E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	33
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f591-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 2.1. Product Selection Guide	23
Table 3.1. Pin Definitions for the C8051F58x/F59x	24
Table 4.1. QFP-48 Package Dimensions	32
Table 4.2. QFP-48 Landing Diagram Dimensions	33
Table 4.3. QFN-48 Package Dimensions	34
Table 4.4. QFN-48 Landing Diagram Dimensions	35
Table 4.5. QFN-40 Package Dimensions	36
Table 4.6. QFN-40 Landing Diagram Dimensions	37
Table 4.7. QFP-32 Package Dimensions	38
Table 4.8. QFP-32 Landing Diagram Dimensions	39
Table 4.9. QFN-32 Package Dimensions	40
Table 4.10. QFN-32 Landing Diagram Dimensions	41
Table 5.1. Absolute Maximum Ratings	42
Table 5.2. Global Electrical Characteristics	43
Table 5.3. Port I/O DC Electrical Characteristics	47
Table 5.4. Reset Electrical Characteristics	48
Table 5.5. Flash Electrical Characteristics	48
Table 5.6. Internal High-Frequency Oscillator Electrical Characteristics	49
Table 5.7. Clock Multiplier Electrical Specifications	50
I able 5.8. Voltage Regulator Electrical Characteristics	50
Table 5.9. ADC0 Electrical Characteristics	51
Table 5.10. Temperature Sensor Electrical Characteristics	52
Table 5.11. Voltage Reference Electrical Characteristics	52
Table 5.12. Comparator 0, 1 and 2 Electrical Characteristics	53
Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)	94
Table 13.1. Special Function Register (SFR) Memory Map for	
Pages 0x00, 0x10, and 0x0F	117
Table 13.2. Special Function Register (SFR) Memory Map for Page 0x0C	119
Table 13.3. Special Function Registers	20
Table 14.1. Interrupt Summary	28
Table 15.1. Flash Security Summary	41
Table 18.1. EMIF PINOUT (C8051F580/1/4/5)	158
Table 18.2. EMIF PInout (C8051F588/9-F590/1) 1 Table 19.2. AO Demonstrate for External Manager Interface 1	159
Table 18.3. AC Parameters for External Memory Interface	173
Table 20.1. Port I/O Assignment for Analog Functions	189
Table 20.2. Port I/O Assignment for Digital Functions	189
Table 20.3. Port I/O Assignment for External Digital Event Capture Functions 1	190
Table 21.1. Baud Rate Calculation Variable Ranges	213
Table 21.2. Manual Baud Rate Parameters Examples	215
Table 21.3. Autobaud Parameters Examples	216
Table 21.4. LIN Registers [*] (Indirectly Addressable)	221
Table 22.1. Background System Information	231
Table 22.2. Standard CAN Registers and Reset Values	234

