E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	82920
Number of Logic Elements/Cells	1451100
Total RAM Bits	77721600
Number of I/O	728
Number of Gates	-
Voltage - Supply	0.922V ~ 0.979V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	1924-BBGA, FCBGA
Supplier Device Package	1924-FCBGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcku115-2flvf1924e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Processing System Overview

UltraScale+ MPSoCs feature dual and quad core variants of the ARM Cortex-A53 (APU) with dual-core ARM Cortex-R5 (RPU) processing system (PS). Some devices also include a dedicated ARM Mali[™]-400 MP2 graphics processing unit (GPU). See Table 2.

	CG Devices	EG Devices	EV Devices								
APU	Dual-core ARM Cortex-A53	Quad-core ARM Cortex-A53	Quad-core ARM Cortex-A53								
RPU	Dual-core ARM Cortex-R5	Dual-core ARM Cortex-R5	Dual-core ARM Cortex-R5								
GPU	-	Mali-400MP2	Mali-400MP2								
VCU	-	_	H.264/H.265								

To support the processors' functionality, a number of peripherals with dedicated functions are included in the PS. For interfacing to external memories for data or configuration storage, the PS includes a multi-protocol dynamic memory controller, a DMA controller, a NAND controller, an SD/eMMC controller and a Quad SPI controller. In addition to interfacing to external memories, the APU also includes a Level-1 (L1) and Level-2 (L2) cache hierarchy; the RPU includes an L1 cache and Tightly Coupled memory subsystem. Each has access to a 256KB on-chip memory.

For high-speed interfacing, the PS includes 4 channels of transmit (TX) and receive (RX) pairs of transceivers, called PS-GTR transceivers, supporting data rates of up to 6.0Gb/s. These transceivers can interface to the high-speed peripheral blocks to support PCIe Gen2 root complex or end point in x1, x2, or x4 configurations; Serial-ATA (SATA) at 1.5Gb/s, 3.0Gb/s, or 6.0Gb/s data rates; and up to two lanes of Display Port at 1.62Gb/s, 2.7Gb/s, or 5.4Gb/s data rates. The PS-GTR transceivers can also interface to components over USB 3.0 and Serial Gigabit Media Independent Interface (SGMII).

For general connectivity, the PS includes: a pair of USB 2.0 controllers, which can be configured as host, device, or On-The-Go (OTG); an I2C controller; a UART; and a CAN2.0B controller that conforms to ISO11898-1. There are also four triple speed Ethernet MACs and 128 bits of GPIO, of which 78 bits are available through the MIO and 96 through the EMIO.

High-bandwidth connectivity based on the ARM AMBA® AXI4 protocol connects the processing units with the peripherals and provides interface between the PS and the programmable logic (PL).

For additional information, go to: <u>DS891</u>, *Zynq UltraScale+ MPSoC Overview*.

Kintex UltraScale Device-Package Combinations and Maximum I/Os

Table 1. Kintox Illing Coole	Davias Daskaga	Complimations a	and Maxima I/Oa
Table 4: Kintex UltraScale	Device-Package	COMPLIATIONS a	

	Package	KU025	KU035	KU040	KU060	KU085	KU095	KU115
Package (1)(2)(3)	Dimensions (mm)	HR, HP GTH	HR, HP GTH, GTY ⁽⁴⁾	HR, HP GTH				
SFVA784 ⁽⁵⁾	23x23		104, 364 8	104, 364 8				
FBVA676 ⁽⁵⁾	27x27		104, 208 16	104, 208 16				
FBVA900 ⁽⁵⁾	31x31		104, 364 16	104, 364 16				
FFVA1156	35x35	104, 208 12	104, 416 16	104, 416 20	104, 416 28		52, 468 20, 8	
FFVA1517	40x40				104, 520 32			
FLVA1517	40x40					104, 520 48		104, 520 48
FFVC1517	40x40						52, 468 20, 20	
FLVD1517	40x40							104, 234 64
FFVB1760	42.5x42.5						52, 650 32, 16	
FLVB1760	42.5x42.5					104, 572 44		104, 598 52
FLVD1924	45x45							156, 676 52
FLVF1924	45x45					104, 520 56		104, 624 64
FLVA2104	47.5x47.5							156, 676 52
FFVB2104	47.5x47.5						52, 650 32, 32	
FLVB2104	47.5x47.5							104, 598 64

Notes:

2. FB/FF/FL packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.

3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the <u>UltraScale Architecture Product Selection Guide</u> for details on inter-family migration.

4. GTY transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s.

5. GTH transceivers in SF/FB packages support data rates up to 12.5Gb/s.

^{1.} Go to Ordering Information for package designation details.

Kintex UltraScale+ Device-Package Combinations and Maximum I/Os

Table 6: Kintex UltraScale+	Dovico Dockago	Combinations a	nd Maximum L/Oc
	Device-Package	compinations a	nu waximum 1705

Dookogo	Package	KU3P	KU5P	KU9P	KU11P	KU13P	KU15P
Package (1)(2)(4)	Dimensions (mm)	HD, HP GTH, GTY					
SFVB784 ⁽³⁾	23x23	96, 208 0, 16	96, 208 0, 16				
FFVA676 ⁽³⁾	27x27	48, 208 0, 16	48, 208 0, 16				
FFVB676	27x27	72, 208 0, 16	72, 208 0, 16				
FFVD900 ⁽³⁾	31x31	96, 208 0, 16	96, 208 0, 16		96, 312 16, 0		
FFVE900	31x31			96, 208 28, 0		96, 208 28, 0	
FFVA1156 ⁽³⁾	35x35				48, 416 20, 8		48, 468 20, 8
FFVE1517	40x40				96, 416 32, 20		96, 416 32, 24
FFVA1760	42.5x42.5						96, 416 44, 32
FFVE1760	42.5x42.5						96, 572 32, 24

Notes:

1. Go to Ordering Information for package designation details.

2. FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.

3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s.

4. Packages with the same last letter and number sequence, e.g., A676, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the <u>UltraScale Architecture Product Selection Guide</u> for details on inter-family migration.

