
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC11
Core Size	8-Bit
Speed	3MHz
Connectivity	SCI, SPI
Peripherals	POR, WDT
Number of I/O	26
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-QFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc11d0cfbe3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1 General Description.	13
Chapter 2 Operating Modes and Memory	21
Chapter 3 Central Processor Unit (CPU)	
Chapter 4 Resets, Interrupts, and Low-Power Modes	
Chapter 5 Input/Output (I/O) Ports	61
Chapter 6 Serial Communications Interface (SCI)	65
Chapter 7 Serial Peripheral Interface (SPI)	
Chapter 8 Programmable Timer	85
Chapter 9 Electrical Characteristics	
Chapter 10 Ordering Information and Mechanical Specifications	121
Appendix A MC68HC11D3 and MC68HC11D0	125
Appendix B MC68L11D0	131

Table of Contents

Chapter 1 General Description

1.1	Introduction	13
1.2	Features	13
1.3	Structure	13
1.4	Pin Descriptions	14
1.5	Power Supply (V _{DD} , V _{SS} , and EV _{SS})	16
1.6	Reset (RESET)	16
1.7	Crystal Driver and External Clock Input (XTAL and EXTAL)	16
1.8	E-Clock Output (E)	16
1.9	Interrupt Request (IRQ)	17
1.10	Non-Maskable Interrupt/Programming Voltage (XIRQ/V _{PP})	18
1.11	MODA and MODB (MODA/LIR and MODB/V _{STBY})	18
1.12	Read/Write (R/W)	18
1.13	Port D Bit 6/Address Strobe (PD6/AS)	18
1.14	Input/Output Lines (PA7–PA0, PB7–PB0, PC7–PC0, and PD7–PD0)	18

Chapter 2 Operating Modes and Memory

2.1	Introduction	21
2.2	Operating Modes	
2.2.1	Single-Chip Mode.	21
2.2.2	Expanded Multiplexed Mode	21
2.2.3	Special Bootstrap Mode (BOOT)	22
2.2.4	Special Test Mode	23
2.3	Memory Map	23
2.3.1	Control and Status Registers	23
2.3.2	RAM and I/O Mapping Register	29
2.3.3	Configuration Control Register	30
2.4	Programmable Read-Only Memory (PROM)	31
2.4.1	Programming an Individual EPROM Address	31
2.4.2	Programming the EPROM with Downloaded Data	32
2.4.3	PROM Programming Control Register	32

General Description

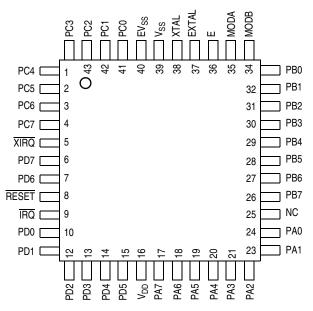


Figure 1-4. Pin Assignments for 44-Pin QFP

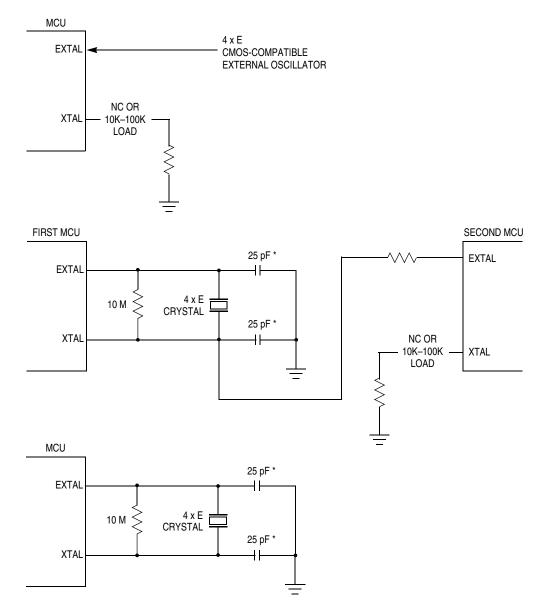
1.5 Power Supply (V_{DD} , V_{SS} , and EV_{SS})

Power is supplied to the MCU through V_{DD} and V_{SS} . V_{DD} is the power supply (+5 V ±10%) and V_{SS} is ground (0 V). EV_{SS}, available on the 44-pin PLCC and QFP, is an additional ground pin.

