

THE MUNICIPALITY OF THE PARTY O

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

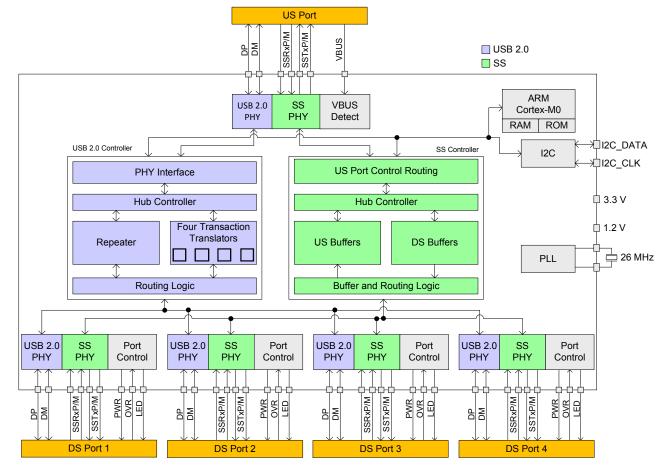
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details


Product Status	Active
Applications	USB 3.0 Hub Controller
Core Processor	ARM® Cortex®-M0
Program Memory Type	ROM (32kB)
Controller Series	CYUSB
RAM Size	16K x 8
Interface	I ² C
Number of I/O	10
Voltage - Supply	1.14V ~ 1.26V, 2.5V ~ 2.7V, 3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	88-VFQFN Exposed Pad
Supplier Device Package	88-QFN (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb3314-88ltxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Architecture Overview

The Block Diagram on page 2 shows the HX3 architecture. HX3 consists of two independent hub controllers (SS and USB 2.0), the Cortex-M0 CPU subsystem, an I^2C interface, and port controller blocks.

SS Hub Controller

This block supports the SS hub functionality based on the USB 3.0 specification. The SS hub controller supports the following:

- SS link power management (U0, U1, U2, U3 states)
- Full-duplex data transmission

USB 2.0 Hub Controller

This block supports the LS, FS, and HS hub functionalities. It includes the repeater, frame timer, and four transaction translators.

The USB 2.0 hub controller block supports the following:

- USB 2.0 link power management (L0, L1, L2, L3 states)
- Suspend, resume, and remote wake-up signaling
- Multi-TT (one TT for each DS port)

CPU

The ARM Cortex-M0 CPU subsystem is used for the following functions:

- System configuration and initialization
- Battery charging control
- Vendor-specific commands for the USB-to-I²C bridge
- String-descriptor support
- Suspend status indicator
- Shared Link support in embedded systems

I²C Interface

The I²C interface in HX3 supports the following:

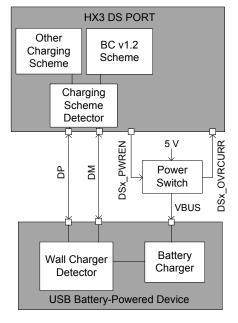
- I²C Slave, Master, and Multi-master configurations
 - \square Configure HX3 by an external I²C master in I²C slave mode \square Configure HX3 from an I²C EEPROM
 - Multi-master mode to share EEPROM with other I²C masters
- In-System Programming of the I²C EEPROM from HX3's US port

Port Controller

The port controller block controls DS port power to comply with the BC v1.2 and USB 3.0 specifications. This block also controls the US port power in the ACA-Dock mode. Control signals for external power switches are implemented within the chip. HX3 controls the external power switches at power-on to reduce in-rush current.

The port controller block supports the following:

- Overcurrent detection
- SS and USB 2.0 port indicators for each DS port
- Ganged and individual power control modes
- Automatic port numbering based on active ports


Applications

- Standalone hubs
- PC and tablet motherboards
- Docking station
- Hand-held cradles
- Monitors
- Digital TVs
- Set-top boxes
- Printers

When the US port is disconnected from the host, HX3 detects if any of the DS ports are connected to a device requesting charging. It determines the charging method and then switches to the appropriate signaling based on the detected charging specification as shown in Figure 4. The hub either emulates a USB-compliant dedicated charging port by connecting DP and DM (see the BC v1.2 specification) or other supported proprietary charging schemes.

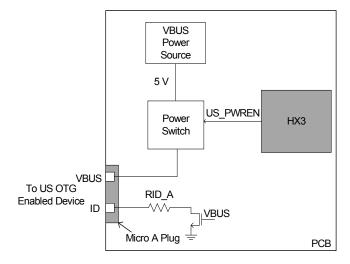
Figure 4. Ghost Charge Implementation in HX3

Ghost Charge is enabled by default and can be disabled through configuration. Refer to Configuration Options on page 24.

Vendor-Command Support

HX3 supports vendor-specific requests and can also enumerate as a vendor-specific device. The vendor-specific request can be used to (a) bridge USB and I^2C and (b) configure HX3. This feature can be used for the following applications:

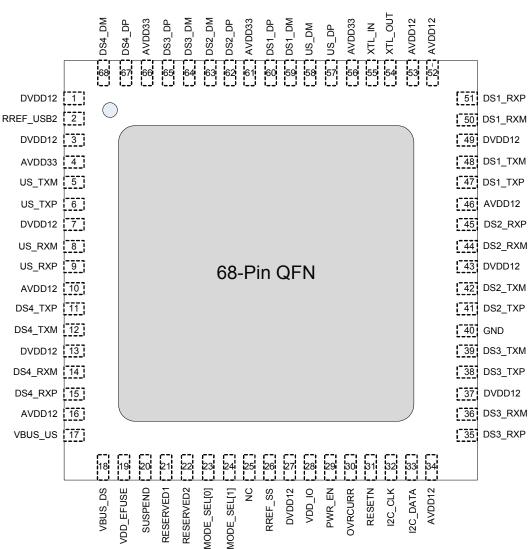
- Firmware upgrade of an external ASSP connected to HX3 through USB
- In-System programming (ISP) of an EEPROM connected to HX3 through USB


ACA-Dock Support

In traditional USB topologies, the host provides VBUS to enable and charge the connected devices. For OTG hosts, however, an ACA-Dock provides VBUS and a method to charge the host. HX3 supports the ACA-Dock standard (see BC v1.2 specification) by integrating the functions of the adapter controller.

