E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	33
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f589-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Registers

SFR	Definition	6.4. A	ADC0CF: ADC0 Configuration	65
SFR	Definition	6.5. A	ADC0H: ADC0 Data Word MSB	66
SFR	Definition	6.6. A	ADC0L: ADC0 Data Word LSB	66
SFR	Definition	6.7. A	ADC0CN: ADC0 Control	67
SFR	Definition	6.8. A	ADC0TK: ADC0 Tracking Mode Select	68
SFR	Definition	6.9. A	ADC0GTH: ADC0 Greater-Than Data High Byte	69
SFR	Definition	6.10.	ADC0GTL: ADC0 Greater-Than Data Low Byte	69
SFR	Definition	6.11.	ADC0LTH: ADC0 Less-Than Data High Byte	70
SFR	Definition	6.12.	ADC0LTL: ADC0 Less-Than Data Low Byte	70
SFR	Definition	6.13.	ADC0MX: ADC0 Channel Select	73
SFR	Definition	8.1. F	REF0CN: Reference Control	76
SFR	Definition	9.1. C	CPT0CN: Comparator0 Control	79
SFR	Definition	9.2. 0	CPT0MD: Comparator0 Mode Selection	80
SFR	Definition	9.3. 0	CPT1CN: Comparator1 Control	81
SFR	Definition	9.4. 0	CPT1MD: Comparator1 Mode Selection	82
SFR	Definition	9.5. C	CPT2CN: Comparator2 Control	83
SFR	Definition	9.6. 0	CPT2MD: Comparator2 Mode Selection	84
SFR	Definition	9.7. C	CPT0MX: Comparator0 MUX Selection	86
SFR	Definition	9.8. C	CPT1MX: Comparator1 MUX Selection	87
SFR	Definition	9.9. C	CPT2MX: Comparator2 MUX Selection	88
SFR	Definition	10.1.	REG0CN: Regulator Control	90
SFR	Definition	11.1.	DPL: Data Pointer Low Byte	98
SFR	Definition	11.2.	DPH: Data Pointer High Byte	98
SFR	Definition	11.3.	SP: Stack Pointer	99
SFR	Definition	11.4.	ACC: Accumulator	99
SFR	Definition	11.5.	B: B Register	99
SFR	Definition	11.6.	PSW: Program Status Word 1	00
SFR	Definition	11.7.	SNn: Serial Number n 1	01
SFR	Definition	12.1.	PSBANK: Program Space Bank Select 1	04
SFR	Definition	13.1.	SFR0CN: SFR Page Control 1	13
SFR	Definition	13.2.	SFRPAGE: SFR Page1	14
SFR	Definition	13.3.	SFRNEXT: SFR Next 1	15
SFR	Definition	13.4.	SFRLAST: SFR Last 1	16
SFR	Definition	14.1.	IE: Interrupt Enable 1	30
SFR	Definition	14.2.	IP: Interrupt Priority1	31
SFR	Definition	14.3.	EIE1: Extended Interrupt Enable 1 1	32
SFR	Definition	14.4.	EIP1: Extended Interrupt Priority 1 1	33
SFR	Definition	14.5.	EIE2: Extended Interrupt Enable 2 1	34
SFR	Definition	14.6.	EIP2: Extended Interrupt Priority Enabled 2 1	35
SFR	Definition	14.7.	IT01CF: INT0/INT1 Configuration1	37
SFR	Definition	15.1.	PSCTL: Program Store R/W Control 1	43
SFR	Definition	15.2.	FLKEY: Flash Lock and Key 1	44
SFR	Definition	15.3.	FLSCL: Flash Scale 1	45