SFR	Definition 2	21.2.	LIN0DAT: LIN0 Indirect Data Register	219
SFR	Definition 2	21.3.	LIN0CF: LIN0 Control Mode Register	220
SFR	Definition 2	22.1.	CAN0CFG: CAN Clock Configuration	236
SFR	Definition 2	23.1.	SMB0CF: SMBus Clock/Configuration	243
SFR	Definition 2	23.2.	SMB0CN: SMBus Control	245
SFR	Definition 2	23.3.	SMB0DAT: SMBus Data	247
SFR	Definition 2	24.1.	SCON0: Serial Port 0 Control	259
SFR	Definition 2	24.2.	SMOD0: Serial Port 0 Control	260
SFR	Definition 2	24.3.	SBUF0: Serial (UART0) Port Data Buffer	261
SFR	Definition 2	24.4.	SBCON0: UART0 Baud Rate Generator Control	261
SFR	Definition 2	24.6.	SBRLL0: UART0 Baud Rate Generator Reload Low Byte	262
SFR	Definition 2	24.5.	SBRLH0: UART0 Baud Rate Generator Reload High Byte	262
SFR	Definition 2	25.1.	SCON1: Serial Port 1 Control	267
SFR	Definition 2	25.2.	SBUF1: Serial (UART1) Port Data Buffer	268
SFR	Definition 2	26.1.	SPI0CFG: SPI0 Configuration	277
SFR	Definition 2	26.2.	SPI0CN: SPI0 Control	278
SFR	Definition 2	26.3.	SPI0CKR: SPI0 Clock Rate	279
SFR	Definition 2	26.4.	SPI0DAT: SPI0 Data	279
SFR	Definition 2	27.1.	CKCON: Clock Control	284
SFR	Definition 2	27.2.	TCON: Timer Control	289
SFR	Definition 2	27.3.	TMOD: Timer Mode	290
SFR	Definition 2	27.4.	TL0: Timer 0 Low Byte	291
SFR	Definition 2	27.5.	TL1: Timer 1 Low Byte	291
SFR	Definition 2	27.6.	TH0: Timer 0 High Byte	292
SFR	Definition 2	27.7.	TH1: Timer 1 High Byte	292
SFR	Definition 2	27.8.	TMR2CN: Timer 2 Control	296
SFR	Definition 2	27.9.	TMR2RLL: Timer 2 Reload Register Low Byte	297
SFR	Definition 2	27.10	. TMR2RLH: Timer 2 Reload Register High Byte	297
SFR	Definition 2	27.11	. TMR2L: Timer 2 Low Byte	298
SFR	Definition 2	27.12	2. TMR2H Timer 2 High Byte	298
SFR	Definition 2	27.13	. TMR3CN: Timer 3 Control	302
SFR	Definition 2	27.14	. TMR3RLL: Timer 3 Reload Register Low Byte	303
SFR	Definition 2	27.15	5. TMR3RLH: Timer 3 Reload Register High Byte	303
SFR	Definition 2	27.16	5. TMR3L: Timer 3 Low Byte	304
SFR	Definition 2	27.17	7. TMR3H Timer 3 High Byte	304
SFR	Definition 2	27.18	TMRnCN: Timer 4 and 5 Control	308
SFR	Definition 2	27.19	. TMRnCF: Timer 4 and 5 Configuration	309
SFR	Definition 2	27.20	. TMRnCAPL: Timer 4 and 5 Capture Register Low Byte	310
SFR	Definition 2	27.21	. TMRnCAPH: Timer 4 and 5 Capture Register High Byte	310
SFR	Definition 2	27.22	. TMRnL: Timer 4 and 5 Low Byte	311
SFR	Definition 2	27.23	. TMRnH Timer 4 and 5 High Byte	311
SFR	Definition 2	28.1.	PCA0CN: PCA0 Control	325
SFR	Definition 2	28.2.	PCA0MD: PCA0 Mode	326
SFR	Definition 2	28.3.	PCA0PWM: PCA0 PWM Configuration	327
SFR	Definition 2	28.4.	PCA0CPMn: PCA0 Capture/Compare Mode	328

6. 12-Bit ADC (ADC0)

The ADC0 on the C8051F58x/F59x consists of an analog multiplexer (AMUX0) with 35/28 total input selections and a 200 ksps, 12-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, programmable window detector, programmable attenuation (1:2), and hardware accumulator. The ADC0 subsystem has a special Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shows in Figure 6.1. ADC0 inputs are single-ended and may be configured to measure P0.0-P3.7, the Temperature Sensor output, V_{DD} , or GND with respect to GND. The voltage reference for ADC0 is selected as described in Section "7. Temperature Sensor" on page 74. ADC0 is enabled when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1, or when performing conversions in Burst Mode. ADC0 is in low power shutdown when AD0EN is logic 0 and no Burst Mode conversions are taking place.

Figure 6.1. ADC0 Functional Block Diagram

90	00 10 0F	P1 (All Pages)	TMR3CN TMR5CN	TMR3RLL TMR5CAPL	TMR3RLH TMR5CAPH	TMR3L TMR5L	TMR3H TMR5H	TMR5CF	CLKMUL
88	00 10 0F	TCON (All Pages)	TMOD (All Pages)	TL0 (All Pages)	TL1 (All Pages)	TH0 (All Pages)	TH1 (All Pages)	CKCON (All Pages)	PSCTL CLKSEL
80	00 10 0F	P0 (All Pages)	SP (All Pages)	DPL (All Pages)	DPH (All Pages)	SFR0CN	SFRNEXT (All Pages)	SFRLAST (All Pages)	PCON (All Pages)
	(0(8) bit addres:	1(9) sable)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 13.1. Special Function Register (SFR) Memory Map for Pages 0x00, 0x10, and 0x0F

14.1.1. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IE, EIP1, or EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 14.1.