Virtex UltraScale Device-Package Combinations and Maximum I/Os

Table 0. Vinter Illing Coole Device Deckage Combinations and Meximum I	10-
Table 8: Virtex UltraScale Device-Package Combinations and Maximum I	70s

	Package	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Package ⁽¹⁾⁽²⁾⁽³⁾	Dimensions (mm)	HR, HP GTH, GTY						
FFVC1517	40x40	52, 468 20, 20	52, 468 20, 20	52, 468 20, 20				
FFVD1517	40x40		52, 286 32, 32	52, 286 32, 32				
FLVD1517	40x40				52, 286 40, 32			
FFVB1760	42.5x42.5		52, 650 32, 16	52, 650 32, 16				
FLVB1760	42.5x42.5				52, 650 36, 16			
FFVA2104	47.5x47.5		52, 780 28, 24	52, 780 28, 24				
FLVA2104	47.5x47.5				52, 780 28, 24	-		
FFVB2104	47.5x47.5		52, 650 32, 32	52, 650 32, 32				
FLVB2104	47.5x47.5				52, 650 40, 36			
FLGB2104	47.5x47.5					52, 650 40, 36	52, 650 40, 36	
FFVC2104	47.5x47.5			52, 364 32, 32				
FLVC2104	47.5x47.5				52, 364 40, 40			
FLGC2104	47.5x47.5					52, 364 52, 52	52, 364 52, 52	
FLGB2377	50x50							52, 1248 36, 0
FLGA2577	52.5x52.5						0, 448 60, 60	
FLGA2892	55x55							52, 1404 48, 0

Notes:

2. All packages have 1.0mm ball pitch.

3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the <u>UltraScale Architecture Product Selection Guide</u> for details on inter-family migration.

^{1.} Go to Ordering Information for package designation details.

Virtex UltraScale+ FPGA Feature Summary

Table 9: Virtex UltraScale+ FPGA Feature Summary

	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU31P	VU33P	VU35P	VU37P
System Logic Cells	862,050	1,313,763	1,724,100	2,586,150	2,835,000	3,780,000	961,800	961,800	1,906,800	2,851,800
CLB Flip-Flops	788,160	1,201,154	1,576,320	2,364,480	2,592,000	3,456,000	879,360	879,360	1,743,360	2,607,360
CLB LUTs	394,080	600,577	788,160	1,182,240	1,296,000	1,728,000	439,680	439,680	871,680	1,303,680
Max. Distributed RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	12.5	12.5	24.6	36.7
Block RAM Blocks	720	1,024	1,440	2,160	2,016	2,688	672	672	1,344	2,016
Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	23.6	23.6	47.3	70.9
UltraRAM Blocks	320	470	640	960	960	1,280	320	320	640	960
UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	90.0	90.0	180.0	270.0
HBM DRAM (GB)	_	_	_	-	_	_	4	8	8	8
CMTs (1 MMCM and 2 PLLs)	10	20	20	30	12	16	4	4	8	12
Max. HP I/O ⁽¹⁾	520	832	832	832	624	832	208	208	416	624
DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	2,880	2,880	5,952	9,024
System Monitor	1	2	2	3	3	4	1	1	2	3
GTY Transceivers 32.75Gb/s ⁽²⁾	40	80	80	120	96	128	32	32	64	96
Transceiver Fractional PLLs	20	40	40	60	48	64	16	16	32	48
PCIe Gen3 x16 and Gen4 x8	2	4	4	6	3	4	4	4	5	6
CCIX Ports ⁽³⁾	_	_	_	_	_	_	4	4	4	4
150G Interlaken	3	4	6	9	6	8	0	0	2	4
100G Ethernet w/RS-FEC	3	4	6	9	9	12	2	2	5	8

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. GTY transceivers in the FLGF1924 package support data rates up to 16.3Gb/s. See Table 10.

3. A CCIX port requires the use of a PCIe Gen3 x16 / Gen4 x8 block.

Virtex UltraScale+ Device-Package Combinations and Maximum I/Os

Package (1)(2)(3)	Package Dimensions	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU31P	VU33P	VU35P	VU37P
(1)(2)(3)	(1)(2)(3) Differsions (mm)	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY
FFVC1517	40x40	520, 40									
FLGF1924 ⁽⁴⁾	45x45					624, 64					
FLVA2104	47.5x47.5		832, 52	832, 52							
FLGA2104	47.5x47.5				832, 52						
FHGA2104	52.5x52.5 ⁽⁵⁾						832, 52				
FLVB2104	47.5x47.5		702, 76	702, 76							
FLGB2104	47.5x47.5				702, 76	572, 76					
FHGB2104	52.5x52.5 ⁽⁵⁾						702, 76				
FLVC2104	47.5x47.5		416, 80	416, 80							
FLGC2104	47.5x47.5				416, 104	416, 96					
FHGC2104	52.5x52.5 ⁽⁵⁾						416, 104				
FSGD2104	47.5x47.5				676, 76	572, 76					
FIGD2104	52.5x52.5 ⁽⁵⁾						676, 76				
FLGA2577	52.5x52.5				448, 120	448, 96	448, 128				
FSVH1924	45x45				-			208, 32			
FSVH2104	47.5x47.5								208, 32	416, 64	
FSVH2892	55x55									416, 64	624, 96

Table 10: Virtex UltraScale+ Device-Package Combinations and Maximum I/Os

Notes:

1. Go to Ordering Information for package designation details.

2. All packages have 1.0mm ball pitch.

3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the <u>UltraScale Architecture Product Selection Guide</u> for details on inter-family migration.

4. GTY transceivers in the FLGF1924 package support data rates up to 16.3Gb/s.

5. These 52.5x52.5mm overhang packages have the same PCB ball footprint as the corresponding 47.5x47.5mm packages (i.e., the same last letter and number sequence) and are footprint compatible.