Figure 5 shows the ACA-Dock system. If the ACA-Dock feature is enabled, HX3 turns on the external power switch to drive VBUS on the US port. To inform the OTG host that it is connected to an ACA-Dock, the ID pin is tied to ground using a resistor RID_A,³ as shown in Figure 5. The ACA-Dock feature can be disabled using the Configuration Options on page 24.

For example, a BC v1.2 compliant phone such as a Sony Xperia (neo V) can be docked to a HX3-based ACA-Dock system. The phone acts as an OTG host and the ACA-Dock charges the phone connected to the US port while also powering the four DS ports.


Figure 5. ACA-Dock Support

Note

3. 124 k Ω is the recommended RID_A value as per BC v1.2 specification, but some portable devices use custom RID_A values.

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
NC	NC	NC	AVDD33	DS2_DM	DS2_DP	AVDD33	US_DM	US_DP	AVDD12
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
NC	NC	NC	VDD_IO	VSS	AVDD33	NC	NC	NC	DVDD12
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
US_TXM	NC	NC	NC	NC	VSS	DS1_DP	DS1_DM	AVDD12	DS1_RXM
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
US_TXP	NC	NC	DVDD12	VSS	DVDD12	VSS	DVDD12	VSS	DS1_RXP
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
DVDD12	RREF_US B2	NC	NC	XTL_IN	XTL_OUT	VDD_IO	DS1_TXM	VSS	DVDD12
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
US_RXM	VSS	AVDD33	MODE_SE L[1]	DVDD12	OVRCUR R	RESETN	DS1_TXP	AVDD12	DS2_RXP
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
US_RXP	VBUS_DS	SUSPEND	RESERVE D1	MODE_SE L[0]	VDD_IO	PWR_EN	I2C_DATA	VSS	DS2_RXM
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10
AVDD12	VBUS_US	VDD_EFU SE	RESERVE D2	RREF_SS	VSS	DS2_TXM	DS2_TXP	NC	AVDD12
J1	J2	J3	J4	J5	J6	J7	J8	J 9	J10
VSS	AVDD12	VSS	GPIO	NC	I2C_CLK	NC	NC	VSS	NC
K1	K2	K3	K4	K5	K6	K7	K8	K9	K10
NC	NC	DVDD12	NC	NC	NC	NC	NC	DVDD12	NC

Figure 8. HX3 100-Ball BGA Pinout for CYUSB3302

Pin I	Name				
	CYUSB3304	Туре	68-QFN Pin#	Ball #	Description
				US P	ort
US	US RXP		9	G1	SuperSpeed receive plus
US	RXM	I	8	F1	SuperSpeed receive minus
US	TXP	0	6	D1	SuperSpeed transmit plus
US	TXM	0	5	C1	SuperSpeed transmit minus
US	_DP	I/O	57	A9	USB 2.0 data plus
US	_DM	I/O	58	A8	USB 2.0 data minus
				DS1 F	Port
DS1	RXP	I	51	D10	SuperSpeed receive plus
DS1	RXM	I	50	C10	SuperSpeed receive minus
DS1	_TXP	0	47	F8	SuperSpeed transmit plus
DS1	TXM	0	48	E8	SuperSpeed transmit minus
DS1	1_DP	I/O	60	C7	USB 2.0 data plus
DS1	_DM	I/O	59	C8	USB 2.0 data minus
				DS2 P	ort
DS2	_RXP	I	45	F10	SuperSpeed receive plus
DS2	RXM	I	44	G10	SuperSpeed receive minus
DS2	_TXP	0	41	H8	SuperSpeed transmit plus
DS2	_TXM	0	42	H7	SuperSpeed transmit minus
DS2	2_DP	I/O	62	A6	USB 2.0 data plus
DS2	2_DM	I/O	63	A5	USB 2.0 data minus
	_			DS3 P	ort
NC	DS3_RXP	I	35	K10	SuperSpeed receive plus
NC	DS3_RXM	I	36	J10	SuperSpeed receive minus
NC	DS3_TXP	0	38	K7	SuperSpeed transmit plus
NC	DS3_TXM	0	39	K8	SuperSpeed transmit minus
NC	DS3_DP	I/O	65	C4	USB 2.0 data plus
NC	DS3_DM	I/O	64	C5	USB 2.0 data minus
	-			DS4 P	ort
NC	DS4_RXP	Ι	15	K4	SuperSpeed receive plus
NC	DS4_RXM	Ι	14	K5	SuperSpeed receive minus
NC	DS4_TXP	0	11	K1	SuperSpeed transmit plus
NC	DS4_TXM	0 I/O	12	K2	SuperSpeed transmit minus
NC	NC DS4_DP		67	A3	USB 2.0 data plus
NC	DS4_DM	I/O	68	A2	USB 2.0 data minus
	CURR	I	30	F6	Ganged overcurrent input
	R_EN	I/O	29	G7	Ganged power enable output
N	1C	I/O	25	NA	NC