1.6 Reset (RESET)

An active low bidirectional control signal, RESET, acts as an input to initialize the MCU to a known startup state. It also acts as an open-drain output to indicate that an internal failure has been detected in either the clock monitor or computer operating properly (COP) watchdog circuit. In addition, the state of this pin is one of the factors governing the selection of BOOT mode.

1.7 Crystal Driver and External Clock Input (XTAL and EXTAL)


These two pins provide the interface for either a crystal or a CMOS compatible clock to control the internal clock generator circuitry. The frequency applied to these pins is four times higher than the desired E-clock rate. Refer to Figure 1-5 for crystal and clock connections.

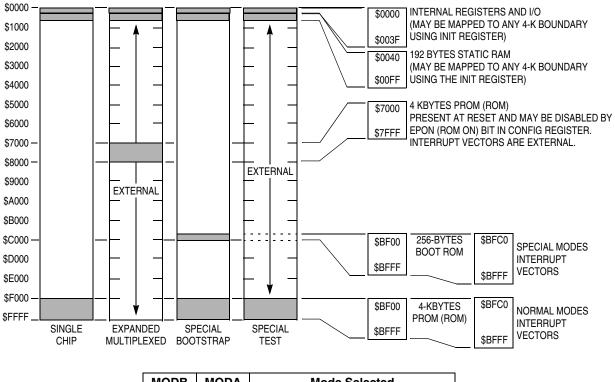
1.8 E-Clock Output (E)

E is the output connection for the internally generated E clock. The signal from E is used as a timing reference. The frequency of the E-clock output is one fourth that of the input frequency at the XTAL and EXTAL pins. The E clock can be turned off in single-chip mode for greater noise immunity if desired. See 4.3.6 Highest Priority I Interrupt and Miscellaneous Register (HPRIO) for details.

Interrupt Request (IRQ)

* Values includes all stray capacitances.

Figure 1-5. Oscillator Connections


1.9 Interrupt Request (IRQ)

The IRQ input provides a means of applying asynchronous interrupt requests to the microcontroller unit (MCU). Either negative edge-sensitive triggering or level-sensitive triggering is program selectable by using the IRQE bit of the OPTION register. IRQ is always configured to level-sensitive triggering at reset.

While the programmable read-only memory (PROM) is being programmed, this pin provides the chip enable (\overline{CE}) signal. To prevent accidental programming of the PROM during reset, an external resistor is required on IRQ to pull the pin to V_{DD}.

Operating Modes and Memory

MODB	MODA	Mode Selected
1	0	Single-chip (mode 0)
1	1	Expanded multiplexed (mode 1)
0	0	Special bootstrap
0	1	Special test

Figure 2-1. MC68HC711D3 Memory Map

Operating Modes and Memory

N

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$ 0 026	• • • •	Read: Write:	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	14/05	RTR1	RTR0
	See pages 99 and 102.	Reset:	0	0	0	0	0	0	0	0
\$ 0 027	Pulse Accumulator Count Register (PACNT)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 103.	Reset:				Unaffecte	d by reset			
\$ 0 028	SPI Control Register (SPCR)	Read: Write:	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0
	See page 81.	Reset:	0	0	0	0	0	1	U	U
\$ 0 029	SPI Status Register (SPSR)	Read: Write:	SPIF	WCOL	0	MODF	0	0	0	0
	See page 82.	Reset:	0	0	0	0	0	0	0	0
\$ 0 02A	SPI Data I/O Register (SPDR)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 83.	Reset:				Unaffecte	d by reset			
\$ 0 02B	Baud Rate Register (BAUD)	Read: Write:	TCLR	0	SCP1	SCP0	RCKB	SCR2	SCR1	SCR0
	See page 72.	Reset:	0	0	0	0	0	U	U	U
\$ 0 02C	SCI Control Register 1 (SCCR1)	Read: Write:	R8	Т8	0	М	WAKE	0	0	0
	See page 70.	Reset:	U	U	0	0	0	0	0	0
\$ 0 02D	SCI Control Register 2 (SCCR2)	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
	See page 70.	Reset:	0	0	0	0	0	0	0	0
\$ 0 02E	SCI Status Register (SCSR) See page 71.	Read: Write:	TDRE	TC	RDRF	IDLE	OR	NF	FE	0
		Reset:	1	1	0	0	0	0	0	0
\$ 0 02F	SCI Data Register (SCDR)	Read: Write:	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0
	See page 69. Reset:					Unaffecte	d by reset			
\$ 0 030 ↓ \$ 0 038	Reserved		R	R	R	R	R	R	R	R
\$ 0 039	System Configuration Options Register (OPTION)	Read: Write:	0	0	IRQE	DLY	CME	0	CR1	CR0
	See page 49.	Reset:	0	0	0	1	0	0	0	0
		[= Unimpler	nented	R	= Reserved	ł	U = Unaffeo	ted