Zynq UltraScale+: EG Device Feature Summary

Table 13: Zynq UltraScale+: EG Device Feature Summary

	ZU2EG	ZU3EG	ZU4EG	ZU5EG	ZU6EG	ZU7EG	ZU9EG	ZU11EG	ZU15EG	ZU17EG	ZU19EG	
Application Processing Unit	Quad-co	re ARM Corte	x-A53 MPCor	e with CoreSig	ght; NEON & S	Single/Double	Precision Flo	ating Point; 3	2KB/32KB L1	Cache, 1MB	L2 Cache	
Real-Time Processing Unit	Dual-core ARM Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM											
Embedded and External Memory		256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3; External Quad-SPI; NAND; eMMC										
General Connectivity		214 PS I/0	D; UART; CAN	; USB 2.0; 12	C; SPI; 32b C	GPIO; Real Tir	ne Clock; Wa	tchDog Timer	s; Triple Time	r Counters		
High-Speed Connectivity			4 PS	S-GTR; PCIe G	Gen1/2; Seria	I ATA 3.1; Dis	playPort 1.2a	; USB 3.0; S	GMH			
Graphic Processing Unit					ARM Mali-4	100 MP2; 64K	B L2 Cache					
System Logic Cells	103,320	154,350	192,150	256,200	469,446	504,000	599,550	653,100	746,550	926,194	1,143,450	
CLB Flip-Flops	94,464	141,120	175,680	234,240	429,208	460,800	548,160	597,120	682,560	846,806	1,045,440	
CLB LUTs	47,232	70,560	87,840	117,120	214,604	230,400	274,080	298,560	341,280	423,403	522,720	
Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8	9.1	11.3	8.0	9.8	
Block RAM Blocks	150	216	128	144	714	312	912	600	744	796	984	
Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1	21.1	26.2	28.0	34.6	
UltraRAM Blocks	0	0	48	64	0	96	0	80	112	102	128	
UltraRAM (Mb)	0	0	14.0	18.0	0	27.0	0	22.5	31.5	28.7	36.0	
DSP Slices	240	360	728	1,248	1,973	1,728	2,520	2,928	3,528	1,590	1,968	
CMTs	3	3	4	4	4	8	4	8	4	11	11	
Max. HP I/O ⁽¹⁾	156	156	156	156	208	416	208	416	208	572	572	
Max. HD I/O ⁽²⁾	96	96	96	96	120	48	120	96	120	96	96	
System Monitor	2	2	2	2	2	2	2	2	2	2	2	
GTH Transceiver 16.3Gb/s ⁽³⁾	0	0	16	16	24	24	24	32	24	44	44	
GTY Transceivers 32.75Gb/s	0	0	0	0	0	0	0	16	0	28	28	
Transceiver Fractional PLLs	0	0	8	8	12	12	12	24	12	36	36	
PCIe Gen3 x16 and Gen4 x8	0	0	2	2	0	2	0	4	0	4	5	
150G Interlaken	0	0	0	0	0	0	0	1	0	2	4	
100G Ethernet w/ RS-FEC	0	0	0	0	0	0	0	2	0	2	4	

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 14.

Zynq UltraScale+: EG Device Feature Summary

Table	15: Zyng	UltraScale+:	EV Device	Feature	Summary
					J

		-						
	ZU4EV	ZU5EV	ZU7EV					
Application Processing Unit	Quad-core ARM Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating 32KB/32KB L1 Cache, 1MB L2 Cache							
Real-Time Processing Unit	Dual-core ARM Cortex-	Dual-core ARM Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM						
Embedded and External Memory	256KB On-Chip Memory	256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3; External Quad-SPI; NAND; eMMC						
General Connectivity	214 PS I/O; UART; CAN; USB 2	214 PS I/O; UART; CAN; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; WatchDog Timers; Tripl Timer Counters						
High-Speed Connectivity	4 PS-GTR; PCIe Gen	1/2; Serial ATA 3.1; DisplayPort 1	.2a; USB 3.0; SGMII					
Graphic Processing Unit		ARM Mali-400 MP2; 64KB L2 Cache	9					
Video Codec	1	1	1					
System Logic Cells	192,150	256,200	504,000					
CLB Flip-Flops	175,680	234,240	460,800					
CLB LUTs	87,840	117,120	230,400					
Distributed RAM (Mb)	2.6	3.5	6.2					
Block RAM Blocks	128	144	312					
Block RAM (Mb)	4.5	5.1	11.0					
UltraRAM Blocks	48	64	96					
UltraRAM (Mb)	14.0	18.0	27.0					
DSP Slices	728	1,248	1,728					
CMTs	4	4	8					
Max. HP I/O ⁽¹⁾	156	156	416					
Max. HD I/O ⁽²⁾	96	96	48					
System Monitor	2	2	2					
GTH Transceiver 16.3Gb/s ⁽³⁾	16	16	24					
GTY Transceivers 32.75Gb/s	0	0	0					
Transceiver Fractional PLLs	8	8	12					
PCIe Gen3 x16 and Gen4 x8	2	2	2					
150G Interlaken	0	0	0					
100G Ethernet w/ RS-FEC	0	0	0					

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 16.

Graphics Processing Unit (GPU)

The dedicated ARM Mali-400 MP2 GPU in the PS supports 2D and 3D graphics acceleration up to 1080p resolution. The Mali-400 supports OpenGL ES 1.1 and 2.0 for 3D graphics and Open VG 1.1 standards for 2D vector graphics. It has a geometry processor (GP) and 2 pixel processors to perform tile rendering operations in parallel. It has dedicated Memory management units for GP and pixel processors, which supports 4 KB page size. The GPU also has 64KB level-2 (L2) read-only cache. It supports 4X and 16X Full scene Anti-Aliasing (FSAA). It is fully autonomous, enabling maximum parallelization between APU and GPU. It has built-in hardware texture decompression, allowing the texture to remain compressed (in ETC format) in graphics hardware and decompress the required samples on the fly. It also supports efficient alpha blending of multiple layers in hardware without additional bandwidth consumption. It has a pixel fill rate of 2Mpixel/sec/MHz and a triangle rate of 0.1Mvertex/sec/MHz. The GPU supports extensive texture format for RGBA 8888, 565, and 1556 in Mono 8, 16, and YUV formats. For power sensitive applications, the GPU supports clock and power gating for each GP, pixel processors, and L2 cache. During power gating, GPU does not consume any static or dynamic power; during clock gating, it only consumes static power.