Table 2. 68-Pin QFN, 100-Ball BGA Pinout for CYUSB3302 and CYUSB3304

Table 4. 88-Pin QFN, 100-Ball BGA Pinout for CYUSB331X and CYUSB332X (continued)

Pin N	Name				
CYUSB3312	CYUSB3314 CYUSB3324 CYUSB3326	Туре	Pin#	Ball#	Description
	CYUSB3328				
			-		DS2 Port
DS2	RXP	I	55	F10	SuperSpeed receive plus
DS2	RXM	Ι	54	G10	SuperSpeed receive minus
DS2	TXP	0	51	H8	SuperSpeed transmit plus
DS2_	TXM	0	52	H7	SuperSpeed transmit minus
DS2	_DP	I/O	76	A6	USB 2.0 data plus
DS2	_DM	I/O	77	A5	USB 2.0 data minus
DS2_OV	/RCURR	Ι	1	B1	Overcurrent detect input for DS2 port
DS2_PV	WREN ^[7]	I/O	86	B2	VBUS power enable output for DS2 port. When the port is disabled, this pin is in tristate.
DS2_CE	DP_EN ^[8]	1/0	00	DZ	This pin is called DS2_CDP_EN in the pin-strap configuration mode.
DS2_AM	MBER ^[7]				LED_AMBER output for DS2 port
_	OVABLE[0] ^[8]	I/O	5	E4	This pin is called NON_REMOVABLE[0] in the pin-strap configuration mode.
_	REEN ^[7]				CYUSB3312/3314/3324: LED_GREEN output for DS2 port
DS2_VBU	SEN_SL ^[7]	I/O	6	E3	CYUSB3326/3328: VBUS power enable output for SS port 2
_	OVABLE[1] ^[8]				This pin is called NON_REMOVABLE[1] in the pin-strap configuration mode.
_	D_SS ^[7]	I/O 84		C3	LED_SS output for DS2 port
PWR_EI	N_SEL ^[8]		•		This pin is called PWR_EN_SEL in the pin-strap configuration mode.
	1	r – – – – – T		r	DS3 Port
NC	DS3_RXP	I	45	K10	SuperSpeed receive plus
NC	DS3_RXM	I	46	J10	SuperSpeed receive minus
NC	DS3_TXP	0	48	K7	SuperSpeed transmit plus
NC	DS3_TXM	0	49	K8	SuperSpeed transmit minus
NC	DS3_DP	I/O	79	C4	USB 2.0 data plus
NC	DS3_DM	I/O	78	C5	USB 2.0 data minus
DS3_OV	/RCURR	I	65	B7	CYUSB3314/3324/3326/3328: Overcurrent detect input for DS3 port CYUSB3312: This pin must be pulled HIGH using a 10 k Ω to VDD_IO.
DS3_PV	DS3_PWREN ^[7]		87	A1	VBUS power enable output for DS3 port. When the port is disabled, this pin is in tristate.
DS3_CE	DP_EN ^[8]				This pin is called DS3_CDP_EN in the pin-strap configuration mode.
	VBER ^[7]	I/O	85	B3	LED_AMBER output for DS3 port
VID_SI	EL[2] ^[8]	-	-	-	This pin is called VID_SEL[2] in the pin-strap configuration mode.

Notes
7. This pin can be configured as a GPIO using custom firmware. For information contact www.cypress.com/support.
8. For pin-strap configuration details, refer to Table 6 on page 25.

Table 4. 88-Pin QFN, 100-Ball BGA Pinout for CYUSB331X and CYUSB332X (continued)

Pin Name					
	CYUSB3314				
CYUSB3312	CYUSB3324	Туре	Pin#	Ball#	Description
010000012	CYUSB3326				
	CYUSB3328				
	REEN ^[9]				CYUSB3312/3314/3324: LED_GREEN output for DS3 port
DS3_VBU	JSEN_SL ^[9]	I/O	64	B8	CYUSB3328: VBUS power enable output for SS port 3
_	EL[1] ^[10]				This pin is called VID_SEL[1] in the pin-strap configuration mode. For pin-strap configuration details, refer to Table 6 on page 25.
DS3_LE	ED_SS ^[9]				LED_SS output for DS3 port
PIN_S1	[RAP ^[10]	I/O	63	B9	This pin is called PIN_STRAP in pin-strap configuration mode. When connected to VDD_IO through a 10-k Ω resistor, this pin enables pin-strap configuration mode for HX3.
					DS4 Port
NC	DS4_RXP	Ι	20	K4	SuperSpeed receive plus
NC	DS4_RXM	Ι	19	K5	SuperSpeed receive minus
NC	DS4_TXP	0	16	K1	SuperSpeed transmit plus
NC	DS4_TXM	0	17	K2	SuperSpeed transmit minus
NC	DS4_DP	I/O	81	A3	USB 2.0 data plus
NC	DS4_DM	I/O	82	A2	USB 2.0 data minus
DS4_O	VRCURR	Ι	36	F6	CYUSB3314/3324/3326/3328: Overcurrent detect input for DS4 port. CYUSB3312: This pin must be pulled HIGH using a 10 k Ω to VDD_IO.
DS4_PWRE	N/PWR_EN4	I/O	35	G7	VBUS power enable output for DS4 port. This pin is also used as power enable output when configured in ganged power mode using the Blaster Plus tool. When the port is disabled, this pin is in tristate.
DS4_CD	DP_EN ^[10]				This pin is called DS4_CDP_EN in the pin-strap configuration mode.
DS4_A	MBER ^[9]	1/0	30	J4	LED_AMBER output for DS4 port
I2C_DE	EV_ID ^[10]	I/O	30		This pin is called I2C_DEV_ID in the pin-strap configuration mode.
DS4_G	REEN ^[9]				CYUSB3312/3314/3324: LED_GREEN output for DS4 port
DS4_VB	USEN_SL	I/O	43	Н9	CYUSB3328: VBUS power enable output for SS port 4
VID_SI	EL[0] ^[10]				This pin is called VID_SEL[0] in the pin-strap configuration mode.
DS4_L	ED_SS	I/O	26	H4	LED_SS output for DS4 port. The LED must be connected to GND as shown in Figure 16 on page 25. If LED is not used, this pin must be pulled HIGH using a 10 k Ω to VDD_IO.
RESE	RVED1	Ι	27	G4	This pin must be pulled HIGH using a 10 k Ω to VDD_IO.
				Mode Se	elect, Clock, and Reset
MODE	MODE_SEL[0]		28	G5	Device operation mode select bit 0; refer to Table 5 on page 24
MODE_SEL[1]		Ι	29	F4	Device operation mode select bit 1; refer to Table 5 on page 24
XTL_	XTL_OUT		68	E6	Crystal out
XTI	XTL_IN		69	E5	Crystal in
RES	SETN	Ι	37	F7	Active LOW reset input
I2C	CLK	I/O	40	J6	I ² C clock
I2C_	DATA	I/O	41	G8	I ² C data