Name	Pin F580/1/4/5 (48-pin)	Pin F588/9- F590/1 (40-pin)	Pin F582/3/6/7 (32-pin)	Туре	Description
P0.6	44	36	28	D I/O or A In	Port 0.6
P0.7	43	35	27	D I/O or A In	Port 0.7
P1.0	42	34	26	D I/O or A In	Port 1.0. See SFR Definition 20.17 for a description.
P1.1	41	33	25	D I/O or A In	Port 1.1.
P1.2	40	32	24	D I/O or A In	Port 1.2.
P1.3	39	31	23	D I/O or A In	Port 1.3.
P1.4	38	30	22	D I/O or A In	Port 1.4.
P1.5	37	29	21	D I/O or A In	Port 1.5.
P1.6	36	28	20	D I/O or A In	Port 1.6.
P1.7	35	27	19	D I/O or A In	Port 1.7.
P2.0	34	26	18	D I/O or A In	Port 2.0. See SFR Definition 20.21 for a description.
P2.1	33	25	17	D I/O or A In	Port 2.1.
P2.2	32	24	16	D I/O or A In	Port 2.2.
P2.3	31	23	15	D I/O or A In	Port 2.3.
P2.4	30	22	14	D I/O or A In	Port 2.4.
P2.5	29	21	13	D I/O or A In	Port 2.5.
P2.6	28	20	12	D I/O or A In	Port 2.6.
P2.7	27	19	11	D I/O or A In	Port 2.7.
P3.0	26	18	—	D I/O or A In	Port 3.0. See SFR Definition 20.25 for a description.
P3.1	25	17	—	D I/O or A In	Port 3.1.
P3.2	24	16	—	D I/O or A In	Port 3.2.
P3.3	23	15	_	D I/O or A In	Port 3.3.
P3.4	22	14	—	D I/O or A In	Port 3.4.
P3.5	21	13	—	D I/O or A In	Port 3.5.
P3.6	20	12	—	D I/O or A In	Port 3.6.

Figure 3.4. QFP-32 Pinout Diagram (Top View)

Figure 4.6. QFN-40 Landing Diagram

Table 4.6. QFN-40 Landing Diagram Dimensions

Dimension	Min	Мах		Dimension	Min	Max
C1	5.80	5.90		X2	4.10	4.20
C2	5.80	5.90		Y1	0.75	0.85
e	0.50 BSC			Y2	4.10	4.20
X1	0.15	0.25				

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimension and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-SM-7351 guidelines.
- 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design

- 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 7. The stencil thickness should be 0.125 mm (5 mils).
- 8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 9. A 4x4 array of 0.80 mm square openings on a 1.05 mm pitch should be used for the center ground pad.

Card Assembly

- **10.** A No-Clean, Type-3 solder paste is recommended.
- **11.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 5.2. Global Electrical Characteristics (Continued)

-40 to +125 °C, 24 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Current—CPU	Inactive (Idle Mode, not fetching inst	tructior	is from	Flash)	
I _{DD} ⁴	V _{DD} = 2.1 V, F = 200 kHz	'	130		μA
	V _{DD} = 2.1 V, F = 1.5 MHz	ı — '	440	'	μA
	V _{DD} = 2.1 V, F = 25 MHz	ı — '	5.8	8.0	mA
	V _{DD} = 2.1 V, F = 50 MHz	ı — '	11	16	mA
I _{DD} ⁴	V _{DD} = 2.6 V, F = 200 kHz		170		μA
	V _{DD} = 2.6 V, F = 1.5 MHz	ı — '	570	'	μA
	V _{DD} = 2.6 V, F = 25 MHz	ı — '	7.3	15	mA
	V _{DD} = 2.6 V, F = 50 MHz	— '	15	25	mA
רח Supply Sensitivity ⁴	F = 25 MHz	—	53		0/ \/
	F = 1 MHz	ı — '	60	-	∛o/ V
I _{DD} Frequency Sensitivity ^{4.6}	V_{DD} = 2.1V, F \leq 12.5 MHz, T = 25 °C		0.28		
	V _{DD} = 2.1V, F > 12.5 MHz, T = 25 °C	— '	0.28	'	
	$V_{DD} = 2.6V, F \le 12.5 \text{ MHz}, T = 25 \text{ °C}$	ı — '	0.35	_ '	MA/MHZ
	V _{DD} = 2.6V, F > 12.5 MHz, T = 25 °C	ı — '	0.35	-	
Digital Supply Current ⁴ (Stop or Suspend Mode)	Oscillator not running, V _{DD} Monitor Disabled				
	Temp = 25 °C	ı — '	230	_ '	μA
	Temp = 60 °C	ı — '	230	_ '	
	Temp= 125 °C	ı — '	330	'	

Notes:

- **1.** Given in Table 5.4 on page 48.
- 2. V_{IO} should not be lower than the V_{DD} voltage.
- 3. SYSCLK must be at least 32 kHz to enable debugging.
- 4. Based on device characterization data; Not production tested. Does not include oscillator supply current.
- 5. IDD can be estimated for frequencies \leq 15 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for >15 MHz, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 2.6 V; F = 20 MHz, I_{DD} = 21 mA (50 MHz 20 MHz) * 0.46 mA/MHz = 7.2 mA.
- 6. Idle IDD can be estimated for frequencies ≤ 1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for >1 MHz, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number.