Figure 2-2. Register and Control Bit Assignments (Sheet 4 of 5)

MC68HC711D3 Data Sheet, Rev. 2.1

Serial Communications Interface (SCI)

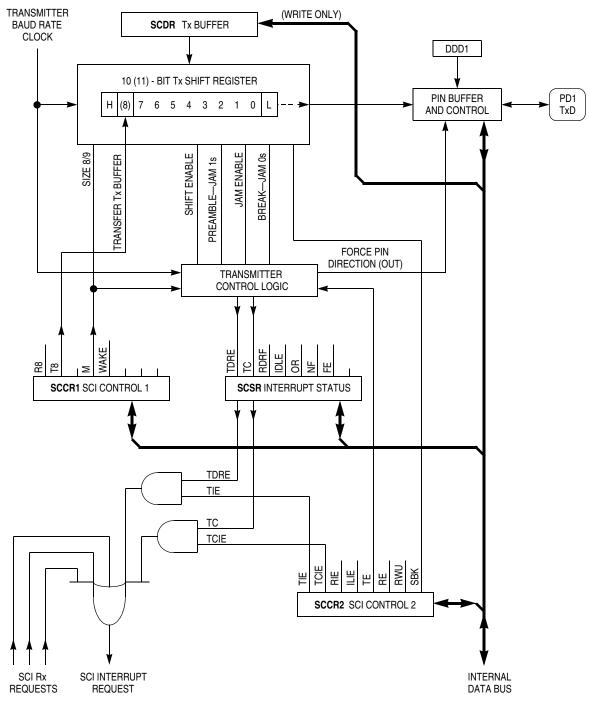


Figure 6-1. SCI Transmitter Block Diagram

MC68HC711D3 Data Sheet, Rev. 2.1

Serial Communications Interface (SCI)

IDLE — Idle Line Detected Flag

This flag is set if the RxD line is idle. Once cleared, IDLE is not set again until the RxD line has been active and becomes idle again. The IDLE flag is inhibited when RWU = 1. Clear IDLE by reading SCSR with IDLE set and then reading SCDR.

0 = RxD line active

1 = RxD line idle

OR — Overrun Error Flag

OR is set if a new character is received before a previously received character is read from SCDR. Clear the OR flag by reading SCSR with OR set and then reading SCDR.

0 = No overrun

1 = Overrun detected

NF — Noise Error Flag

NF is set if majority sample logic detects anything other than a unanimous decision. Clear NF by reading SCSR with NF set and then reading SCDR.

0 = Unanimous decision

1 = Noise detected

FE — Framing Error Bit

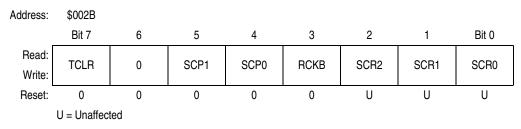
FE is set when a 0 is detected where a stop bit was expected. Clear the FE flag by reading SCSR with FE set and then reading SCDR.