Video Codec Unit (VCU)

The video codec unit (VCU) provides multi-standard video encoding and decoding capabilities, including: High Efficiency Video Coding (HEVC), i.e., H.265; and Advanced Video Coding (AVC), i.e., H.264 standards. The VCU is capable of simultaneous encode and decode at rates up to 4Kx2K at 60 frames per second (fps) (approx. 600Mpixel/sec) or 8Kx4K at a reduced frame rate (~15fps).

Input/Output

All UltraScale devices, whether FPGA or MPSoC, have I/O pins for communicating to external components. In addition, in the MPSoC's PS, there are another 78 I/Os that the I/O peripherals use to communicate to external components, referred to as multiplexed I/O (MIO). If more than 78 pins are required by the I/O peripherals, the I/O pins in the PL can be used to extend the MPSoC interfacing capability, referred to as extended MIO (EMIO).

The number of I/O pins in UltraScale FPGAs and in the programmable logic of UltraScale+ MPSoCs varies depending on device and package. Each I/O is configurable and can comply with a large number of I/O standards. The I/Os are classed as high-range (HR), high-performance (HP), or high-density (HD). The HR I/Os offer the widest range of voltage support, from 1.2V to 3.3V. The HP I/Os are optimized for highest performance operation, from 1.0V to 1.8V. The HD I/Os are reduced-feature I/Os organized in banks of 24, providing voltage support from 1.2V to 3.3V.

All I/O pins are organized in banks, with 52 HP or HR pins per bank or 24 HD pins per bank. Each bank has one common V_{CCO} output buffer power supply, which also powers certain input buffers. In addition, HR banks can be split into two half-banks, each with their own V_{CCO} supply. Some single-ended input buffers require an internally generated or an externally applied reference voltage (V_{REF}). V_{REF} pins can be driven directly from the PCB or internally generated using the internal V_{REF} generator circuitry present in each bank.

I/O Electrical Characteristics

Single-ended outputs use a conventional CMOS push/pull output structure driving High towards V_{CCO} or Low towards ground, and can be put into a high-Z state. The system designer can specify the slew rate and the output strength. The input is always active but is usually ignored while the output is active. Each pin can optionally have a weak pull-up or a weak pull-down resistor.

Most signal pin pairs can be configured as differential input pairs or output pairs. Differential input pin pairs can optionally be terminated with a 100Ω internal resistor. All UltraScale devices support differential standards beyond LVDS, including RSDS, BLVDS, differential SSTL, and differential HSTL. Each of the I/Os supports memory I/O standards, such as single-ended and differential HSTL as well as single-ended and differential SSTL. UltraScale+ families add support for MIPI with a dedicated D-PHY in the I/O bank.

3-State Digitally Controlled Impedance and Low Power I/O Features

The 3-state Digitally Controlled Impedance (T_DCI) can control the output drive impedance (series termination) or can provide parallel termination of an input signal to V_{CCO} or split (Thevenin) termination to $V_{CCO}/2$. This allows users to eliminate off-chip termination for signals using T_DCI. In addition to board space savings, the termination automatically turns off when in output mode or when 3-stated, saving considerable power compared to off-chip termination. The I/Os also have low power modes for IBUF and IDELAY to provide further power savings, especially when used to implement memory interfaces.

I/O Logic

Input and Output Delay

All inputs and outputs can be configured as either combinatorial or registered. Double data rate (DDR) is supported by all inputs and outputs. Any input or output can be individually delayed by up to 1,250ps of delay with a resolution of 5–15ps. Such delays are implemented as IDELAY and ODELAY. The number of delay steps can be set by configuration and can also be incremented or decremented while in use. The IDELAY and ODELAY can be cascaded together to double the amount of delay in a single direction.

ISERDES and OSERDES

Many applications combine high-speed, bit-serial I/O with slower parallel operation inside the device. This requires a serializer and deserializer (SerDes) inside the I/O logic. Each I/O pin possesses an IOSERDES (ISERDES and OSERDES) capable of performing serial-to-parallel or parallel-to-serial conversions with programmable widths of 2, 4, or 8 bits. These I/O logic features enable high-performance interfaces, such as Gigabit Ethernet/1000BaseX/SGMII, to be moved from the transceivers to the SelectIO interface.

High-Speed Serial Transceivers

Serial data transmission between devices on the same PCB, over backplanes, and across even longer distances is becoming increasingly important for scaling to 100Gb/s and 400Gb/s line cards. Specialized dedicated on-chip circuitry and differential I/O capable of coping with the signal integrity issues are required at these high data rates.

Three types of transceivers are used in the UltraScale architecture: GTH and GTY in FPGAs and MPSoC PL, and PS-GTR in the MPSoC PS. All transceivers are arranged in groups of four, known as a transceiver Quad. Each serial transceiver is a combined transmitter and receiver. Table 17 compares the available transceivers.

	Kintex UltraScale		Kintex UltraScale+		Virtex UltraScale		Virtex UltraScale+	Zynq UltraScale+		
Туре	GTH	GTY	GTH	GTY	GTH	GTY	GTY	PS-GTR	GTH	GTY
Qty	16–64	0–32	20–60	0–60	20–60	0–60	40–128	4	0-44	0–28
Max. Data Rate	16.3Gb/s	16.3Gb/s	16.3Gb/s	32.75Gb/s	16.3Gb/s	30.5Gb/s	32.75Gb/s	6.0Gb/s	16.3Gb/s	32.75Gb/s
Min. Data Rate	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	1.25Gb/s	0.5Gb/s	0.5Gb/s
Key Apps	 Backplane PCIe Gen4 HMC 	 Backplane PCIe Gen4 HMC 	 Backplane PCIe Gen4 HMC 	 100G+ Optics Chip-to-Chip 25G+ Backplane HMC 	 Backplane PCIe Gen4 HMC 	 100G+ Optics Chip-to-Chip 25G+ Backplane HMC 	 100G + Optics Chip-to-Chip 25G + Backplane HMC 	 PCIe Gen2 USB Ethernet 	 Backplane PCIe Gen4 HMC 	 100G + Optics Chip-to- Chip 25G + Backplane HMC

Table 17: Transceiver Information

The following information in this section pertains to the GTH and GTY only.

