

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	89520
Number of Logic Elements/Cells	1566600
Total RAM Bits	90726400
Number of I/O	832
Number of Gates	-
Voltage - Supply	0.922V ~ 0.979V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	2104-BBGA, FCBGA
Supplier Device Package	2104-FCBGA (47.5x47.5)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcvu125-2flva2104e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Migrating Devices

UltraScale and UltraScale+ families provide footprint compatibility to enable users to migrate designs from one device or family to another. Any two packages with the same footprint identifier code are footprint compatible. For example, Kintex UltraScale devices in the A1156 packages are footprint compatible with Kintex UltraScale+ devices in the A1156 packages. Likewise, Virtex UltraScale devices in the B2104 packages are compatible with Virtex UltraScale+ devices and Kintex UltraScale devices in the B2104 packages. All valid device/package combinations are provided in the Device-Package Combinations and Maximum I/Os tables in this document. Refer to UG583, UltraScale Architecture PCB Design User Guide for more detail on migrating between UltraScale and UltraScale+ devices and packages.

Kintex UltraScale FPGA Feature Summary

Table 3: Kintex UltraScale FPGA Feature Summary

	KU025 ⁽¹⁾	KU035	KU040	KU060	KU085	KU095	KU115
System Logic Cells	318,150	444,343	530,250	725,550	1,088,325	1,176,000	1,451,100
CLB Flip-Flops	290,880	406,256	484,800	663,360	995,040	1,075,200	1,326,720
CLB LUTs	145,440	203,128	242,400	331,680	497,520	537,600	663,360
Maximum Distributed RAM (Mb)	4.1	5.9	7.0	9.1	13.4	4.7	18.3
Block RAM Blocks	360	540	600	1,080	1,620	1,680	2,160
Block RAM (Mb)	12.7	19.0	21.1	38.0	56.9	59.1	75.9
CMTs (1 MMCM, 2 PLLs)	6	10	10	12	22	16	24
I/O DLLs	24	40	40	48	56	64	64
Maximum HP I/Os ⁽²⁾	208	416	416	520	572	650	676
Maximum HR I/Os ⁽³⁾	104	104	104	104	104	52	156
DSP Slices	1,152	1,700	1,920	2,760	4,100	768	5,520
System Monitor	1	1	1	1	2	1	2
PCIe Gen3 x8	1	2	3	3	4	4	6
150G Interlaken	0	0	0	0	0	2	0
100G Ethernet	0	0	0	0	0	2	0
GTH 16.3Gb/s Transceivers ⁽⁴⁾	12	16	20	32	56	32	64
GTY 16.3Gb/s Transceivers ⁽⁵⁾	0	0	0	0	0	32	0
Transceiver Fractional PLLs	0	0	0	0	0	16	0

- 1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section for details.
- 2. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 3. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.
- 4. GTH transceivers in SF/FB packages support data rates up to 12.5Gb/s. See Table 4.
- 5. GTY transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s. See Table 4.

Kintex UltraScale+ FPGA Feature Summary

Table 5: Kintex UltraScale+ FPGA Feature Summary

	КИЗР	KU5P	KU9P	KU11P	KU13P	KU15P
System Logic Cells	355,950	474,600	599,550	653,100	746,550	1,143,450
CLB Flip-Flops	325,440	433,920	548,160	597,120	682,560	1,045,440
CLB LUTs	162,720	216,960	274,080	298,560	341,280	522,720
Max. Distributed RAM (Mb)	4.7	6.1	8.8	9.1	11.3	9.8
Block RAM Blocks	360	480	912	600	744	984
Block RAM (Mb)	12.7	16.9	32.1	21.1	26.2	34.6
UltraRAM Blocks	48	64	0	80	112	128
UltraRAM (Mb)	13.5	18.0	0	22.5	31.5	36.0
CMTs (1 MMCM and 2 PLLs)	4	4	4	8	4	11
Max. HP I/O ⁽¹⁾	208	208	208	416	208	572
Max. HD I/O ⁽²⁾	96	96	96	96	96	96
DSP Slices	1,368	1,824	2,520	2,928	3,528	1,968
System Monitor	1	1	1	1	1	1
GTH Transceiver 16.3Gb/s	0	0	28	32	28	44
GTY Transceivers 32.75Gb/s ⁽³⁾	16	16	0	20	0	32
Transceiver Fractional PLLs	8	8	14	26	14	38
PCIe Gen3 x16 and Gen4 x8	1	1	0	4	0	5
150G Interlaken	0	0	0	1	0	4
100G Ethernet w/RS-FEC	0	1	0	2	0	4

- 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
- 3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s. See Table 6.