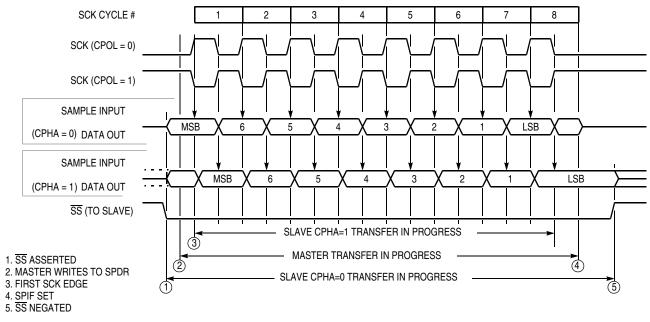
0 =Stop bit detected

1 = Zero detected

6.7.5 Baud Rate Register

The baud rate register (BAUD) is used to select different baud rates for the SCI system. The SCP1 and SCP0 bits function as a prescaler for the SCR2–SCR0 bits. Together, these five bits provide multiple baud rate combinations for a given crystal frequency. Normally, this register is written once during initialization. The prescaler is set to its fastest rate by default out of reset and can be changed at any time. Refer to Table 6-1 and Table 6-2 for normal baud rate selections.




Figure 6-7. Baud Rate Register (BAUD)

TCLR — Clear Baud Rate Counters (Test)

RCKB — SCI Baud Rate Clock Check (Test)

7.4 Clock Phase and Polarity Controls

Software can select one of four combinations of serial clock phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or active low clock, and has no significant effect on the transfer format. The clock phase (CPHA) control bit selects one of two different transfer formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transfers to allow a master device to communicate with peripheral slaves having different requirements.

When CPHA equals 0, the slave select (\overline{SS}) line must be negated and reasserted between each successive serial byte. Also, if the slave writes data to the SPI data register (SPDR) while \overline{SS} is active low, a write collision error results.

When CPHA equals 1, the \overline{SS} line can remain low between successive transfers.

7.5 SPI Signals

This subsection contains description of the four SPI signals:

- Master in/slave out (MISO)
- Master out/slave in (MOSI)
- Serial clock (SCK)
- Slave select (SS)

7.5.1 Master In/Slave Out (MISO)

MISO is one of two unidirectional serial data signals. It is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.

Serial Peripheral Interface (SPI)

8.4 Output Compare (OC)

Use the output compare (OC) function to program an action to occur at a specific time — when the 16-bit counter reaches a specified value. For each of the five output compare functions, there is a separate 16-bit compare register and a dedicated 16-bit comparator. The value in the compare register is compared to the value of the free-running counter on every bus cycle. When the compare register matches the counter value, an output compare status flag is set. The flag can be used to initiate the automatic actions for that output compare function.

To produce a pulse of a specific duration, write to the output compare register a value representing the time the leading edge of the pulse is to occur. The output compare circuit is configured to set the appropriate output either high or low, depending on the polarity of the pulse being produced. After a match occurs, the output compare register is reprogrammed to change the output pin back to its inactive level at the next match. A value representing the width of the pulse is added to the original value, and then is written to the output compare register. Because the pin state changes occur at specific values of the free-running counter, the pulse width can be controlled accurately at the resolution of the free-running counter, independent of software latencies. To generate an output signal of a specific frequency and duty cycle, repeat this pulse-generating procedure.

There are four 16-bit read/write output compare registers: TOC1, TOC2, TOC3, and TOC4, and the TI4/O5 register, which functions under software control as either IC4 or OC5. Each of the OC registers is set to \$FFFF on reset. A value written to an OC register is compared to the free-running counter value during each E-clock cycle. If a match is found, the particular output compare flag is set in timer interrupt flag register 1 (TFLG1). If that particular interrupt is enabled in the timer interrupt mask register 1 (TMSK1), an interrupt is generated. In addition to an interrupt, a specified action can be initiated at one or more timer output pins. For OC5–OC2, the pin action is controlled by pairs of bits (OMx and OLx) in the TCTL1 register. The output action is taken on each successful compare, regardless of whether the OCxF flag in the TFLG1 register was previously cleared.

OC1 is different from the other output compares in that a successful OC1 compare can affect any or all five of the OC pins. The OC1 output action taken when a match is found is controlled by two 8-bit registers with three bits unimplemented: the output compare 1 mask register, OC1M, and the output compare 1 data register, OC1D. OC1M specifies which port A outputs are to be used, and OC1D specifies what data is placed on these port pins.

8.4.1 Timer Output Compare Registers

All output compare registers are 16-bit read-write. Each is initialized to \$FFFF at reset. If an output compare register is not used for an output compare function, it can be used as a storage location. A write to the high-order byte of an output compare register pair inhibits the output compare function for one bus cycle. This inhibition prevents inappropriate subsequent comparisons. Coherency requires a complete 16-bit read or write. However, if coherency is not needed, byte accesses can be used.