The serial transmitter and receiver are independent circuits that use an advanced phase-locked loop (PLL) architecture to multiply the reference frequency input by certain programmable numbers between 4 and 25 to become the bit-serial data clock. Each transceiver has a large number of user-definable features and parameters. All of these can be defined during device configuration, and many can also be modified during operation.

Cache Coherent Interconnect for Accelerators (CCIX)

CCIX is a chip-to-chip interconnect operating at data rates up to 25Gb/s that allows two or more devices to share memory in a cache coherent manner. Using PCIe for the transport layer, CCIX can operate at several standard data rates (2.5, 5, 8, and 16Gb/s) with an additional high-speed 25Gb/s option. The specification employs a subset of full coherency protocols and ensures that FPGAs used as accelerators can coherently share data with processors using different instruction set architectures.

Virtex UltraScale+ HBM devices support CCIX data rates up to 16Gb/s and contain four CCIX ports and at least four integrated blocks for PCIe. Each CCIX port requires the use of one integrated block for PCIe. If not used with a CCIX port, the integrated blocks for PCIe can still be used for PCIe communication.

Integrated Block for Interlaken

Some UltraScale architecture-based devices include integrated blocks for Interlaken. Interlaken is a scalable chip-to-chip interconnect protocol designed to enable transmission speeds from 10Gb/s to 150Gb/s. The Interlaken integrated block in the UltraScale architecture is compliant to revision 1.2 of the Interlaken specification with data striping and de-striping across 1 to 12 lanes. Permitted configurations are: 1 to 12 lanes at up to 12.5Gb/s and 1 to 6 lanes at up to 25.78125Gb/s, enabling flexible support for up to 150Gb/s per integrated block. With multiple Interlaken blocks, certain UltraScale devices enable easy, reliable Interlaken switches and bridges.

Integrated Block for 100G Ethernet

Compliant to the IEEE Std 802.3ba, the 100G Ethernet integrated blocks in the UltraScale architecture provide low latency 100Gb/s Ethernet ports with a wide range of user customization and statistics gathering. With support for 10 x 10.3125Gb/s (CAUI) and 4 x 25.78125Gb/s (CAUI-4) configurations, the integrated block includes both the 100G MAC and PCS logic with support for IEEE Std 1588v2 1-step and 2-step hardware timestamping.

In UltraScale+ devices, the 100G Ethernet blocks contain a Reed Solomon Forward Error Correction (RS-FEC) block, compliant to IEEE Std 802.3bj, that can be used with the Ethernet block or stand alone in user applications. These families also support OTN mapping mode in which the PCS can be operated without using the MAC.

Stacked Silicon Interconnect (SSI) Technology

Many challenges associated with creating high-capacity devices are addressed by Xilinx with the second generation of the pioneering 3D SSI technology. SSI technology enables multiple super-logic regions (SLRs) to be combined on a passive interposer layer, using proven manufacturing and assembly techniques from industry leaders, to create a single device with more than 20,000 low-power inter-SLR connections. Dedicated interface tiles within the SLRs provide ultra-high bandwidth, low latency connectivity to other SLRs. Table 19 shows the number of SLRs in devices that use SSI technology and their dimensions.

	KintexVirtexUltraScaleUltraScale				Virtex UltraScale+										
Device	KU085	KU115	VU125	VU160	VU190	VU440	VU5P	VU7P	VU9P	VU11P	VU13P	VU31P	VU33P	VU35P	VU37P
# SLRs	2	2	2	3	3	3	2	2	3	3	4	1	1	2	3
SLR Width (in regions)	6	6	6	6	6	9	6	6	6	8	8	8	8	8	8
SLR Height (in regions)	5	5	5	5	5	5	5	5	5	4	4	4	4	4	4

Clock Management

The clock generation and distribution components in UltraScale devices are located adjacent to the columns that contain the memory interface and input and output circuitry. This tight coupling of clocking and I/O provides low-latency clocking to the I/O for memory interfaces and other I/O protocols. Within every clock management tile (CMT) resides one mixed-mode clock manager (MMCM), two PLLs, clock distribution buffers and routing, and dedicated circuitry for implementing external memory interfaces.

Mixed-Mode Clock Manager

The mixed-mode clock manager (MMCM) can serve as a frequency synthesizer for a wide range of frequencies and as a jitter filter for incoming clocks. At the center of the MMCM is a voltage-controlled oscillator (VCO), which speeds up and slows down depending on the input voltage it receives from the phase frequency detector (PFD).

There are three sets of programmable frequency dividers (D, M, and O) that are programmable by configuration and during normal operation via the Dynamic Reconfiguration Port (DRP). The pre-divider D reduces the input frequency and feeds one input of the phase/frequency comparator. The feedback divider M acts as a multiplier because it divides the VCO output frequency before feeding the other input of the phase comparator. D and M must be chosen appropriately to keep the VCO within its specified frequency range. The VCO has eight equally-spaced output phases (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). Each phase can be selected to drive one of the output dividers, and each divider is programmable by configuration to divide by any integer from 1 to 128.

The MMCM has three input-jitter filter options: low bandwidth, high bandwidth, or optimized mode. Low-Bandwidth mode has the best jitter attenuation. High-Bandwidth mode has the best phase offset. Optimized mode allows the tools to find the best setting.

Block RAM

Every UltraScale architecture-based device contains a number of 36 Kb block RAMs, each with two completely independent ports that share only the stored data. Each block RAM can be configured as one 36Kb RAM or two independent 18Kb RAMs. Each memory access, read or write, is controlled by the clock. Connections in every block RAM column enable signals to be cascaded between vertically adjacent block RAMs, providing an easy method to create large, fast memory arrays, and FIFOs with greatly reduced power consumption.