14.1.2. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Table 14.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	N	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
ADC0 Window Com- pare	0x0043	8	ADOWINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Complete	0x004B	9	AD0INT (ADC0CN.5)	Y	N	EADC0 (EIE1.2)	PADC0 (EIP1.2)
Programmable Counter Array 0	0x0053	10	CF (PCA0CN.7) CCFn (PCA0CN.n) COVF (PCA0PWM.6)	Y	N	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator0	0x005B	11	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	N	N	ECP0 (EIE1.4)	PCP0 (EIP1.4)
Comparator1	0x0063	12	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	N	N	ECP1 (EIE1.5)	PCP1 (EIP1.5)
Timer 3 Overflow	0x006B	13	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	N	N	ET3 (EIE1.6)	PT3 (EIP1.6)
LINO	0x0073	14	LIN0INT (LINST.3)	N	N*	ELIN0 (EIE1.7)	PLIN0 (EIP1.7)
Voltage Regulator Dropout	0x007B	15	N/A	N/A	N/A	EREG0 (EIE2.0)	PREG0 (EIP2.0)
CAN0	0x0083	16	CAN0INT (CAN0CN.7)	N	Y	ECAN0 (EIE2.1)	PCAN0 (EIP2.1)
Port Match	0x008B	17	None	N/A	N/A	EMAT (EIE2.2)	PMAT (EIP2.2)

SFR Definition 16.1. PCON: Power Control

Bit	7	6	5	4	3	2	1	0
Name				STOP	IDLE			
Туре				R/W	R/W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x87; SFR Page = All Pages

Bit	Name	Function
7:2	GF[5:0]	General Purpose Flags 5–0.
		These are general purpose flags for use under software control.
1	STOP	Stop Mode Select. Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0. 1: CPU goes into Stop mode (internal oscillator stopped).
0	IDLE	IDLE: Idle Mode Select. Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0. 1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial Ports, and Analog Peripherals are still active.)

18.2. Configuring the External Memory Interface

Configuring the External Memory Interface consists of five steps:

- 1. Configure the Output Modes of the associated port pins as either push-pull or open-drain (push-pull is most common), and skip the associated pins in the crossbar.
- 2. Configure Port latches to "park" the EMIF pins in a dormant state (usually by setting them to logic 1).
- 3. Select Multiplexed mode or Non-multiplexed mode.
- 4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
- 5. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition .

18.3. Port Configuration

The External Memory Interface appears on Ports 1, 2, 3, and 4 when it is used for off-chip memory access. When the EMIF is used, the Crossbar should be configured to skip over the /RD control line (P1.6) and the /WR control line (P1.7) using the P1SKIP register. When the EMIF is used in multiplexed mode, the Crossbar should also skip over the ALE control line (P1.5). For more information about configuring the Crossbar, see Section "20.6. Special Function Registers for Accessing and Configuring Port I/O" on page 204. The EMIF pinout is shown in Table 18.1 on page 160.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar settings for those pins. See Section "20. Port Input/Output" on page 188 for more information about the Crossbar and Port operation and configuration. **The Port latches should be explicitly configured to "park" the External Memory Interface pins in a dormant state, most commonly by setting them to a logic 1**.

During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode.

The C8051F580/1/4/5 devices support both the multiplexed and non-multiplexed modes and the C8051F588/9-F590/1 devices support only multiplexed modes. Accessing off-chip memory is not supported by the C8051F582/3/6/7 devices.

19.4.1. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 19.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 19.6 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN setting of 111b and a 32.768 kHz Watch Crystal requires an XFCN setting of 001b. After an external 32.768 kHz oscillator is stabilized, the XFCN setting can be switched to 000 to save power. It is recommended to enable the missing clock detector before switching the system clock to any external oscillator source.

Note: Small surface mount crystals can have maximum drive level specifications that are exceeded by the above XFCN recommendations. In these cases, a software-controlled startup sequence may be used to reliably start the crystal using a higher XFCN setting, and then lowering the XFCN setting once the oscillator has started to reduce the drive level and prevent damage or premature aging of the crystal. In all cases, the drive level should be measured to ensure that the crystal is being driven within its operational guidelines as part of robust oscillator system design. Contact technical support for additional details and recommendations if using surface mount crystals with these devices.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- 1. Force XTAL1 and XTAL2 to a high state. This involves enabling the Crossbar and writing 1 to the port pins associated with XTAL1 and XTAL2.
- 2. Configure XTAL1 and XTAL2 as analog inputs using.
- 3. Enable the external oscillator.
- 4. Wait at least 1 ms.
- 5. Poll for XTLVLD => 1.
- 6. Enable the Missing Clock Detector.
- 7. Switch the system clock to the external oscillator.