For output compare functions, write a comparison value to output compare registers TOC1–TOC4 and TI4/O5. When TCNT value matches the comparison value, specified pin actions occur.

8.4.2 Timer Compare Force Register

The timer compare force register (CFORC) allows forced early compares. FOC1–FOC5 correspond to the five output compares. These bits are set for each output compare that is to be forced. The action taken as a result of a forced compare is the same as if there were a match between the OCx register and the free-running counter, except that the corresponding interrupt status flag bits are not set. The forced channels trigger their programmed pin actions to occur at the next timer count transition after the write to CFORC.

The CFORC bits should not be used on an output compare function that is programmed to toggle its output on a successful compare because a normal compare that occurs immediately before or after the force can result in an undesirable operation.

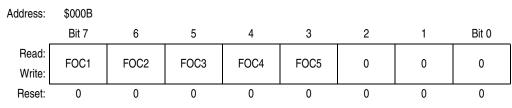


Figure 8-7. Timer Compare Force Register (CFORC)

FOC1–FOC5 — Write 1s to Force Compare Bits

0 = Not affected

1 = Output x action occurs

Bits 2–0 — Not implemented, always read 0.

8.4.3 Output Compare 1 Mask Register

Use OC1M with OC1 to specify the bits of port A that are affected by a successful OC1 compare. The bits of the OC1M register correspond to PA7–PA3.

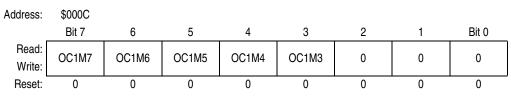


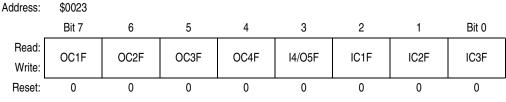
Figure 8-8. Output Compare 1 Mask Register (OC1M)

OC1M7–OC1M3 — Output Compare Masks

0 = OC1 disabled

1 = OC1 enabled to control the corresponding pin of port A

Bits 2–0 — Not implemented; always read 0.


Set bit(s) to enable OC1 to control corresponding pin(s) of port A.

Programmable Timer

8.4.8 Timer Interrupt Flag 1 Register

The timer interrupt flag 1 register (TFLG1) bits indicate when timer system events have occurred. Coupled with the bits of TMSK1, the bits of TFLG1 allow the timer subsystem to operate in either a polled or interrupt driven system. Each bit of TFLG1 corresponds to a bit in TMSK1 in the same position.

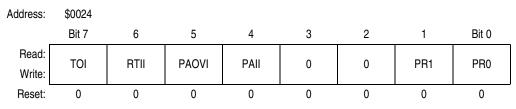
Figure 8-13. Timer Interrupt Flag 1 Register (TFLG1)

Clear flags by writing a 1 to the corresponding bit position(s).

OC1F-OC5F — Output Compare x Flag

Set each time the counter matches output compare x value

I4/O5F — Input Capture 4/Output Compare 5 Flag


Set by IC4 or OC5, depending on the function enabled by I4/O5 bit in PACTL

IC1F–IC3F — Input Capture x Flag

Set each time a selected active edge is detected on the ICx input line

8.4.9 Timer Interrupt Mask 2 Register

The timer interrupt mask 1 register (TMSK2) is an 8-bit register used to enable or inhibit timer overflow and real-time interrupts. The timer prescaler control bits are included in this register.

Figure 8-14. Timer Interrupt Mask 2 Register (TMSK2)

TOI — Timer Overflow Interrupt Enable Bit

0 = TOF interrupts disabled

1 = Interrupt requested when TOF is set to 1

RTII — Real-Time Interrupt Enable Bit

Refer to 8.5 Real-Time Interrupt.

PAOVI — Pulse Accumulator Overflow Interrupt Enable Bit Refer to 8.7 Pulse Accumulator.

PAII — Pulse Accumulator Input Edge Interrupt Enable Bit

Refer to 8.7 Pulse Accumulator.