Notes

This pin can be configured as a GPIO using custom firmware. For information contact www.cypress.com/support.
 For pin-strap configuration details, refer to Table 6 on page 25.

Table 4. 88-Pin QFN, 100-Ball BGA Pinout for CYUSB331X and CYUSB332X (continued)

Pin Name					
	CYUSB3314				
CYUSB3312	CYUSB3324	Туре	Pin#	Ball#	Description
C103B3312	CYUSB3326				
	CYUSB3328				
SUSI	PEND	I/O	25	G3	Hub suspend status indicator. This pin is asserted if both the SS and USB 2.0 hubs are in the suspend state and is de-asserted when either of the hubs comes out of the suspend state.
				Po	wer and Ground
VDD_I	EFUSE	PWR	24	H3	1.2 V normal operation, 2.5 V for programming. Customers should connect to 1.2 V
AVE	D12	PWR	15, 21, 44, 56, 62, 67	A10, C9, F9, H1, H10, J2	1.2 V analog supply
GI	ND	PWR	50	B5, C6, D5, D7, D9, E9, F2, G9, H6, J1, J3, J9	GND pin
DVE	DD12	PWR	8, 12, 18, 33, 47, 53, 59, 83	B10, D4, D6, D8, E1, E10, F5, K3, K9	1.2 V core supply
VBUS	S_US	PWR	22	H2	CYUSB3324/3328: Connect the VBUS_US pin to the local 5 V supply. If ACA-Dock mode is disabled using Configuration Options on page 24, this pin must be connected to VBUS from US port. Other part numbers: This pin must be connected to VBUS from US port.
VBU	S_DS	PWR	23	G2	This pin is used to power the Apple-charging circuit in HX3. For BC v1.2 compliance testing, connect pin to GND. For normal operation, connect pin to local 5 V supply.
AVE	D33	PWR	9, 70, 75, 80	A4, A7, B6, F3	3.3 V analog supply
VDD_IO		PWR	34, 66, 88	B4, E7, G6	3.3 V I/O supply
				USB F	Precision Resistors
RREF	USB2	А	7	E2	Connect pin to a precision resistor (6.04 k $\Omega \pm 1\%$) to generate a current reference for USB 2.0 PHY.
RRE	F_SS	А	32	H5	Connect pin to a precision resistor (200 $\Omega \pm 1\%$) for SS PHY termination impedance calibration.

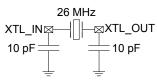
System Interfaces

Upstream Port (US)

This port is compliant with the USB 3.0 specification and includes an integrated 1.5 k Ω pull-up and termination resistors. It also supports ACA-Dock to enable charging an OTG host connected on the US port.

Downstream Ports (DS1, 2, 3, 4)

DS ports are compliant with the USB 3.0 specification and integrate 15 k Ω pull-down and termination resistors. Ports can be disabled or enabled, and can be set to removable or non-removable options. BC v1.2 charging is enabled by default and can be disabled on each DS port using the configuration options (see Configuration Options).


Communication Interfaces (I²C)

The interface follows the Inter-IC Bus specification, version 3.0, with support for the standard mode (100 kHz) and the fast mode (400 kHz) frequencies. HX3 supports I²C in the slave and master modes. The I²C interface supports the multi-master mode of operation. Both the SCL and SDA signals require external pull-up resistors based on the specification. VDD_IO for HX3 is 3.3 V and it is expected that the I²C pull-up resistors will be connected to the same supply.

Oscillator

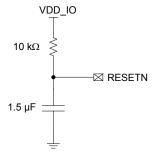
HX3 requires an external crystal with a frequency of 26 MHz and an accuracy of \pm 150 ppm in parallel resonant, fundamental mode. The crystal drive circuit is capable of a low-power drive level (<200 μ W). The crystal connection to the XTL_OUT and XTL_IN pins is shown in Figure 14.