Kintex UltraScale+ Device-Package Combinations and Maximum I/Os

Table 6: Kintex UltraScale+ Device-Package Combinations and Maximum I/Os

Dackago	Package	KU3P	KU5P	KU9P	KU11P	KU13P	KU15P
Package (1)(2)(4)	Dimensions (mm)	HD, HP GTH, GTY					
SFVB784 ⁽³⁾	23x23	96, 208 0, 16	96, 208 0, 16				
FFVA676 ⁽³⁾	27x27	48, 208 0, 16	48, 208 0, 16				
FFVB676	27x27	72, 208 0, 16	72, 208 0, 16				
FFVD900 ⁽³⁾	31x31	96, 208 0, 16	96, 208 0, 16		96, 312 16, 0		
FFVE900	31x31			96, 208 28, 0		96, 208 28, 0	
FFVA1156 ⁽³⁾	35x35				48, 416 20, 8		48, 468 20, 8
FFVE1517	40x40				96, 416 32, 20		96, 416 32, 24
FFVA1760	42.5x42.5						96, 416 44, 32
FFVE1760	42.5x42.5						96, 572 32, 24

- 1. Go to Ordering Information for package designation details.
- 2. FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
- 3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s.
- 4. Packages with the same last letter and number sequence, e.g., A676, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.

Virtex UltraScale FPGA Feature Summary

Table 7: Virtex UltraScale FPGA Feature Summary

	VU065	VU080	VU095	VU125	VU160	VU190	VU440
System Logic Cells	783,300	975,000	1,176,000	1,566,600	2,026,500	2,349,900	5,540,850
CLB Flip-Flops	716,160	891,424	1,075,200	1,432,320	1,852,800	2,148,480	5,065,920
CLB LUTs	358,080	445,712	537,600	716,160	926,400	1,074,240	2,532,960
Maximum Distributed RAM (Mb)	4.8	3.9	4.8	9.7	12.7	14.5	28.7
Block RAM Blocks	1,260	1,421	1,728	2,520	3,276	3,780	2,520
Block RAM (Mb)	44.3	50.0	60.8	88.6	115.2	132.9	88.6
CMT (1 MMCM, 2 PLLs)	10	16	16	20	28	30	30
I/O DLLs	40	64	64	80	120	120	120
Maximum HP I/Os ⁽¹⁾	468	780	780	780	650	650	1,404
Maximum HR I/Os ⁽²⁾	52	52	52	104	52	52	52
DSP Slices	600	672	768	1,200	1,560	1,800	2,880
System Monitor	1	1	1	2	3	3	3
PCIe Gen3 x8	2	4	4	4	4	6	6
150G Interlaken	3	6	6	6	8	9	0
100G Ethernet	3	4	4	6	9	9	3
GTH 16.3Gb/s Transceivers	20	32	32	40	52	60	48
GTY 30.5Gb/s Transceivers	20	32	32	40	52	60	0
Transceiver Fractional PLLs	10	16	16	20	26	30	0

^{1.} HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

^{2.} HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.