All inputs, data, address, clock enables, and write enables are registered. The input address is always clocked (unless address latching is turned off), retaining data until the next operation. An optional output data pipeline register allows higher clock rates at the cost of an extra cycle of latency. During a write operation, the data output can reflect either the previously stored data or the newly written data, or it can remain unchanged. Block RAM sites that remain unused in the user design are automatically powered down to reduce total power consumption. There is an additional pin on every block RAM to control the dynamic power gating feature.

Programmable Data Width

Each port can be configured as $32K \times 1$; $16K \times 2$; $8K \times 4$; $4K \times 9$ (or 8); $2K \times 18$ (or 16); $1K \times 36$ (or 32); or 512×72 (or 64). Whether configured as block RAM or FIFO, the two ports can have different aspect ratios without any constraints. Each block RAM can be divided into two completely independent 18Kb block RAMs that can each be configured to any aspect ratio from $16K \times 1$ to 512×36 . Everything described previously for the full 36Kb block RAM also applies to each of the smaller 18Kb block RAMs. Only in simple dual-port (SDP) mode can data widths of greater than 18bits (18Kb RAM) or 36 bits (36Kb RAM) be accessed. In this mode, one port is dedicated to read operation, the other to write operation. In SDP mode, one side (read or write) can be variable, while the other is fixed to 32/36 or 64/72. Both sides of the dual-port 36Kb RAM can be of variable width.

Error Detection and Correction

Each 64-bit-wide block RAM can generate, store, and utilize eight additional Hamming code bits and perform single-bit error correction and double-bit error detection (ECC) during the read process. The ECC logic can also be used when writing to or reading from external 64- to 72-bit-wide memories.

FIFO Controller

Each block RAM can be configured as a 36Kb FIFO or an 18Kb FIFO. The built-in FIFO controller for single-clock (synchronous) or dual-clock (asynchronous or multirate) operation increments the internal addresses and provides four handshaking flags: full, empty, programmable full, and programmable empty. The programmable flags allow the user to specify the FIFO counter values that make these flags go active. The FIFO width and depth are programmable with support for different read port and write port widths on a single FIFO. A dedicated cascade path allows for easy creation of deeper FIFOs.

UltraRAM

UltraRAM is a high-density, dual-port, synchronous memory block available in UltraScale+ devices. Both of the ports share the same clock and can address all of the 4K x 72 bits. Each port can independently read from or write to the memory array. UltraRAM supports two types of write enable schemes. The first mode is consistent with the block RAM byte write enable mode. The second mode allows gating the data and parity byte writes separately. UltraRAM blocks can be connected together to create larger memory arrays. Dedicated routing in the UltraRAM column enables the entire column height to be connected together. If additional density is required, all the UltraRAM columns in an SLR can be connected together with a few fabric resources to create single instances of RAM approximately 100Mb in size. This makes UltraRAM an ideal solution for replacing external memories such as SRAM. Cascadable anywhere from 288Kb to 100Mb, UltraRAM provides the flexibility to fulfill many different memory requirements.

Error Detection and Correction

Each 64-bit-wide UltraRAM can generate, store and utilize eight additional Hamming code bits and perform single-bit error correction and double-bit error detection (ECC) during the read process.

High Bandwidth Memory (HBM)

Virtex UltraScale+ HBM devices incorporate 4GB HBM stacks adjacent to the FPGA die. Using stacked silicon interconnect technology, the FPGA communicates to the HBM stacks through memory controllers that connect to dedicated low-inductance interconnect in the silicon interposer. Each Virtex UltraScale+ HBM FPGA contains one or two HBM stacks, resulting in up to 8GB of HBM per FPGA.

The FPGA has 32 HBM AXI interfaces used to communicate with the HBM. Through a built-in switch mechanism, any of the 32 HBM AXI interfaces can access any memory address on either one or both of the HBM stacks due to the flexible addressing feature. This flexible connection between the FPGA and the HBM stacks results in easy floorplanning and timing closure. The memory controllers perform read and write reordering to improve bus efficiency. Data integrity is ensured through error checking and correction (ECC) circuitry.

Configurable Logic Block

Every Configurable Logic Block (CLB) in the UltraScale architecture contains 8 LUTs and 16 flip-flops. The LUTs can be configured as either one 6-input LUT with one output, or as two 5-input LUTs with separate outputs but common inputs. Each LUT can optionally be registered in a flip-flop. In addition to the LUTs and flip-flops, the CLB contains arithmetic carry logic and multiplexers to create wider logic functions.

Each CLB contains one slice. There are two types of slices: SLICEL and SLICEM. LUTs in the SLICEM can be configured as 64-bit RAM, as 32-bit shift registers (SRL32), or as two SRL16s. CLBs in the UltraScale architecture have increased routing and connectivity compared to CLBs in previous-generation Xilinx devices. They also have additional control signals to enable superior register packing, resulting in overall higher device utilization.

Interconnect

Various length vertical and horizontal routing resources in the UltraScale architecture that span 1, 2, 4, 5, 12, or 16 CLBs ensure that all signals can be transported from source to destination with ease, providing support for the next generation of wide data buses to be routed across even the highest capacity devices while simultaneously improving quality of results and software run time.

Digital Signal Processing

DSP applications use many binary multipliers and accumulators, best implemented in dedicated DSP slices. All UltraScale devices have many dedicated, low-power DSP slices, combining high speed with small size while retaining system design flexibility.

Each DSP slice fundamentally consists of a dedicated 27 × 18 bit twos complement multiplier and a 48-bit accumulator. The multiplier can be dynamically bypassed, and two 48-bit inputs can feed a single-instruction-multiple-data (SIMD) arithmetic unit (dual 24-bit add/subtract/accumulate or quad 12-bit add/subtract/accumulate), or a logic unit that can generate any one of ten different logic functions of the two operands.

The DSP includes an additional pre-adder, typically used in symmetrical filters. This pre-adder improves performance in densely packed designs and reduces the DSP slice count by up to 50%. The 96-bit-wide XOR function, programmable to 12, 24, 48, or 96-bit widths, enables performance improvements when implementing forward error correction and cyclic redundancy checking algorithms.

The DSP also includes a 48-bit-wide pattern detector that can be used for convergent or symmetric rounding. The pattern detector is also capable of implementing 96-bit-wide logic functions when used in conjunction with the logic unit.