Figure 14. Crystal Connection

GPIOs

HX3 GPIOs are used for overcurrent sensing, controlling external power switches, and driving LEDs. These pins can sink up to 4 mA current each. GPIOs also enable pin-straps for input configuration. Refer to Table 6 for more details.

Power Control


The PWR_EN[1-4] and OV_CURR[1-4] pins interface HX3 to external power switches. These pins are used to control power switches for DS port power and monitor overcurrent conditions. The power switch polarity and the power control mode (individual and ganged) can be changed using the configuration options.

Reset

HX3 operates with two external power supplies, 3.3 V and 1.2 V. There is no power sequencing requirement between these two supplies. However, the RESETN pin should be held LOW until both these supplies become stable. The RESETN pin can be tied to VDD_IO through an external resistor and to ground (GND) through an external capacitor (minimum 5 ms time constant), as shown in Figure 15. This creates a clean reset signal for power-on reset (POR).

HX3 does not support internal brown-out detection. If the system requires this feature, an external reset should be provided on the RESETN pin when supplies are below their valid operating ranges.

Figure 15. Reset Connection

Configuration Mode Select

Configuration options are selected through the MODE_SEL pins and the pin-strap enable pin (PIN_STRAP). After power-up, these pins are sampled by an on-chip bootloader to determine the configuration options (see Table 5).

Table 5. HX3 Boot Sequence

MODE SEL[1]	MODE SEL[0]	HX3 Configuration Modes					
0	0	Reserved. Do not use this mode.					
1	1	Internal ROM configuration					
0	1	I ² C Master, read configuration from I ² C EEPROM [*]					
1	0	I ² C Slave, configure from an external I ² C Master*					

* Download Cypress-provided firmware from www.cypress.com/hx3.

Configuration Options

HX3 can be configured by using one of the following:

- eFuse (one-time programmable memory)
- Pin-Strap (read configuration from dedicated pins at power on)
- External I²C slave such as an EEPROM
- External I²C master

The I²C master/slave configuration overrides the pin-strap configuration. Pin-straps override the eFuse configuration, and the eFuse configuration overrides the internal ROM configuration.

eFuse Configuration

HX3 contains eFuses, which are OTP elements on the chip that can be electrically blown. The eFuses are read by the bootloader to determine the customer-specific configurations. eFuse programming is supported only at factory and distributor locations where programming conditions can be controlled. eFuse programming is supported under the following conditions:

Temperature range of 25 $^\circ\text{C}\text{--}70$ $^\circ\text{C}$ and programming voltage of 2.5 V–2.7 V.

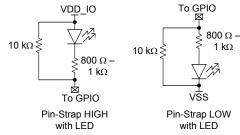
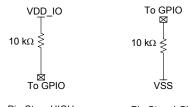

Pin-Strap Configuration

Table 6. Pin-Strap Configuration


Pin-straps are supported for select product options (see Table 1 on page 5) to provide reconfigurability without an additional EEPROM. The pin-strap configuration is enabled by pulling the Pin #63 of 88-pin QFN HIGH. Table 6 on page 25 shows the configuration options supported through pin-straps and the GPIOs used for this purpose. Figure 16 and Figure 17 show how the GPIOs need to be connected if pin-strap and LED connection are required or only pin-strap is required.

HX3 samples pin-strap GPIOs at power-up. Floating straps are considered as invalid and the default configuration is used. If PIN_STRAP (Pin #63 of 88-pin QFN) is floating, all strap inputs are considered invalid. A GPIO is considered strapped "1" or "0" when connected with a weak pull-up (10 k Ω) or pull-down (10 k Ω) respectively. After the initial sampling at power-up and reset, the GPIOs are used in their normal functions.

Figure 16. Pin-Strap With LED or LED-Only Connection

Figure 17. Pin-Strap Connection

Pin-Strap HIGH

Pin-Strap LOW

88-QFN Pin #	Pin-Strap Name	Strappo	ed '0' ^[11]	Strapped '1' ^[11]					
30	I2C_DEV_ID ^[12]	ID 0: HX3 I ² C slave ac This is also the defaul the 68-pin QFN packa	ddress (7 bits) is 0x60. t I ² C slave address for ge.	ID 1: HX3 I ² C slave address (7 bits) is 0x58					
31	PWR_SW_POL	Power enable and ove	ercurrent will be active	Power enable and ove HIGH	ercurrent will be active				
2	ACA_DOCK	Disa	abled	Ena	bled				
84	PWR_EN_SEL	Indiv	vidual	Ga	ang				
63	PIN_STRAP ^[13]	No pin-s	strapping	Pin-strapping con	figuration enabled				
4	PORT_DISABLE[1]	PORT_DISABLE[1:0]		•					
3	PORT_DISABLE[0]	b'01: DS1, DS2, DS3 b'10: DS1, DS2 active b'11: DS1 active							
6	NON_REMOVABLE[1] ^[14]		NON_REMOVABLE[1:0] =						
5	NON_REMOVABLE[0] ^[14]	b'01: DS1, DS2, DS3	b'00: DS1, DS2, DS3, DS4 removable b'01: DS1, DS2, DS3 removable b'10: DS1, DS2 removable						
85	VID[2]								
64	VID[1]	Reserved. If PIN_STR	AP is enabled and CY	VID is required, strap V	'ID[2:0] to '1'.				
43	VID[0]								
38	DS1 CDP EN ^[15]	strapped '0'	strapped '1'	strapped '0'	strapped '1'				
38	DSI_CDP_EN ¹⁰³	DS1 CDP enabled	DS1 CDP disabled	DS1 CDP disabled	DS1 CDP enabled				
86	DS2_CDP_EN ^[15]	DS2 CDP enabled	DS2 CDP disabled	DS2 CDP disabled	DS2 CDP enabled				
87	DS3_CDP_EN ^[15]	DS3 CDP enabled	DS3 CDP disabled	DS3 CDP disabled	DS3 CDP enabled				
35	DS4_CDP_EN ^[15]	DS4 CDP enabled	DS4 CDP disabled	DS4 CDP disabled	DS4 CDP enabled				
Notes		1	1	1	·]				

Notes

11. See Figure 16 and Figure 17.

13. VID, PORT_DISABLE, NON_REMOVABLE are group straps. If one of the pins in a group strap is floating (INVALID), that group input will be INVALID and the default will not be overwritten.