Virtex UltraScale Device-Package Combinations and Maximum I/Os

Table 8: Virtex UltraScale Device-Package Combinations and Maximum I/Os

	Package	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Package ⁽¹⁾⁽²⁾⁽³⁾	Dimensions (mm)	HR, HP GTH, GTY						
FFVC1517	40x40	52, 468 20, 20	52, 468 20, 20	52, 468 20, 20				
FFVD1517	40x40		52, 286 32, 32	52, 286 32, 32				
FLVD1517	40x40				52, 286 40, 32			
FFVB1760	42.5x42.5		52, 650 32, 16	52, 650 32, 16				
FLVB1760	42.5x42.5				52, 650 36, 16			
FFVA2104	47.5x47.5		52, 780 28, 24	52, 780 28, 24				
FLVA2104	47.5x47.5				52, 780 28, 24			
FFVB2104	47.5x47.5		52, 650 32, 32	52, 650 32, 32				
FLVB2104	47.5x47.5				52, 650 40, 36			
FLGB2104	47.5x47.5					52, 650 40, 36	52, 650 40, 36	
FFVC2104	47.5x47.5			52, 364 32, 32				
FLVC2104	47.5x47.5				52, 364 40, 40			
FLGC2104	47.5x47.5					52, 364 52, 52	52, 364 52, 52	
FLGB2377	50x50							52, 1248 36, 0
FLGA2577	52.5x52.5						0, 448 60, 60	
FLGA2892	55x55							52, 1404 48, 0

- 1. Go to Ordering Information for package designation details.
- 2. All packages have 1.0mm ball pitch.
- 3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.

Zynq UltraScale+: CG Device Feature Summary

Table 11: Zynq UltraScale+: CG Device Feature Summary

	ZU2CG	ZU3CG	ZU4CG	ZU5CG	ZU6CG	ZU7CG	ZU9CG
Application Processing Unit	Dual-core AR	RM Cortex-A53	MPCore with C 32KB/32KE	oreSight; NEOI 3 L1 Cache, 1M	N & Single/Dou B L2 Cache	uble Precision F	loating Point;
Real-Time Processing Unit	Dua	I-core ARM Co	rtex-R5 with Co 32KB/32	oreSight; Singl 2KB L1 Cache,	e/Double Preci and TCM	sion Floating Po	oint;
Embedded and External Memory	256K	(B On-Chip Mer	mory w/ECC; E External	xternal DDR4; Quad-SPI; NAN	DDR3; DDR3L ID; eMMC	; LPDDR4; LPD	DR3;
General Connectivity	214 PS I/O;	UART; CAN; U	SB 2.0; I2C; S	PI; 32b GPIO; Timer Counters	Real Time Cloc	ck; WatchDog T	imers; Triple
High-Speed Connectivity	4	PS-GTR; PCI	Gen1/2; Seria	al ATA 3.1; Disp	olayPort 1.2a;	USB 3.0; SGMI	1
System Logic Cells	103,320	154,350	192,150	256,200	469,446	504,000	599,550
CLB Flip-Flops	94,464	141,120	175,680	234,240	429,208	460,800	548,160
CLB LUTs	47,232	70,560	87,840	117,120	214,604	230,400	274,080
Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8
Block RAM Blocks	150	216	128	144	714	312	912
Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1
UltraRAM Blocks	0	0	48	64	0	96	0
UltraRAM (Mb)	0	0	14.0	18.0	0	27.0	0
DSP Slices	240	360	728	1,248	1,973	1,728	2,520
CMTs	3	3	4	4	4	8	4
Max. HP I/O ⁽¹⁾	156	156	156	156	208	416	208
Max. HD I/O ⁽²⁾	96	96	96	96	120	48	120
System Monitor	2	2	2	2	2	2	2
GTH Transceiver 16.3Gb/s ⁽³⁾	0	0	16	16	24	24	24
GTY Transceivers 32.75Gb/s	0	0	0	0	0	0	0
Transceiver Fractional PLLs	0	0	8	8	12	12	12
PCIe Gen3 x16 and Gen4 x8	0	0	2	2	0	2	0
150G Interlaken	0	0	0	0	0	0	0
100G Ethernet w/ RS-FEC	0	0	0	0	0	0	0

- 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
- 3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 12.