NOTE

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

MC68HC711D3 Data Sheet, Rev. 2.1

Programmable Timer

- DDRA7 Data Direction Control for Port A Bit 7 Refer to 8.7 Pulse Accumulator.
- PAEN Pulse Accumulator System Enable Bit Refer to 8.7 Pulse Accumulator.
- PAMOD Pulse Accumulator Mode Bit Refer to 8.7 Pulse Accumulator.
- PEDGE Pulse Accumulator Edge Control Bit Refer to 8.7 Pulse Accumulator.
- DDRA3 Data Direction Register for Port A Bit 3 Refer to Chapter 5 Input/Output (I/O) Ports.
- I4/O5 Input Capture 4/Output Compare 5 Bit Refer to 8.3 Input Capture.

RTR1 and RTR0 — RTI Interrupt Rate Select Bits

These two bits determine the rate at which the RTI system requests interrupts. The RTI system is driven by an E divided by 2¹³ rate clock that is compensated so it is independent of the timer prescaler. These two control bits select an additional division factor. See Table 8-6.

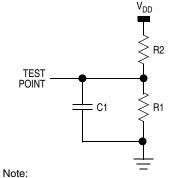
RTR1 and RTR0	E = 1 MHz	E = 2 MHz	E = 3 MHz	E = X MHz
0 0	2.731 ms	4.096 ms	8.192 ms	(E/2 ¹³)
0 1	5.461 ms	8.192 ms	16.384 ms	(E/2 ¹⁴)
1 0	10.923 ms	16.384 ms	32.768 ms	(E/2 ¹⁵)
1 1	21.845 ms	32.768 ms	65.536 ms	(E/2 ¹⁶)

 Table 8-6. Real-Time Interrupt Rates

8.6 Computer Operating Properly Watchdog Function

The clocking chain for the COP function, tapped off of the main timer divider chain, is only superficially related to the main timer system. The CR1 and CR0 bits in the OPTION register and the NOCOP bit in the CONFIG register determine the status of the COP function. Refer to Chapter 4 Resets, Interrupts, and Low-Power Modes for a more detailed discussion of the COP function.

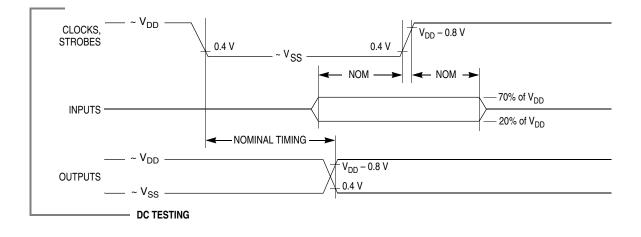
8.7 Pulse Accumulator

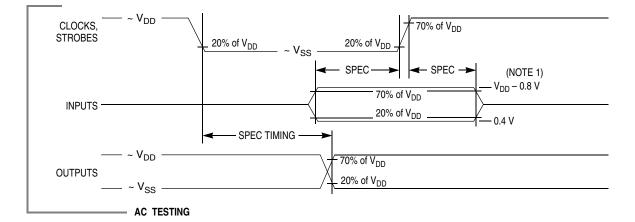

The MC68HC711D3 has an 8-bit counter that can be configured to operate either as a simple event counter or for gated time accumulation, depending on the state of the PAMOD bit in the PACTL register. Refer to the pulse accumulator block diagram, Figure 8-19.

In the event counting mode, the 8-bit counter is clocked to increasing values by an external pin. The maximum clocking rate for the external event counting mode is the E clock divided by two. In gated time accumulation mode, a free-running E-clock ÷ 64 signal drives the 8-bit counter, but only while the external PAI pin is activated. Refer to Table 8-7. The pulse accumulator counter can be read or written at any time.

Pulse accumulator control bits are also located within two timer registers, TMSK2 and TFLG2, as described here.

Electrical Characteristics


EQUIVALENT TEST LOAD⁽¹⁾


Pins	R1	R2	C1
PA3-PA7 PB0-PB7 PC0-PC7 PD0, PD5-PD7 E	3.26 K	2.38 K	90 pF
PD1—PD4	3.26 K	2.38 K	200 pF

No

1. Full test loads are applied during all ac electrical timing measurements.

Figure 9-1. Equivalent Test Load

Note:

1. During ac timing measurements, inputs are driven to 0.4 volts and V_{DD} – 0.8 volts while timing measurements are taken at the 20% and 70% of V_{DD} points.