For example: V_{DD} = 2.6 V; F = 5 MHz, Idle I_{DD} = 19 mA – (50 MHz – 5 MHz) x 0.38 mA/MHz = 1.9 mA.

SFR Definition 6.7. ADC0CN: ADC0 Control

Bit	7	6	5	4 3 2 1 0							
Nam	e ADOEN	BURSTEN	AD0INT	AD0BUSY	AD0WINT	ADOLJS	ST	AD0C	M[1:0]		
Туре	e R/W	R/W R/W R/W R/W R/W				/W					
Rese	et O	0	0	0	0	0		0	0		
SFR A	Address = 0xE	8; SFR Page	= 0x00; Bit	-Addressable	e				11		
Bit	Name	Function									
7	AD0EN	ADC0 Enab	le Bit.								
		0: ADC0 Dis 1: ADC0 Ena	abled. ADC abled. ADC(0 is in low-po) is active ar	ower shutdov d ready for c	vn. lata conv	ersion	IS.			
6	BURSTEN	ADC0 Burst	Mode Ena	ble Bit.							
		0: Burst Moo 1: Burst Moo	le Disabled. le Enabled.								
5	AD0INT	ADC0 Conv	ersion Com	nplete Interr	upt Flag.						
		0: ADC0 has not completed a data conversion since AD0INT was last cleared. 1: ADC0 has completed a data conversion.						ared.			
4	AD0BUSY	ADC0 Busy	Bit.	Read:			Write	:			
		0: ADC0 conversion is not in progress.0: No Effect.1: ADC0 conversion is in progress.1: Initiates ADC0 Conver- sion if AD0CM[1:0] = 00b						0 Conver- 1:0] = 00b			
3	AD0WINT	ADC0 Wind	ow Compai	re Interrupt	Flag.						
		This bit must be cleared by software 0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared. 1: ADC0 Window Comparison Data match has occurred.						g was last			
2	AD0LJST	ADC0 Left J	lustify Sele	ct Bit.							
		0: Data in ADC0H:ADC0L registers is right-justified 1: Data in ADC0H:ADC0L registers is left-justified. This option should not be used with a repeat count greater than 1 (when AD0RPT[1:0] is 01b, 10b, or 11b).									
1:0	AD0CM[1:0]	ADC0 Start	ADC0 Start of Conversion Mode Select.								
		00: ADC0 st 01: ADC0 st 10: ADC0 st 11: ADC0 st	 D0: ADC0 start-of-conversion source is write of 1 to AD0BUSY. D1: ADC0 start-of-conversion source is overflow of Timer 1. 10: ADC0 start-of-conversion source is rising edge of external CNVSTR. 11: ADC0 start-of-conversion source is overflow of Timer 2. 								

SFR Definition 9.6. CPT2MD: Comparator2 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP2RIE	CP2FIE			CP2M	ID[1:0]
Туре	R	R	R/W	R/W	R	R	R/	W
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9B; SFR Page = 0x10

Bit	Name	Function
7:6	Unused	Read = 00b, Write = Don't Care.
5	CP2RIE	Comparator2 Rising-Edge Interrupt Enable. 0: Comparator2 Rising-edge interrupt disabled. 1: Comparator2 Rising-edge interrupt enabled.
4	CP2FIE	Comparator2 Falling-Edge Interrupt Enable. 0: Comparator2 Falling-edge interrupt disabled. 1: Comparator2 Falling-edge interrupt enabled.
3:2	Unused	Read = 00b, Write = don't care.
1:0	CP2MD[1:0]	Comparator2 Mode Select. These bits affect the response time and power consumption for Comparator2. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

12. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization is shown in Figure 12.1

Figure 12.1. C8051F58x/F59x Memory Map

12.1. Program Memory

The C8051F580/1/2/3/8/9 devices have a 128 kB program memory space and the C8051F584/5/6/7-F590/1 devices have 96 kB program memory space. The MCU implements this program memory space as in-system re-programmable Flash memory in either four or three 32 kB code banks. A common code bank (Bank 0) of 32 kB is always accessible from addresses 0x0000 to 0x7FFF. The three or two upper code banks (Bank 1, Bank 2, and Bank 3) are each mapped to addresses 0x8000 to 0xFFFF, depending on the selection of bits in the PSBANK register, as described in SFR Definition 12.1.

12.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 12.1 illustrates the data memory organization of the C8051F58x/F59x.