Zynq UltraScale+: EG Device Feature Summary

Table 15: Zynq UltraScale+: EV Device Feature Summary

	ZU4EV	ZU5EV	ZU7EV				
Application Processing Unit	Quad-core ARM Cortex-A53 MPC	Quad-core ARM Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1MB L2 Cache					
Real-Time Processing Unit	Dual-core ARM Cortex-	R5 with CoreSight; Single/Double F 32KB/32KB L1 Cache, and TCM	Precision Floating Point;				
Embedded and External Memory	256KB On-Chip Memory	w/ECC; External DDR4; DDR3; DE External Quad-SPI; NAND; eMMC	DR3L; LPDDR4; LPDDR3;				
General Connectivity	214 PS I/O; UART; CAN; USB 2	.0; I2C; SPI; 32b GPIO; Real Time Timer Counters	Clock; WatchDog Timers; Triple				
High-Speed Connectivity	4 PS-GTR; PCIe Ger	n1/2; Serial ATA 3.1; DisplayPort 1	.2a; USB 3.0; SGMII				
Graphic Processing Unit		ARM Mali-400 MP2; 64KB L2 Cache	9				
Video Codec	1	1	1				
System Logic Cells	192,150	256,200	504,000				
CLB Flip-Flops	175,680	234,240	460,800				
CLB LUTs	87,840	117,120	230,400				
Distributed RAM (Mb)	2.6	3.5	6.2				
Block RAM Blocks	128	144	312				
Block RAM (Mb)	4.5	5.1	11.0				
UltraRAM Blocks	48	64	96				
UltraRAM (Mb)	14.0	18.0	27.0				
DSP Slices	728	1,248	1,728				
CMTs	4	4	8				
Max. HP I/O ⁽¹⁾	156	156	416				
Max. HD I/O ⁽²⁾	96	96	48				
System Monitor	2	2	2				
GTH Transceiver 16.3Gb/s ⁽³⁾	16	16	24				
GTY Transceivers 32.75Gb/s	0	0	0				
Transceiver Fractional PLLs	8	8	12				
PCIe Gen3 x16 and Gen4 x8	2	2	2				
150G Interlaken	0	0	0				
100G Ethernet w/ RS-FEC	0	0	0				

- 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
- 3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 16.

Zynq UltraScale+: EG Device-Package Combinations and Maximum I/Os

Table 16: Zynq UltraScale+: EV Device-Package Combinations and Maximum I/Os

Dackago	Package	ZU4EV	ZU5EV	ZU7EV
Package (1)(2)(3)(4)	Dimensions (mm)	HD, HP GTH, GTY	HD, HP GTH, GTY	HD, HP GTH, GTY
SFVC784 ⁽⁵⁾	23x23	96, 156 4, 0	96, 156 4, 0	
FBVB900	31x31	48, 156 16, 0	48, 156 16, 0	48, 156 16, 0
FFVC1156	35x35			48, 312 20, 0
FFVF1517	40x40			48, 416 24, 0

Notes:

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
- 3. All device package combinations bond out 4 PS-GTR transceivers.
- 4. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.
- 5. Packages with the same last letter and number sequence, e.g., B900, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.

Device Layout

UltraScale devices are arranged in a column-and-grid layout. Columns of resources are combined in different ratios to provide the optimum capability for the device density, target market or application, and device cost. At the core of UltraScale+ MPSoCs is the processing system that displaces some of the full or partial columns of programmable logic resources. Figure 1 shows a device-level view with resources grouped together. For simplicity, certain resources such as the processing system, integrated blocks for PCIe, configuration logic, and System Monitor are not shown.

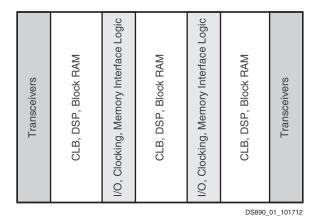


Figure 1: FPGA with Columnar Resources

Resources within the device are divided into segmented clock regions. The height of a clock region is 60 CLBs. A bank of 52 I/Os, 24 DSP slices, 12 block RAMs, or 4 transceiver channels also matches the height of a clock region. The width of a clock region is essentially the same in all cases, regardless of device size or the mix of resources in the region, enabling repeatable timing results. Each segmented clock region

contains vertical and horizontal clock routing that span its full height and width. These horizontal and vertical clock routes can be segmented at the clock region boundary to provide a flexible, high-performance, low-power clock distribution architecture. Figure 2 is a representation of an FPGA divided into regions.