14. These DS ports are exposed ports and the connected devices can be removed.

15. DSx_CDP_EN will be active LOW input when PWR_SW_POL is set to active LOW; similarly DSx_CDP_EN will be active HIGH input when PWR_SW_POL is set to active HIGH.

^{12.} I2C_DEV_ID is valid only when HX3 is in I²C slave mode.

I²C Configuration

When enabled for I^2C configuration through the MODE_SEL pins (See Table 5 on page 24), HX3 can be configured as an I^2C master or as an I^2C slave. HX3's configuration data is a maximum of 197 bytes and HX3's firmware is 10 KB. Note that HX3's firmware also includes configuration settings.

HX3 as I²C Master

HX3 reads configurations from an external I²C EEPROM with sizes ranging from 16 to 64 KB. An example of a supported EEPROM is 24LC128. Based on the contents of the bSignature and bImageType fields in Table 7 on page 26, HX3 performs one of the following actions:

- Loads custom configuration settings from the EEPROM when bSignature is "CY" and bImageType is 0xD4.
- Loads the Cypress-provided firmware from the EEPROM when bSignature is "CY" and bImageType is 0xB0. This firmware also includes configuration settings.
- If bSignature ≠ "CY", HX3 enumerates in the vendor-specific mode.

The contents of the EEPROM can be updated with the easy-to-use Cypress Blaster Plus tool. Blaster Plus is a

GUI-based tool to configure HX3. This tool allows to do the following:

- Download the Cypress-provided firmware from a PC via HX3's US port and store it on an EEPROM connected to HX3's I²C port.
- Read the configuration settings from the EEPROM. These settings are displayed in the Blaster Plus GUI. Modify settings as required.
- Write back the updated settings on to the EEPROM. In addition, an image file can be created for external use.

The Blaster Plus tool, user guide, and the Cypress-provided firmware are available at www.cypress.com/hx3.

HX3 as I²C Slave

An external I²C master can program the configuration settings into HX3 according to the EEPROM map in Table 7 on page 26. Alternatively, the HX3 firmware (<10 KB), which includes configuration settings, can also be programmed. It is recommended to use the Blaster Plus tool to create the HX3 firmware or configuration image file. HX3's I²C slave address needs to be provided while creating the image file. Refer to Table 6 for HX3's I²C slave address.

I ² C Offset	Bits	Name	Default	Description			
0	7:0	bSignature LSB ("C")	0x43	The first byte of the 2-byte signature initialized with "CY" ASCII text. When the signature is not valid, the hub enumerates as a vendor-specific device.			
1	7:0	bSignature MSB ("Y")	ASCII text. When the signature is not valid, the hub enume as a vendor-specific device.				
2	7:6	bImageCTL	b'00	Reserved			
	5:4	I ² C Speed	b'11	b'01: 400 kHz b'11: 100 kHz			
	3:1	bImageCTL	b'000	Reserved			
	0	bImageCTL	0	0: Execution binary file 1: Data file			
3	7:0	bImageType	0xD4	0xD4: Load only configuration 0xB0: Load firmware boot image All other bImageType will return an error code.			
4	7:0	bD4Length	40	bD4Length is defined in bytes as the length from offset 5. I ² C offset bytes 0–4 are the header bytes. bD4Length = 6: Only update VID, PID, and DID bD4Length = 18: Configuration options (no PHY trim) bD4Length = 40: Configuration options with PHY trim options bD4Length > 40: User must provide valid string descriptors bD4Length > 192: Error			
5	7:0	VID [7:0]	0xB4	Custom Vendor ID - LSB			
6	7:0	VID [15:8]	0x04	Custom Vendor ID - MSB			
7	7:0	PID [7:0]	0x04	Custom Product ID (PID)			
8	7:0	PID [15:8]	0x65	Default: 0x6504 If separate PID is used for USB 2.0, the USB 2.0 PID will be read from offset 35 and 36. Else, USB 2.0 PID = PID+2; Default: 0x6506			

Table 7. EEPROM Map

Table 7. EEPROM Map (continued)