The DSP slice provides extensive pipelining and extension capabilities that enhance the speed and efficiency of many applications beyond digital signal processing, such as wide dynamic bus shifters, memory address generators, wide bus multiplexers, and memory-mapped I/O register files. The accumulator can also be used as a synchronous up/down counter.

System Monitor

The System Monitor blocks in the UltraScale architecture are used to enhance the overall safety, security, and reliability of the system by monitoring the physical environment via on-chip power supply and temperature sensors and external channels to the ADC.

All UltraScale architecture-based devices contain at least one System Monitor. The System Monitor in UltraScale+ FPGAs and the PL of Zynq UltraScale+ MPSoCs is similar to the Kintex UltraScale and Virtex UltraScale devices but with additional features including a PMBus interface.

Zynq UltraScale+ MPSoCs contain an additional System Monitor block in the PS. See Table 20.

Table 20: Key System Monitor Features

	Kintex UltraScale Virtex UltraScale	Kintex UltraScale+ Virtex UltraScale+ Zynq UltraScale+ MPSoC PL	Zynq UltraScale+ MPSoC PS
ADC	10-bit 200kSPS	10-bit 200kSPS	10-bit 1MSPS
Interfaces	JTAG, I2C, DRP	JTAG, I2C, DRP, PMBus	APB

In FPGAs and the MPSoC PL, sensor outputs and up to 17 user-allocated external analog inputs are digitized using a 10-bit 200 kilo-sample-per-second (kSPS) ADC, and the measurements are stored in registers that can be accessed via internal FPGA (DRP), JTAG, PMBus, or I2C interfaces. The I2C interface and PMBus allow the on-chip monitoring to be easily accessed by the System Manager/Host before and after device configuration.

The System Monitor in the MPSoC PS uses a 10-bit, 1 mega-sample-per-second (MSPS) ADC to digitize the sensor outputs. The measurements are stored in registers and are accessed via the Advanced Peripheral Bus (APB) interface by the processors and the platform management unit (PMU) in the PS.

Configuration

The UltraScale architecture-based devices store their customized configuration in SRAM-type internal latches. The configuration storage is volatile and must be reloaded whenever the device is powered up. This storage can also be reloaded at any time. Several methods and data formats for loading configuration are available, determined by the mode pins, with more dedicated configuration datapath pins to simplify the configuration process.

UltraScale architecture-based devices support secure and non-secure boot with optional Advanced Encryption Standard - Galois/Counter Mode (AES-GCM) decryption and authentication logic. If only authentication is required, the UltraScale architecture provides an alternative form of authentication in the form of RSA algorithms. For RSA authentication support in the Kintex UltraScale and Virtex UltraScale families, go to <u>UG570</u>, *UltraScale Architecture Configuration User Guide*.

UltraScale architecture-based devices also have the ability to select between multiple configurations, and support robust field-update methodologies. This is especially useful for updates to a design after the end product has been shipped. Designers can release their product with an early version of the design, thus getting their product to market faster. This feature allows designers to keep their customers current with the most up-to-date design while the product is already deployed in the field.

Booting MPSoCs

Zynq UltraScale+ MPSoCs use a multi-stage boot process that supports both a non-secure and a secure boot. The PS is the master of the boot and configuration process. For a secure boot, the AES-GCM, SHA-3/384 decryption/authentication, and 4096-bit RSA blocks decrypt and authenticate the image.

Upon reset, the device mode pins are read to determine the primary boot device to be used: NAND, Quad-SPI, SD, eMMC, or JTAG. JTAG can only be used as a non-secure boot source and is intended for debugging purposes. One of the CPUs, Cortex-A53 or Cortex-R5, executes code out of on-chip ROM and copies the first stage boot loader (FSBL) from the boot device to the on-chip memory (OCM).

After copying the FSBL to OCM, the processor executes the FSBL. Xilinx supplies example FSBLs or users can create their own. The FSBL initiates the boot of the PS and can load and configure the PL, or configuration of the PL can be deferred to a later stage. The FSBL typically loads either a user application or an optional second stage boot loader (SSBL) such as U-Boot. Users obtain example SSBL from Xilinx or a third party, or they can create their own SSBL. The SSBL continues the boot process by loading code from any of the primary boot devices or from other sources such as USB, Ethernet, etc. If the FSBL did not configure the PL, the SSBL can do so, or again, the configuration can be deferred to a later stage.

The static memory interface controller (NAND, eMMC, or Quad-SPI) is configured using default settings. To improve device configuration speed, these settings can be modified by information provided in the boot image header. The ROM boot image is not user readable or executable after boot.

Configuring FPGAs

The SPI (serial NOR) interface (x1, x2, x4, and dual x4 modes) and the BPI (parallel NOR) interface (x8 and x16 modes) are two common methods used for configuring the FPGA. Users can directly connect an SPI or BPI flash to the FPGA, and the FPGA's internal configuration logic reads the bitstream out of the flash and configures itself, eliminating the need for an external controller. The FPGA automatically detects the bus width on the fly, eliminating the need for any external controls or switches. Bus widths supported are x1, x2, x4, and dual x4 for SPI, and x8 and x16 for BPI. The larger bus widths increase configuration speed and reduce the amount of time it takes for the FPGA to start up after power-on.

In master mode, the FPGA can drive the configuration clock from an internally generated clock, or for higher speed configuration, the FPGA can use an external configuration clock source. This allows high-speed configuration with the ease of use characteristic of master mode. Slave modes up to 32 bits wide that are especially useful for processor-driven configuration are also supported by the FPGA. In addition, the new media configuration access port (MCAP) provides a direct connection between the integrated block for PCIe and the configuration logic to simplify configuration over PCIe.

SEU detection and mitigation (SEM) IP, RSA authentication, post-configuration CRC, and Security Monitor (SecMon) IP are not supported in the KU025 FPGA.

Packaging

The UltraScale devices are available in a variety of organic flip-chip and lidless flip-chip packages supporting different quantities of I/Os and transceivers. Maximum supported performance can depend on the style of package and its material. Always refer to the specific device data sheet for performance specifications by package type.