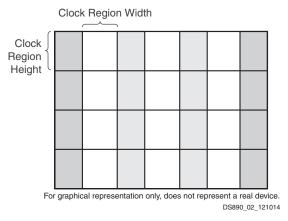


Figure 2: Column-Based FPGA Divided into Clock Regions

Processing System (PS)

Zynq UltraScale+ MPSoCs consist of a PS coupled with programmable logic. The contents of the PS varies between the different Zynq UltraScale+ devices. All devices contain an APU, an RPU, and many peripherals for connecting the multiple processing engines to external components. The EG and EV devices contain a GPU and the EV devices contain a video codec unit (VCU). The components of the PS are connected together and to the PL through a multi-layered ARM AMBA AXI non-blocking interconnect that supports multiple simultaneous master-slave transactions. Traffic through the interconnect can be regulated by the quality of service (QoS) block in the interconnect. Twelve dedicated AXI 32-bit, 64-bit, or 128-bit ports connect the PL to high-speed interconnect and DDR in the PS via a FIFO interface.

There are four independently controllable power domains: the PL plus three within the PS (full power, lower power, and battery power domains). Additionally, many peripherals support clock gating and power gating to further reduce dynamic and static power consumption.

Application Processing Unit (APU)

The APU has a feature-rich dual-core or quad-core ARM Cortex-A53 processor. Cortex-A53 cores are 32-bit/64-bit application processors based on ARM-v8A architecture, offering the best performance-to-power ratio. The ARMv8 architecture supports hardware virtualization. Each of the Cortex-A53 cores has: 32KB of instruction and data L1 caches, with parity and ECC protection respectively; a NEON SIMD engine; and a single and double precision floating point unit. In addition to these blocks, the APU consists of a snoop control unit and a 1MB L2 cache with ECC protection to enhance system-level performance. The snoop control unit keeps the L1 caches coherent thus eliminating the need of spending software bandwidth for coherency. The APU also has a built-in interrupt controller supporting virtual interrupts. The APU communicates to the rest of the PS through 128-bit AXI coherent extension (ACE) port via Cache Coherent Interconnect (CCI) block, using the System Memory Management Unit (SMMU). The APU is also connected to the Programmable Logic (PL), through the 128-bit accelerator coherency port

(ACP), providing a low latency coherent port for accelerators in the PL. To support real-time debug and trace, each core also has an Embedded Trace Macrocell (ETM) that communicates with the ARM CoreSight™ Debug System.

Real-Time Processing Unit (RPU)

The RPU in the PS contains a dual-core ARM Cortex-R5 PS. Cortex-R5 cores are 32-bit real-time processor cores based on ARM-v7R architecture. Each of the Cortex-R5 cores has 32KB of level-1 (L1) instruction and data cache with ECC protection. In addition to the L1 caches, each of the Cortex-R5 cores also has a 128KB tightly coupled memory (TCM) interface for real-time single cycle access. The RPU also has a dedicated interrupt controller. The RPU can operate in either split or lock-step mode. In split mode, both processors run independently of each other. In lock-step mode, they run in parallel with each other, with integrated comparator logic, and the TCMs are used as 256KB unified memory. The RPU communicates with the rest of the PS via the 128-bit AXI-4 ports connected to the low power domain switch. It also communicates directly with the PL through 128-bit low latency AXI-4 ports. To support real-time debug and trace each core also has an embedded trace macrocell (ETM) that communicates with the ARM CoreSight Debug System.

External Memory

The PS can interface to many types of external memories through dedicated memory controllers. The dynamic memory controller supports DDR3, DDR3L, DDR4, LPDDR3, and LPDDR4 memories. The multi-protocol DDR memory controller can be configured to access a 2GB address space in 32-bit addressing mode and up to 32GB in 64-bit addressing mode using a single or dual rank configuration of 8-bit, 16-bit, or 32-bit DRAM memories. Both 32-bit and 64-bit bus access modes are protected by ECC using extra bits.