I ² C Offset	Bits	Name	Default	Description
9	7:0	DID [7:0]	00 - 88-pin QFN, 10 - 68-pin QFN	Custom Device ID - revision - LSB
10	7:0	DID [15:8]	50	Custom Device ID - revision - MSB
11	7:0	Reserved	0	Reserved
12	7:4	SHARED_LINK_EN	b'0000	Enable Shared Link on DS port bit[7:4]=DS4, DS3, DS2, DS1 0: Shared Link not enabled 1: Shared Link enabled
	3:0	SHC_ACTIVE_PORTS [3:0]	b'1111	Indicates if a SuperSpeed port is active. bit[3:0] = DS4, DS3, DS2, DS1 0: Not active 1: Active
13	7:0	POWER_ON_TIME	0x32	Time (in 2-ms intervals) from the time the power-on sequence begins on a port until power is good on that port (bPwron2PwrGood)
14	7:4	REMOVABLE_PORTS [3:0]	b'1111	Indicates if the port is removable. bit[7:4]=DS4, DS3, DS2, DS1 0: Non-removable 1: Removable
	3:0	UHC_ACTIVE_PORTS [3:0]	b'1111	Indicates if a USB 2.0 port is active. bit[3:0]=DS4, DS3, DS2, DS1 0: Not active 1: Active
15	7	SS_LED_PIN_CONTROL	0	Port 1–4: SS LED disable 0: DS[1:4]_LED_SS are LEDs. The LED glows when the SS port is active and not in disabled state. 1: DS[1:4]_LED_SS are not LEDs
	6	GREEN_LED_PIN_CONTROL	0	Port 1–4: USB 2.0 Green LED disable 0: DS[1:4]_GREEN are LEDs 1: DS[1:4]_GREEN are not LEDs
	5	AMBER_LED_PIN_CONTROL	0	Port 1–4: USB 2.0 Amber LED disable 0: DS[1:4]_AMBER are LEDs 1: DS[1:4]_AMBER are not LEDs
	4	PORT_INDICATORS	1	Port indicators supported 0: Port indicators are not supported on its DS-facing ports and the USB 2.0 PORT_INDICATOR request has no effect. 1: Port indicators are supported on its DS-facing ports and the USB 2.0 PORT_INDICATOR request controls the indicators.
	3	COMPOUND_HUB	0	Identifies a compound device. 0: Hub is not part of a compound device. 1: Hub is part of a compound device.
	2:1	Reserved	0	Reserved
	0	GANG	0	1: Ganged power switch enable for all DS ports 0: Individual port power switch enable for each DS port

Table 7. EEPROM Map (continued)

I ² C Offset	Bits	Name	Default	Description
51 + X	7:0	bString: Product	'C', 0, 'Y', 0, '-', 0, 'H', 0, 'X', 0, '3', 0, ' ', 0, 'H', 0, 'U', 0, 'B', 0	Product string: UNICODE UTF-16LE per USB 2.0 specification: "CY-HX3 HUB"
49 + X + Y	7:0	bLength: Serial Number (Z)	22	Serial number string length ("bLength: LangID + bLength: Manufacturer + bLength: Product + bLength: Serial Number" should be less than or equal to 152 bytes). $Z \le 66$.
50 + X + Y	7:0	DescType	3	String descriptor type (constant value)
51 + X + Y	7:0	bString: Serial Number	(1', 0, (2', 0, (3', 0, (4', 0, (5', 0, (6', 0, (7', 0, (8', 0, (9', 0, (A', 0)	Serial number string: UNICODE UTF-16LE per USB 2.0 speci- fication: "123456789A"

EMI

ESD

HX3 meets the EMI requirements outlined by FCC 15B (USA) and EN55022 (Europe) for consumer electronics. HX3 tolerates EMI conducted by aggressors outlined by the above specifications and continues to function as expected.

HX3 has a built-in ESD protection on all pins. The ESD protection level provided on these ports is 2.2 kV Human Body Model (HBM) based on the JESD22-A114 specification.

Packaging

Table 12. Package Characteristics

Parameter	Description	Min	Тур	Max	Units
T _A	Operating ambient temperature	-40	-	85	°C
TJ	Operating junction temperature	-40	-	125	°C
T _{JA}	Package J _A (68-pin QFN)	-	16.2	-	°C/W
T _{JA}	Package J _A (88-pin QFN)	-	15.7	_	°C/W
T _{JA}	Package J _A (100-ball BGA)	-	35	-	°C/W
T _{JC}	Package J _C (68-pin QFN)	-	23.8	-	°C/W
T _{JC}	Package J _C (88-pin QFN)	-	18.9	-	°C/W
T _{JC}	Package J _C (100-ball BGA)	-	12	-	°C/W

Table 13. Solder Reflow Peak Temperature

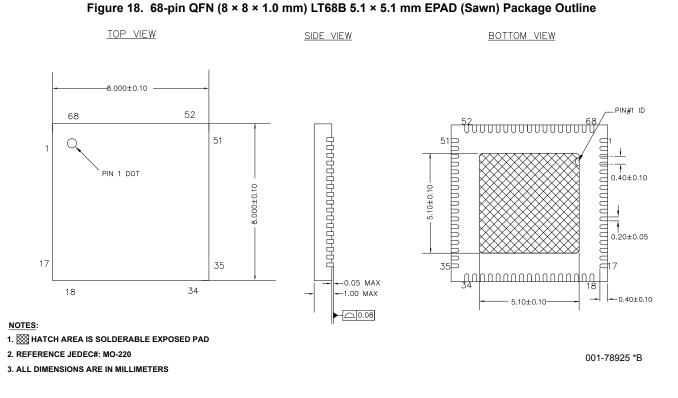
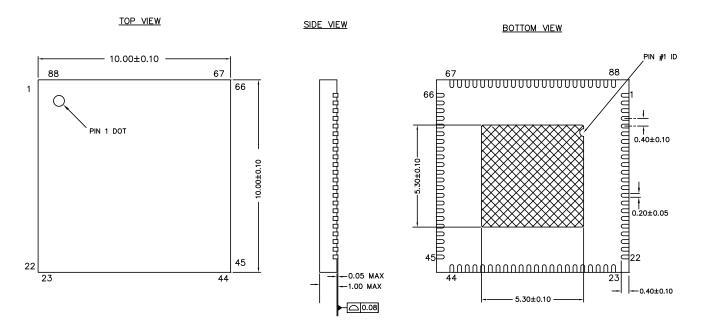
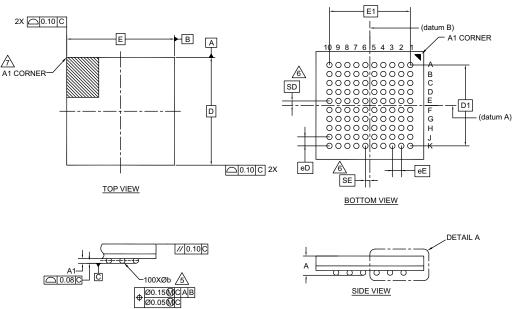
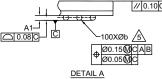