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The desired load capacitance depends upon the crystal and the manufacturer. Refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 19.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 19.3.

20. Port Input/Output

Digital and analog resources are available through 40 (C8051F580/1/4/5), 33 (C8051F588/9-F590/1) or 25 (C8051F582/3/6/7) I/O pins. Port pins P0.0-P4.7 on the C8051F580/1/4/5, Port pins P0.0-P4.0 on the C8051F588/9-F590/1 and Port pins P0.0-P3.0 on the C8051F582/3/6/7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in Figure 20.3. Port pin P3.0 on the C8051F582/3/6/7 can be used as GPIO and is shared with the C2 Interface Data signal (C2D). Port pin P4.0 on the C8051F588/9-F590/1 can be used as GPIO and is shared with the C2 Interface Data signal (C2D) The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 20.3 and Figure 20.4). The registers XBR0, XBR1, XBR2, and XBR3 are used to select internal digital functions. Port 4 on the C8051F580/1/4/5 and C8051F588/9-F590/1 is a digital-only port, which is not assigned through the Crossbar.

All Port I/Os are 5 V tolerant (refer to Figure 20.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 5.3 on page 47.

Note: When VIO rises faster than VDD, which can happen when VREGIN and VIO are tied together, a delay created between GPIO power (VIO) and the logic controlling GPIO (VDD) results in a temporary unknown state at the GPIO pins. Cross coupling VIO and VDD with a 4.7 μF capacitor mitigates the root cause of the problem by allowing VIO and VDD to rise at the same rate.

20.4. Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- 4. Assign Port pins to desired peripherals.
- 5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. Port 4 on C8051F580/1/4/5 and C8051F588/9-F590/1 is a digital-only Port. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 20.14 for the PnMDIN register details.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR2 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 to avoid unnecessary power dissipation.

Registers XBR0, XBR1, XBR2, an XBR3 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers are disabled while the Crossbar is disabled.

20.6. Special Function Registers for Accessing and Configuring Port I/O

All Port I/O are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable, except for P4 which is only byte addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

Ports 0–3 have a corresponding PnSKIP register which allows its individual Port pins to be assigned to digital functions or skipped by the Crossbar. All Port pins used for analog functions, GPIO, or dedicated digital functions such as the EMIF should have their PnSKIP bit set to 1.

The Port input mode of the I/O pins is defined using the Port Input Mode registers (PnMDIN). Each Port cell can be configured for analog or digital I/O. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is P4, which can only be used for digital I/O.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings.

SFR Definition 20.13. P0: Port 0

Bit	7	6	5	4	3	2	1	0				
Name		P0[7:0]										
Туре				R/	W							
Reset	1	1 1 1 1 1 1 1										

SFR Address = 0x80; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P0[7:0]	Port 0 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P0.n Port pin is logic LOW. 1: P0.n Port pin is logic HIGH.

SFR Definition 20.24. P2SKIP: Port 2 Skip

Bit	7	6	5	4	3	2	1	0					
Name	P2SKIP[7:0]												
Туре		R/W											
Reset	0	0	0	0	0	0	0	0					

SFR Address = 0xD6; SFR Page = 0x0F

Bit	Name	Function
7:0	P2SKIP[7:0]	Port 2 Crossbar Skip Enable Bits.
		 These bits select Port 2 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P2.n pin is not skipped by the Crossbar. 1: Corresponding P2.n pin is skipped by the Crossbar.

SFR Definition 20.25. P3: Port 3

Bit	7	6	5	4	3	2	1	0				
Name		P3[7:0]										
Туре		R/W										
Reset	1	1	1	1	1	1	1	1				

SFR Address = 0xB0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read				
7:0	P3[7:0]	Port 3 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P3.n Port pin is logic LOW. 1: P3.n Port pin is logic HIGH.				
Note:	lote: Port P3.1–P3.6 are only available on the 48-pin and 40-pin packages.							