In flip-chip packages, the silicon device is attached to the package substrate using a high-performance flip-chip process. Decoupling capacitors are mounted on the package substrate to optimize signal integrity under simultaneous switching of outputs (SSO) conditions.

Device Family	Devices	Speed Grade and Temperature Grade						
		Commercial (C)	E	xtended (E)	Industrial (I)			
		0°C to +85°C	0°C to +100°C	0°C to +110°C	–40°C to +100°C			
			-2E (0.85V)		-21 (0.85V)			
	CG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)				
	Devices		-1E (0.85V)		-11 (0.85V)			
					-1LI ⁽³⁾ (0.85V or 0.72V)			
			-2E (0.85V)		-21 (0.85V)			
	ZU2EG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)				
	ZU3EG		-1E (0.85V)		-11 (0.85V)			
					-1LI ⁽³⁾ (0.85V or 0.72V)			
	ZU4EG		-3E (0.90V)					
Zynq	ZU5EG ZU6EG		-2E (0.85V)		-21 (0.85V)			
UltraScale+	ZUBEG ZU7EG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)				
	ZU9EG		-1E (0.85V)		-11 (0.85V)			
	ZU11EG ZU15EG ZU17EG ZU19EG				-1LI ⁽³⁾ (0.85V or 0.72V)			
			-3E (0.90V)					
			-2E (0.85V)		-21 (0.85V)			
	EV Devices			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)				
	Devices		-1E (0.85V)		-1I (0.85V)			
					-1LI ⁽³⁾ (0.85V or 0.72V)			

Table 21: Speed Grade and Temperature Grade (Cont'd)

Notes:

1. KU025 and KU095 are not available in -3E or -1LI speed/temperature grades.

In -2LE speed/temperature grade, devices can operate for a limited time with junction temperature of 110°C. Timing parameters adhere to the same speed file at 110°C as they do below 110°C, regardless of operating voltage (nominal at 0.85V or low voltage at 0.72V). Operation at 110°C Tj is limited to 1% of the device lifetime and can occur sequentially or at regular intervals as long as the total time does not exceed 1% of device lifetime.

3. In Zynq UltraScale+ MPSoCs, when operating the PL at low voltage (0.72V), the PS operates at nominal voltage (0.85V).

Revision History

The following table shows the revision history for this document:

Date	Version	Description of Revisions					
02/15/2017	2.11	Updated Table 1, Table 9: Converted HBM from Gb to GB. Updated Table 11, Table 13, and Table 15: Updated DSP count for Zynq UltraScale+ MPSoCs. Updated Cache Coherent Interconnect for Accelerators (CCIX). Updated High Bandwidth Memory (HBM). Updated Table 21: Added-2E speed grade to all UltraScale+ devices. Removed -3E from XCZU2 and XCZU3.					
11/09/2016	2.10	Updated Table 1. Added HBM devices to Table 9, Table 10, Table 19 and new High Bandwidth Memory (HBM) section. Added Cache Coherent Interconnect for Accelerators (CCIX) section.					
09/27/2016	2.9	Updated Table 5, Table 12, Table 13, and Table 14.					
06/03/2016	2.8	Added Zynq UltraScale+ MPSoC CG devices: Added Table 2. Updated Table 11, Table 12, Table 21, and Figure 5. Created separate tables for EG and EV devices: Table 13, Table 14, Table 15, and Table 16.					
		Updated Table 1, Table 3, Table 5 and notes, Table 6 and notes, Table 7, Table 9, Table 10, Processing System Overview, and Processing System (PS) details.					
02/17/2016	2.7	Added Migrating Devices. Updated Table 4, Table 5, Table 6, Table 10, Table 11, Table 12, and Figure 4.					
12/15/2015	2.6	Updated Table 1, Table 5, Table 6, Table 9, Table 12, and Configuration.					
11/24/2015	2.5	Updated Configuration, Encryption, and System Monitoring, Table 5, Table 9, Table 11, and Table 21.					
10/15/2015	2.4	Updated Table 1, Table 3, Table 5, Table 7, Table 9, and Table 11 with System Logic Co Updated Figure 3. Updated Table 19.					
09/29/2015	2.3	Added A1156 to KU095 in Table 4. Updated Table 5. Updated Max. Distributed RAM Table 9. Updated Distributed RAM in Table 11. Added Table 19. Updated Table 21. Updated Figure 3.					
08/14/2015	2.2	Updated Table 1. Added XCKU025 to Table 3, Table 4, and Table 21. Updated Table 7, Table 9, Table 11, Table 12, Table 18. Updated System Monitor. Added voltage information to Table 21.					
04/27/2015	2.1	Updated Table 1, Table 3, Table 4, Table 5, Table 6, Table 7, Table 10, Table 11, Table 12, Table 17, I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken, Integrated Interface Blocks for PCI Express Designs, USB 3.0/2.0, Clock Management, System Monitor, and Figure 3.					
02/23/2015	2.0	UltraScale+ device information (Kintex UltraScale+ FPGA, Virtex UltraScale+ FPGA, and Zynq UltraScale+ MPSoC) added throughout document.					
12/16/2014	1.6	Updated Table 1; I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken; Table 3, Table 7; Table 8; and Table 17.					
11/17/2014	1.5	Updated I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken; Table 1; Table 4; Table 7; Table 8; Table 17; Input/Output; and Figure 3.					
09/16/2014	1.4	Updated Logic Cell information in Table 1. Updated Table 3; I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken; Table 7; Table 8; Integrated Block for 100G Ethernet; and Figure 3.					
05/20/2014	1.3	Updated Table 8.					
05/13/2014	1.2	Added Ordering Information. Updated Table 1, Clocks and Memory Interfaces, Table 3, Table 7 (removed XCVU145; added XCVU190), Table 8 (removed XCVU145; removed FLVD1924 from XCVU160; added XCVU190; updated Table Notes), Table 17, Integrated Interface Blocks for PCI Express Designs, and Integrated Block for Interlaken, and Memory Interfaces.					