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
68-pin QFN	260 °C	30 seconds
88-pin QFN	260 °C	30 seconds
100-ball BGA	260 °C	30 seconds

Table 14. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2


Package	MSL
68-pin QFN	MSL 3
88-pin QFN	MSL 3
100-ball BGA	MSL 3

Package Diagrams




001-76569 *B

∕∕∖

Figure 20. 100-Ball BGA (6.0 × 6.0 × 1.0 mm) BZ100 Package Outline

0.445.01	DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.	
А	-	-	1.00	
A1	0.16	-	-	
D	6.00 BSC			
E	6.00 BSC			
D1	4.50 BSC			
E1	4.50 BSC			
MD	10			
ME	10			
N	100			
Øb	0.25	0.30	0.35	
eD	0.50 BSC			
еE	0.50 BSC			
SD	0.25 BSC			
SE	0.25 BSC			

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- 5 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- 6 "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.

- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.
- 9. JEDEC SPECIFICATION NO. REF. : MO-195C.

51-85209 *F

Acronyms

Table 15. Acronyms Used in this Document

Acronym	Description
ACA	Accessory Charging Adapter
ASSP	Application-Specific Standard Product
BC	Battery Charging
CDP	Charging Downstream Port
DS	DownStream
DCP	Dedicated Charging Port
DNU	Do Not Use
DWG	Device Working Group
EEPROM	Electrically Erasable Programmable Read-Only Memory
FS	Full-Speed
FW	FirmWare
GND	GrouND
GPIO	General-Purpose Input/Output
HS	Hi-Speed
ISP	In-System Programming
I/O	Input/Output
LS	Low-Speed
NC	No Connect
OTG	On-The-Go
PID	Product ID
POR	Power-On Reset
ROM	Read-Only Memory
SCL	Serial CLock
SDA	Serial DAta
SS	SuperSpeed
TT	Transaction Translator
US	UpStream
VID	Vendor ID

Reference Documents

USB 2.0 Specification USB 3.0 Specification Battery Charging Specification

Document Conventions

Units of Measure

Table	16.	Units	of	Measure
-------	-----	-------	----	---------

Symbol	Unit of Measure		
°C	degree celsius		
Ω	ohm		
Gbps	gigabit per second		
KB	kilobyte		
kHz	kilohertz		
kΩ	kiloohm		
Mbps	megabit per second		
MHz	megahertz		
μA	microampere		
mA	milliampere		
ms	millisecond		
mW	milliwatt		
ns	nanosecond		
ppm	parts per million		
V	volt		

Document History Page

Revision	ECN	Orig. of	Submission Date	Description of Change
*E	4271496	Change MURT	02/21/2014	Changed status from Preliminary to Final.
L	427 1490		02/21/2014	
*F	4291210	MURT	02/25/2014	Post to external web.
*G	4308926	MURT	03/14/2014	Updated System Interfaces: Updated Configuration Options: Updated HX3 as I2C Slave: Updated Table 7.
*H	4463533	MURT	08/01/2014	Updated Features: Updated TID#. Updated Electrical Specifications: Updated Power Consumption: Updated Table 9: Updated details corresponding to suspend power. Removed Errata.
*	4483117	RAJM	08/22/2014	Added Silicon Revision History.
*J	4499514	RAJM	09/15/2014	Added BGA package information.
*K	4582512	PRJI	11/28/2014	Updated HX3 Product Options: Updated Table 1. Updated Pin Information: Updated Table 4.
*L	4632890	НВМ	01/20/2015	Updated Pin Information: Updated Figure 12. Updated Figure 13. Updated Table 4. Added Packaging. Updated Package Diagrams: spec 51-85209 – Changed revision from *D to *E.
*M	4669639	HBM	02/24/2015	No technical updates. Completing Sunset Review.
*N	4764583	HBM	05/13/2015	Updated Package Diagrams: spec 001-76569 – Changed revision from *A to *B. Updated Silicon Revision History. Updated Method of Identification.
*0	4941772	НВМ	11/25/2015	Updated HX3 Product Options: Updated Table 1: Included CYUSB2302-68LTXI and CYUSB2304-68LTXI part numbers related information. Updated Ordering Information: Updated Table 11: Updated part numbers.
*P	5466603	НВМ	10/20/2016	Updated Features: Replaced "USB 3.0-Certified Hub, TID# 330000060" with "USB-IF Certified Hub, TID# 330000060, 30000074". Updated Package Diagrams: spec 51-85209 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2011-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infinged by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-73643 Rev. *P

Revised October 20, 2016

Page 42 of 42

Ghost Charge™ and Shared Link™ are trademarks of Cypress Semiconductor Corporation