. 0: Parity error has not occurred									
		This bit must b	be cleared by	u. y software.							
5	THRE0	 Transmit Holding Register Empty Flag. Firmware should use or poll on TI0 rather than THRE0 for asynchronous UART writes that may have a random delay in between transactions. 0: Transmit Holding Register not Empty—do not write to SBUF0. 1: Transmit Holding Register Empty—it is safe to write to SBUF0. 									
4	RENU	 Receive Enable. This bit enables/disables the UART receiver. When disabled, bytes can still be read from the receive FIFO. 0: UART1 reception disabled. 1: UART1 reception enabled. 									
3	TBX0	Extra Transmission Bit. The logic level of this bit will be assigned to the extra transmission bit when XBE0 is set to 1. This bit is not used when Parity is enabled.									
2	RBX0	Extra Receive Bit. RBX0 is assigned the value of the extra bit when XBE1 is set to 1. If XBE1 is cleared to 0, RBX1 will be assigned the logic level of the first stop bit. This bit is not valid when Parity is enabled.									
1	TI0	Transmit Interrupt Flag. Set to a 1 by hardware after data has been transmitted, at the beginning of the STOP bit. When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software.									
0	RIO	Receive Interrupt Flag. Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UART0 ISR. This bit must be cleared manually by software. Note that RI0 will remain set to '1' as long as there is data still in the UART FIFO. RI0 can be cleared after the last byte has been shifted from the FIFO to SBUF0.									

26.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 26.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 26.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

26.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

All of the following bits must be cleared by software.

- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- 2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

29.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8 to 11-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 29.2 summarizes the bit settings in the PCA1CPMn and PCA1PWM registers used to select the PCA1 capture/compare module's operating mode. All modules set to use 8, 9, 10, or 11-bit PWM mode must use the same cycle length (8-11 bits). Setting the ECCF1n bit in a PCA1CPMn register enables the module's CCFn interrupt.

Operational Mode			PCA1CPMn							PCA1PWM				
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4–2	1–0	
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	А	0	Х	В	XXX	XX	
Capture triggered by negative edge on CEXn				1	0	0	0	А	0	Х	В	XXX	XX	
Capture triggered by any transition on CEXn				1	0	0	0	А	0	Х	В	XXX	XX	
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	XXX	XX	
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	XXX	XX	
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX	
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	0	Х	В	XXX	00	
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01	
10-Bit Pulse Width Modulator (Note 7)		С	0	0	Е	0	1	А	D	Х	В	XXX	10	
11-Bit Pulse Width Modulator (Note 7)		С	0	0	Е	0	1	А	D	Х	В	XXX	11	
16-Bit Pulse Width Modulator				0	Е	0	1	А	0	Х	В	XXX	XX	
													-	

Table 29.2. PCA1CPM and PCA1PWM Bit Settings for PCA1 Capture/Compare Modules

Notes:

1. X = Don't Care (no functional difference for individual module if 1 or 0).

2. A = Enable interrupts for this module (PCA1 interrupt triggered on CCFn set to 1).

3. B = Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL1[1:0]).

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).

5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA1CPHn and PCA1CPLn.

6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

SFR Definition 29.3. PCA1PWM: PCA1 PWM Configuration

Bit	7	6	5	4	3	2	1	0		
Name	ARSEL1	ECOV1	COVF1				CLSEL1[1:0]			
Туре	R/W	R/W	R/W	R	R	R	R/W			
Reset	0	0	0	0	0	0	0	0		

SFR Address = 0xDA; SFR Page = 0x0F

Bit	Name	Function
7	ARSEL1	Auto-Reload Register Select.
		This bit selects whether to read and write the normal PCA1 capture/compare registers (PCA1CPn), or the Auto-Reload registers at the same SFR addresses. This function is used to define the reload value for 9, 10, and 11-bit PWM modes. In all other modes, the Auto-Reload registers have no function. 0: Read/Write Capture/Compare Registers at PCA1CPHn and PCA1CPLn. 1: Read/Write Auto-Reload Registers at PCA1CPHn and PCA1CPLn.
6	ECOV1	Cycle Overflow Interrupt Enable.
		This bit sets the masking of the Cycle Overflow Flag (COVF1) interrupt.
		0: COVF1 will not generate PCA1 interrupts.
		T. A FCAT interrupt will be generated when COVFT is set.
5	COVF1	Cycle Overflow Flag.
		This bit indicates an overflow of the 8th, 9th, 10th, or 11th bit of the main PCA1 counter (PCA1). The specific bit used for this flag depends on the setting of the Cycle Length Select bits. The bit can be set by hardware or software, but must be cleared by software.
		0: No overflow has occurred since the last time this bit was cleared.
		T. An overnow has occurred since the last time this bit was cleared.
4:2	Unused	Read = 000b; Write = Don't care.
1:0	CLSEL1[1:0]	Cycle Length Select.
		 When 16-bit PWM mode is not selected, these bits select the length of the PWM cycle, between 8, 9, 10, or 11 bits. This affects all channels configured for PWM which are not using 16-bit PWM mode. These bits are ignored for individual channels configured to16-bit PWM mode. 00: 8 bits. 01: 9 bits. 10: 10 bits. 11: 11 bits.