- 3. The LIN controller does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LIN0CTRL.7) instead of setting the DTACK (LIN0CTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN controller stops the processing of LIN communication until the next SYNC BREAK is received.
- 4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is in progress. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.

21.5. Sleep Mode and Wake-Up

To reduce the system's power consumption, the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode Frame from the Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by setting the SLEEP bit (LIN0CTRL.6).

If the SLEEP bit (LINOCTRL.6) of the LIN slave application is not set and there is no bus activity for four seconds (specified bus idle timeout), the IDLTOUT bit (LINOST.6) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit (LINOCTRL.6).

Sending a wake-up signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a wake-up signal, the application has to set the WUPREQ bit (LIN0CTRL.1). After successful transmission of the wake-up signal, the DONE bit (LIN0ST.0) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the wake-up signal but it generates an interrupt request if the master does not respond to the wake-up signal within 150 milliseconds. In that case, the ERROR bit (LIN0ST.2) and TOUT bit (LIN0ERR.2) are set. The application then has to decide whether or not to transmit another wake-up signal.

All LIN nodes that detect a wake-up signal will set the WAKEUP (LIN0ST.1) and DONE bits (LIN0ST.0) and generate an interrupt request. After that, the application has to clear the SLEEP bit (LIN0CTRL.6) in the LIN slave.

21.6. Error Detection and Handling

The LIN controller generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing LIN0ERR. After that, it has to reset the error register and the ERROR bit (LIN0ST.2) by writing a 1 to the RSTERR bit (LIN0CTRL.2). Starting a new message with the LIN controller selected as master or sending a Wakeup signal with the LIN controller selected as a master or slave is possible only if the ERROR bit (LIN0ST.2) is set to 0.

SFR Definition 21.3. LIN0CF: LIN0 Control Mode Register

Bit	7	6	5	4	3	2	1	0
Name	LINEN	MODE	ABAUD					
Туре	R/W	R/W	R/W	R	R	R	R	R
Reset	0	1	1	0	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x0F

Bit	Name	Function
7	LINEN	LIN Interface Enable Bit.
		0: LIN0 is disabled.
		1: LINU IS ENADIED.
6	MODE	LIN Mode Selection Bit.
		0: LIN0 operates in slave mode.
		1: LIN0 operates in master mode.
5	ABAUD	LIN Mode Automatic Baud Rate Selection.
		This bit only has an effect when the MODE bit is configured for slave mode.
		0: Manual baud rate selection is enabled.
		1: Automatic baud rate selection is enabled.
4:0	Unused	Read = 00000b; Write = Don't Care

C8051F58x/F59x

overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

23.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

23.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information

SMBus interrupts are generated for each data byte or slave address that is transferred. The point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e. sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e. receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. See Section 23.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 23.4.2; Table 23.4 provides a quick SMB0CN decoding reference.

23.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

SFR Definition 27.13. TMR3CN: Timer 3 Control

Bit	7	6	5	4	3	2	1	0
Name	TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3		T3XCLK
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x91; SFR Page = 0x00

Bit	Name	Function
7	TF3H	Timer 3 High Byte Overflow Flag.
		Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF3L	Timer 3 Low Byte Overflow Flag.
		Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will be set when the low byte overflows regardless of the Timer 3 mode. This bit is not automatically cleared by hardware.
5	TF3LEN	Timer 3 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 3 overflows.
4	TF3CEN	Timer 3 Capture Mode Enable.
		0: Timer 3 Capture Mode is disabled. 1: Timer 3 Capture Mode is enabled.
3	T3SPLIT	Timer 3 Split Mode Enable.
		When this bit is set. Timer 3 operates as two 8-bit timers with auto-reload.
		0: Timer 3 operates in 16-bit auto-reload mode.
		1: Timer 3 operates as two 8-bit auto-reload timers.
2	TR3	Timer 3 Run Control.
		Timer 3 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR3H only; TMR3L is always enabled in split mode.
1	Unused	Read = 0b; Write = Don't Care
0	T3XCLK	Timer 3 External Clock Select.
		This bit selects the external clock source for Timer 3. If Timer 3 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 3 clock is the system clock divided by 12. 1: Timer 3 clock is the external clock divided by 8 (synchronized with SYSCLK).