The SD/eMMC controller supports 1 and 4 bit data interfaces at low, default, high-speed, and ultra-high-speed (UHS) clock rates. This controller also supports 1-, 4-, or 8-bit-wide eMMC interfaces that are compliant to the eMMC 4.51 specification. eMMC is one of the primary boot and configuration modes for Zynq UltraScale+ MPSoCs and supports boot from managed NAND devices. The controller has a built-in DMA for enhanced performance.

The Quad-SPI controller is one of the primary boot and configuration devices. It supports 4-byte and 3-byte addressing modes. In both addressing modes, single, dual-stacked, and dual-parallel configurations are supported. Single mode supports a quad serial NOR flash memory, while in double stacked and double parallel modes, it supports two quad serial NOR flash memories.

The NAND controller is based on ONFI3.1 specification. It has an 8-pin interface and provides 200Mb/s of bandwidth in synchronous mode. It supports 24 bits of ECC thus enabling support for SLC NAND memories. It has two chip-selects to support deeper memory and a built-in DMA for enhanced performance.

Graphics Processing Unit (GPU)

The dedicated ARM Mali-400 MP2 GPU in the PS supports 2D and 3D graphics acceleration up to 1080p resolution. The Mali-400 supports OpenGL ES 1.1 and 2.0 for 3D graphics and Open VG 1.1 standards for 2D vector graphics. It has a geometry processor (GP) and 2 pixel processors to perform tile rendering operations in parallel. It has dedicated Memory management units for GP and pixel processors, which supports 4 KB page size. The GPU also has 64KB level-2 (L2) read-only cache. It supports 4X and 16X Full scene Anti-Aliasing (FSAA). It is fully autonomous, enabling maximum parallelization between APU and GPU. It has built-in hardware texture decompression, allowing the texture to remain compressed (in ETC format) in graphics hardware and decompress the required samples on the fly. It also supports efficient alpha blending of multiple layers in hardware without additional bandwidth consumption. It has a pixel fill rate of 2Mpixel/sec/MHz and a triangle rate of 0.1Mvertex/sec/MHz. The GPU supports extensive texture format for RGBA 8888, 565, and 1556 in Mono 8, 16, and YUV formats. For power sensitive applications, the GPU supports clock and power gating for each GP, pixel processors, and L2 cache. During power gating, GPU does not consume any static or dynamic power; during clock gating, it only consumes static power.

Video Codec Unit (VCU)

The video codec unit (VCU) provides multi-standard video encoding and decoding capabilities, including: High Efficiency Video Coding (HEVC), i.e., H.265; and Advanced Video Coding (AVC), i.e., H.264 standards. The VCU is capable of simultaneous encode and decode at rates up to 4Kx2K at 60 frames per second (fps) (approx. 600Mpixel/sec) or 8Kx4K at a reduced frame rate (~15fps).

Input/Output

All UltraScale devices, whether FPGA or MPSoC, have I/O pins for communicating to external components. In addition, in the MPSoC's PS, there are another 78 I/Os that the I/O peripherals use to communicate to external components, referred to as multiplexed I/O (MIO). If more than 78 pins are required by the I/O peripherals, the I/O pins in the PL can be used to extend the MPSoC interfacing capability, referred to as extended MIO (EMIO).

The number of I/O pins in UltraScale FPGAs and in the programmable logic of UltraScale+ MPSoCs varies depending on device and package. Each I/O is configurable and can comply with a large number of I/O standards. The I/Os are classed as high-range (HR), high-performance (HP), or high-density (HD). The HR I/Os offer the widest range of voltage support, from 1.2V to 3.3V. The HP I/Os are optimized for highest performance operation, from 1.0V to 1.8V. The HD I/Os are reduced-feature I/Os organized in banks of 24, providing voltage support from 1.2V to 3.3V.