12.2.1.1. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 11.6). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

12.2.1.2. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

12.2.1.3. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

SFR Definition 14.1. IE: Interrupt Enable

Bit	7	6	5	4	3	2	1	0
Name	EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA8; Bit-Addressable; SFR Page = All Pages

Bit	Name	Function
7	EA	 Enable All Interrupts. Globally enables/disables all interrupts. It overrides individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	ESPI0	 Enable Serial Peripheral Interface (SPI0) Interrupt. This bit sets the masking of the SPI0 interrupts. 0: Disable all SPI0 interrupts. 1: Enable interrupt requests generated by SPI0.
5	ET2	 Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
4	ES0	Enable UART0 Interrupt. This bit sets the masking of the UART0 interrupt. 0: Disable UART0 interrupt. 1: Enable UART0 interrupt.
3	ET1	 Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
2	EX1	 Enable External Interrupt 1. This bit sets the masking of External Interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the INT1 input.
1	ET0	 Enable Timer 0 Interrupt. This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TF0 flag.
0	EX0	 Enable External Interrupt 0. This bit sets the masking of External Interrupt 0. 0: Disable external interrupt 0. 1: Enable interrupt requests generated by the INTO input.

Steps 5–7 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be cleared so that MOVX instructions do not target program memory.

15.1.5. Flash Write Optimization

The Flash write procedure includes a block write option to optimize the time to perform consecutive byte writes. When block write is enabled by setting the CHBLKW bit (CCH0CN.0), writes to two consecutive bytes in Flash require the same amount of time as a single byte write. This is performed by caching the first byte that is written to Flash and then committing both bytes to Flash when the second byte is written. When block writes are enabled, if the second write does not occur, the first data byte written is not actually written to Flash. Flash bytes with block write enabled are programmed by software with the following sequence:

- 1. Disable interrupts (recommended).
- 2. If writing to an address in Banks 1, 2, or 3, set the COBANK[1:0] bits (register PSBANK) for the appropriate bank
- 3. Erase the 512-byte Flash page containing the target location, as described in Section 15.1.3.
- 4. Set the FLEWT bit (register FLSCL).
- 5. Set the CHBLKW bit (register CCH0CN).
- 6. Set the PSWE bit (register PSCTL).
- 7. Clear the PSEE bit (register PSCTL).
- 8. Write the first key code to FLKEY: 0xA5.
- 9. Write the second key code to FLKEY: 0xF1.
- 10. Using the MOVX instruction, write the first data byte to the desired location within the 512-byte sector.
- 11. Write the first key code to FLKEY: 0xA5.
- 12. Write the second key code to FLKEY: 0xF1.
- 13. Using the MOVX instruction, write the second data byte to the desired location within the 512-byte sector. The location of the second byte must be the next higher address from the first data byte.
- 14.Clear the PSWE bit.
- 15.Clear the CHBLKW bit.

Multiplexed Mode						
Signal Name	Port Pin					
RD	P1.6					
WR	P1.7					
ALE	P1.5					
D0/A0	P4.0					
D1/A1	P4.1					
D2/A2	P4.2					
D3/A3	P4.3					
D4/A4	P4.4					
D5/A5	P4.5					
D6/A6	P4.6					
D7/A7	P4.7					
A8	P3.0					
A9	P3.1					
A10	P3.2					
A11	P3.3					
A12	P3.4					
A13	P3.5					
A14	P3.6					
A15	P3.7					
	—					
	—					
	—					
_	_					
_	_					
	—					
	—					

Table 18.1. EMIF Pinout (C8051F580/1/4/5)

Non Multiplexed Mode					
Signal Name	Port Pin				
RD	P1.6				
WR	P1.7				
D0	P4.0				
D1	P4.1				
D2	P4.2				
D3	P4.3				
D4	P4.4				
D5	P4.5				
D6	P4.6				
D7	P4.7				
A0	P3.0				
A1	P3.1				
A2	P3.2				
A3	P3.3				
A4	P3.4				
A5	P3.5				
A6	P3.6				
A7	P3.7				
A8	P2.0				
A9	P2.1				
A10	P2.2				
A11	P2.3				
A12	P2.4				
A13	P2.5				
A14	P2.6				
A15	P2.7				