Figure 27.11. Timer 4 and 5 Auto Reload and Toggle Mode Block Diagram

27.4.4. Toggle Output Mode

Timers 4 and 5 have the capability to toggle the state of their respective output port pins (T4 or T5) to produce a 50% duty cycle waveform output. The port pin state will change upon the overflow or underflow of the respective timer (depending on whether the timer is counting *up* or *down*). The toggle frequency is determined by the clock source of the timer and the values loaded into TMRnCAPH and TMRnCAPL. When counting down, the auto-reload value for the timer is 0xFFFF, and underflow will occur when the value in the timer matches the value stored in TMRnCAPH:TMRCAPL. When counting up, the auto-reload value for the timer is TMRnCAPH:TMRCAPL, and overflow will occur when the value in the timer transitions from 0xFFFF to the reload value.

To output a square wave, the timer is placed in reload mode (the Capture/Reload Select Bit in TMRnCN and the Timer/Counter Select Bit in TMRnCN are cleared to 0). The timer output is enabled by setting the Timer Output Enable Bit in TMRnCF to 1. The timer should be configured via the timer clock source and reload/underflow values such that the timer overflow/underflows at 1/2 the desired output frequency. The port pin assigned by the crossbar as the timer's output pin should be configured as a digital output (see **Section "20. Port Input/Output" on page 188**). Setting the timer's Run Bit (TRn) to 1 will start the toggle of the pin. A Read/Write of the Timer's Toggle Output State Bit (TMRnCF.2) is used to read the state of the toggle output, or to force a value of the output. This is useful when it is desired to start the toggle of a pin in a known state, or to force the pin into a desired state when the toggle mode is halted.

$$F_{sq} = \frac{F_{TCLK}}{2 \times (65536 - TMRnCAP)}$$

Equation 27.1. Square Wave Frequency

SFR Definition 27.22. TMRnL: Timer 4 and 5 Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	e TMRnL[7:0]							
Тур	e R/W							
Rese	et O	0	0	0	0	0	0	0
TMR4	L SFR Addres	ss = 0xCC; T	MR5L SFR /	Address = 0>	(94; SFR Pa	ige = 0x10		
Bit	Name	Function						
7:0	TMRnL[7:0]	Timer n Low Byte.						
		In 16-bit mode, the TMRnL register contains the low byte of the 16-bit Timer n. In 8- bit mode, TMRnL contains the 8-bit low byte timer value.						

SFR Definition 27.23. TMRnH Timer 4 and 5 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TMRnH[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0

TMR4H SFR Address = 0xCD; TMR5H SFR Address = 0x95; SFR Page = 0x10

Bit	Name	Function
7:0	TMRnH[7:0]	Timer n High Byte.
		In 16-bit mode, the TMRnH register contains the high byte of the 16-bit Timer n. In 8- bit mode, TMRnH contains the 8-bit high byte timer value.

29.1. PCA1 Counter/Timer

The 16-bit PCA1 counter/timer consists of two 8-bit SFRs: PCA1L and PCA1H. PCA1H is the high byte (MSB) of the 16-bit counter/timer and PCA1L is the low byte (LSB). Reading PCA1L automatically latches the value of PCA1H into a "snapshot" register; the following PCA1H read accesses this "snapshot" register. **Reading the PCA1L Register first guarantees an accurate reading of the entire 16-bit PCA1 counter.** Reading PCA1H or PCA1L does not disturb the counter operation. The CPS12–CPS10 bits in the PCA1MD register select the timebase for the counter/timer as shown in Table 29.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF1) in PCA1MD is set to logic 1 and an interrupt request is generated if CF1 interrupts are enabled. Setting the ECF1 bit in PCA1MD to logic 1 enables the CF1 flag to generate an interrupt request. The CF1 bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL1 bit in the PCA1MD register allows the PCA1 to continue normal operation while the CPU is in Idle mode.

CPS12	CPS11	CPS10	Timebase				
0	0	0	System clock divided by 12.				
0	0	1	System clock divided by 4.				
0	1	0	Timer 0 overflow.				
0	1	1	High-to-low transitions on ECI1 (max rate = system clock divided by 4).				
1	0	0	System clock.				
1	0	1	External oscillator source divided by 8.				
1	1	0	Timer 4 Overflow.				
1	1	1	Timer 5 Overflow.				
*Note: Ex	*Note: External oscillator source divided by 8 is synchronized with the system clock.						

Table 29.1. PCA1 Timebase Input Options