All I/O pins are organized in banks, with 52 HP or HR pins per bank or 24 HD pins per bank. Each bank has one common V_{CCO} output buffer power supply, which also powers certain input buffers. In addition, HR banks can be split into two half-banks, each with their own V_{CCO} supply. Some single-ended input buffers require an internally generated or an externally applied reference voltage (V_{REF}). V_{REF} pins can be driven directly from the PCB or internally generated using the internal V_{REF} generator circuitry present in each bank.

I/O Electrical Characteristics

Single-ended outputs use a conventional CMOS push/pull output structure driving High towards V_{CCO} or Low towards ground, and can be put into a high-Z state. The system designer can specify the slew rate and the output strength. The input is always active but is usually ignored while the output is active. Each pin can optionally have a weak pull-up or a weak pull-down resistor.

Most signal pin pairs can be configured as differential input pairs or output pairs. Differential input pin pairs can optionally be terminated with a 100Ω internal resistor. All UltraScale devices support differential standards beyond LVDS, including RSDS, BLVDS, differential SSTL, and differential HSTL. Each of the I/Os supports memory I/O standards, such as single-ended and differential HSTL as well as single-ended and differential SSTL. UltraScale+ families add support for MIPI with a dedicated D-PHY in the I/O bank.

3-State Digitally Controlled Impedance and Low Power I/O Features

The 3-state Digitally Controlled Impedance (T_DCI) can control the output drive impedance (series termination) or can provide parallel termination of an input signal to V_{CCO} or split (Thevenin) termination to $V_{CCO}/2$. This allows users to eliminate off-chip termination for signals using T_DCI. In addition to board space savings, the termination automatically turns off when in output mode or when 3-stated, saving considerable power compared to off-chip termination. The I/Os also have low power modes for IBUF and IDELAY to provide further power savings, especially when used to implement memory interfaces.

I/O Logic

Input and Output Delay

All inputs and outputs can be configured as either combinatorial or registered. Double data rate (DDR) is supported by all inputs and outputs. Any input or output can be individually delayed by up to 1,250ps of delay with a resolution of 5–15ps. Such delays are implemented as IDELAY and ODELAY. The number of delay steps can be set by configuration and can also be incremented or decremented while in use. The IDELAY and ODELAY can be cascaded together to double the amount of delay in a single direction.

ISERDES and **OSERDES**

Many applications combine high-speed, bit-serial I/O with slower parallel operation inside the device. This requires a serializer and deserializer (SerDes) inside the I/O logic. Each I/O pin possesses an IOSERDES (ISERDES and OSERDES) capable of performing serial-to-parallel or parallel-to-serial conversions with programmable widths of 2, 4, or 8 bits. These I/O logic features enable high-performance interfaces, such as Gigabit Ethernet/1000BaseX/SGMII, to be moved from the transceivers to the SelectIO interface.

High-Speed Serial Transceivers

Serial data transmission between devices on the same PCB, over backplanes, and across even longer distances is becoming increasingly important for scaling to 100Gb/s and 400Gb/s line cards. Specialized dedicated on-chip circuitry and differential I/O capable of coping with the signal integrity issues are required at these high data rates.

Three types of transceivers are used in the UltraScale architecture: GTH and GTY in FPGAs and MPSoC PL, and PS-GTR in the MPSoC PS. All transceivers are arranged in groups of four, known as a transceiver Quad. Each serial transceiver is a combined transmitter and receiver. Table 17 compares the available transceivers.