SFR Definition 18.3. EMI0TC: External Memory Timing Control

Bit	7	6	5	4	3	2	1	0	
Nam	e EA	S[1:0]	EWR[3:0] EAH[1:0]						
Туре	e F	R/W	R/W R/				W		
Rese	et 1	1	1	1	1	1	1	1	
SFR A	Address = 0x/	AA; SFR Page							
Bit	Name		Function						
7:6	EAS[1:0]	EMIF Addre	ss Setup Ti	me Bits.					
		00: Address	setup time =	= 0 SYSCLK	cycles.				
		01: Address	setup time =	= 1 SYSCLK	cycle.				
		10: Address	setup time =	= 2 SYSCLK	cycles.				
		11: Address	setup time =	3 SYSCLK	cycles.				
5:2	EWR[3:0]	EMIF WR an	d RD Pulse	-Width Con	trol Bits.				
		0000: WR ar	nd RD pulse	width = $1 S^{1}$	YSCLK cycl	e.			
		0001: WR ar	nd RD pulse	width = $2 S^{2}$	YSCLK cycl	es.			
		0010: WR ar	: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 3 SYSCLK cycles.						
		0011: WR ar	d RD pulse width = 4 SYSCLK cycles.						
		0100: <u>WR</u> ar	nd RD pulse width = 5 SYSCLK cycles.						
		0101: <u>WR</u> ar)1: WR and RD pulse width = 6 SYSCLK cycles.						
		0110: WR and RD pulse width = 7 SYSCLK cycles.							
		0111: WK and RD pulse width = 8 SYSCLK cycles.							
		1000: WR and RD pulse width = 9 SYSCLK cycles.							
		1001: WR and RD pulse width = 10 SYSCLK cycles.							
	1010: WR and RD pulse width = 11 SYSCLK cycles.								
	1011: WR and RD pulse width = 12 SYSCLK cycles.								
		TTUU: WK and KD pulse width = 13 SYSULK cycles. 1101: WR and RD pulse width = 14 SYSULK cycles.							
	1101: WK and KD pulse width = 14 SYSCLK cycles.								
		1111: WR an	1: WR and RD pulse width = 16 SYSCLK cycles.						
1:0	EAH[1:0]	EMIF Address Hold Time Bits.							
		00: Address	hold time =	0 SYSCLK o	vcles.				
		01: Address	hold time =	1 SYSCLK o	ycle.				
		10: Address	hold time =	2 SYSCLK o	ycles.				
		11: Address	hold time =	3 SYSCLK o	ycles.				

SFR Definition 20.26. P3MDIN: Port 3 Input Mode

Bit	7	6	5	4	3	2	1	0
Name	P3MDIN[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF4; SFR Page = 0x0F

Bit	Name	Function				
7:0	P3MDIN[7:0]	Analog Configuration Bits for P3.7–P3.0 (respectively).				
		Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P3MDOUT register. 0: Corresponding P3.n pin is configured for analog mode. 1: Corresponding P3.n pin is not configured for analog mode.				
Note:	e: Port P3.1–P3.7 are only available on the 48-pin and 40-pin packages.					

SFR Definition 20.27. P3MDOUT: Port 3 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P3MDOUT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAE; SFR Page = 0x0F

Bit	Name	Function				
7:0	P3MDOUT[7:0]	Output Configuration Bits for P3.7–P3.0 (respectively).				
		These bits are ignored if the corresponding bit in register P3MDIN is logic 0. 0: Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.				
Note:	Port P3.1–P3.7 are only available on the 48-pin and 40-pin packages.					

23. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. A block diagram of the SMBus peripheral and the associated SFRs is shown in Figure 23.1.

Figure 23.1. SMBus Block Diagram

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

 Table 23.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 23.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "27. Timers" on page 285.

 $T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$

Equation 23.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 23.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 23.2.

BitRate =
$$\frac{f_{ClockSourceOverflow}}{3}$$

Equation 23.2. Typical SMBus Bit Rate

Figure 23.4 shows the typical SCL generation described by Equation 23.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 23.1.

Figure 23.4. Typical SMBus SCL Generation

29.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA1 clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 29.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA1CPHn}$$

Note: A value of 0x00 in the PCA1CPHn register is equal to 256 for this equation.

Equation 29.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS12–0 bits in the PCA1 mode register, PCA1MD. The lower byte of the capture/compare module is compared to the PCA1 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA1CPLn. Frequency Output Mode is enabled by setting the ECOM1n, TOG1n, and PWM1n bits in the PCA1CPMn register. Note that the MAT1n bit should normally be set to 0 in this mode. If the MAT1n bit is set to 1, the CCFn flag for the channel will be set when the 16-bit PCA1 counter and the 16-bit capture/compare register for the channel are equal.

Figure 29.7. PCA1 Frequency Output Mode

Figure 29.8. PCA1 8-Bit PWM Mode Diagram

30.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 30.1.

Figure 30.1. Typical C2 Pin Sharing

The configuration in Figure 30.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The $\overline{\text{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com