Figure 9-2. Test Methods

MC68HC711D3 Data Sheet, Rev. 2.1

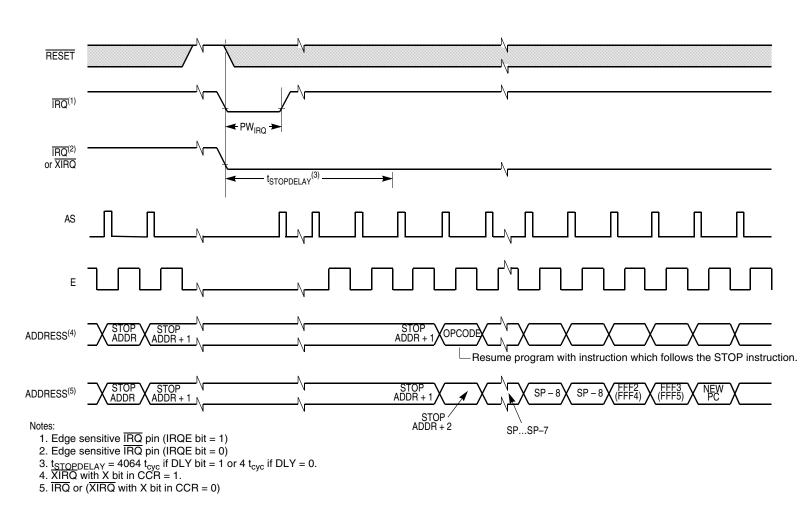


Figure 9-5. STOP Recovery Timing Diagram

Ordering Information and Mechanical Specifications

A.6 Ordering Information

мси	Package	Temperature	MC Order Number		
MCO	Fachaye	remperature	2 MHz	3 MHz	
MC68HC11D3 (Custom ROM)	44-pin PLCC	–40 to +85°C	MC68HC11D3CFN2	MC68HC11D3CFN3	
MC68HC11D0	44-pin PLCC	–40 to +85°C	MC68HC11D0CFN2	MC68HC11D0CFN3	
(No ROM)	44-pin QFP	–40 to +85°C	MC68HC11D0CFB2	MC68HC11D0CFB3	

Appendix B MC68L11D0

B.1 Introduction

The MC68L11D0 is an extended-voltage version of the MC68HC11D0 microcontroller that can operate in applications that require supply voltages as low as 3.0 volts. Operation is identical to that of the MC68HC11D0 (see Appendix A MC68HC11D3 and MC68HC11D0) in all aspects other than electrical parameters, as shown in this appendix.

Features of the MC68HC11D0 include:

- Suitable for battery-powered portable and hand-held applications
- Excellent for use in devices such as remote sensors and actuators
- Operating performance is same at 5 V and 3 V

B.2 MC68L11D0 Electrical Characteristics

The parameters given in Chapter 9 Electrical Characteristics apply to the MC68L11D0 with the exceptions given here.

B.2.1 Functional Operating Temperature Range

Rating	Symbol	Value	Unit
Operating temperature range	T _A	T _L to T _H –20 to +70	°C

B.2.2 DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Output voltage ⁽²⁾ All outputs except XTAL $I_{Load} = \pm 10.0 \mu AAII outputs except XTAL, RESET, and MODA$	V _{OL} V _{OH}	 V _{DD} – 0.1	0.1	V
Output high voltage ⁽¹⁾ All outputs except XTAL, RESET, and MODA $I_{Load} = -0.5 \text{ mA}, V_{DD} = 3.0 \text{ V}$ $I_{Load} = -0.8 \text{ mA}, V_{DD} = 4.5 \text{ V}$	V _{OH}	V _{DD} – 0.8	_	V
Output low voltage All outputs except XTAL $I_{Load} = 1.6 \text{ mA}, V_{DD} = 5.0 \text{ V}$ $I_{Load} = 1.0 \text{ mA}, V_{DD} = 3.0 \text{ V}$	V _{OL}	_	0.4	V

The dc electrical table continues on next page.

MC68L11D0

B.3 Ordering Information

Package	Frequency	Features	MC Order Number
44-pin PLCC	2 MHz	No ROM	MC68L11D0FN2
44-pin QFP	2 MHz	No ROM	MC68L11D0FB2