Table 17: Transceiver Information

	Kintex U	ItraScale		intex aScale+	Virtex	UltraScale	Virtex UltraScale+	Z	ynq UltraSca	le+
Туре	GTH	GTY	GTH	GTY	GTH	GTY	GTY	PS-GTR	GTH	GTY
Qty	16–64	0-32	20–60	0–60	20–60	0–60	40–128	4	0-44	0–28
Max. Data Rate	16.3Gb/s	16.3Gb/s	16.3Gb/s	32.75Gb/s	16.3Gb/s	30.5Gb/s	32.75Gb/s	6.0Gb/s	16.3Gb/s	32.75Gb/s
Min. Data Rate	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	0.5Gb/s	1.25Gb/s	0.5Gb/s	0.5Gb/s
Key Apps	Backplane PCIe Gen4 HMC	Backplane PCIe Gen4 HMC	Backplane PCIe Gen4 HMC	• 100G+ Optics • Chip-to-Chip • 25G+ Backplane • HMC	Backplane PCIe Gen4 HMC	• 100G+ Optics • Chip-to-Chip • 25G+ Backplane • HMC	• 100G+ Optics • Chip-to-Chip • 25G+ Backplane • HMC	• PCIe Gen2 • USB • Ethernet	Backplane PCIe Gen4 HMC	• 100G+ Optics • Chip-to- Chip • 25G+ Backplane • HMC

The following information in this section pertains to the GTH and GTY only.

The serial transmitter and receiver are independent circuits that use an advanced phase-locked loop (PLL) architecture to multiply the reference frequency input by certain programmable numbers between 4 and 25 to become the bit-serial data clock. Each transceiver has a large number of user-definable features and parameters. All of these can be defined during device configuration, and many can also be modified during operation.

Integrated Interface Blocks for PCI Express Designs

The UltraScale architecture includes integrated blocks for PCIe technology that can be configured as an Endpoint or Root Port. UltraScale devices are compliant to the PCI Express Base Specification Revision 3.0. UltraScale+ devices are compliant to the PCI Express Base Specification Revision 3.1 for Gen3 and lower data rates, and compatible with the PCI Express Base Specification Revision 4.0 (rev 0.5) for Gen4 data rates.

The Root Port can be used to build the basis for a compatible Root Complex, to allow custom chip-to-chip communication via the PCI Express protocol, and to attach ASSP Endpoint devices, such as Ethernet Controllers or Fibre Channel HBAs, to the FPGA or MPSoC.

This block is highly configurable to system design requirements and can operate up to the maximum lane widths and data rates listed in Table 18.

Table 18: PCIe Maximum Configurations

	Kintex UltraScale	Kintex UltraScale+	Virtex UltraScale	Virtex UltraScale+	Zynq UltraScale+
Gen1 (2.5Gb/s)	x8	x16	x8	x16	x16
Gen2 (5Gb/s)	x8	x16	x8	x16	x16
Gen3 (8Gb/s)	x8	x16	x8	x16	x16
Gen4 (16Gb/s) ⁽¹⁾		x8		x8	x8

Notes:

For high-performance applications, advanced buffering techniques of the block offer a flexible maximum payload size of up to 1,024 bytes. The integrated block interfaces to the integrated high-speed transceivers for serial connectivity and to block RAMs for data buffering. Combined, these elements implement the Physical Layer, Data Link Layer, and Transaction Layer of the PCI Express protocol.

Xilinx provides a light-weight, configurable, easy-to-use LogiCORE™ IP wrapper that ties the various building blocks (the integrated block for PCIe, the transceivers, block RAM, and clocking resources) into an Endpoint or Root Port solution. The system designer has control over many configurable parameters: link width and speed, maximum payload size, FPGA or MPSoC logic interface speeds, reference clock frequency, and base address register decoding and filtering.

^{1.} Transceivers in Kintex UltraScale and Virtex UltraScale devices are capable of operating at Gen4 data rates.

UltraRAM

UltraRAM is a high-density, dual-port, synchronous memory block available in UltraScale+ devices. Both of the ports share the same clock and can address all of the 4K x 72 bits. Each port can independently read from or write to the memory array. UltraRAM supports two types of write enable schemes. The first mode is consistent with the block RAM byte write enable mode. The second mode allows gating the data and parity byte writes separately. UltraRAM blocks can be connected together to create larger memory arrays. Dedicated routing in the UltraRAM column enables the entire column height to be connected together. If additional density is required, all the UltraRAM columns in an SLR can be connected together with a few fabric resources to create single instances of RAM approximately 100Mb in size. This makes UltraRAM an ideal solution for replacing external memories such as SRAM. Cascadable anywhere from 288Kb to 100Mb, UltraRAM provides the flexibility to fulfill many different memory requirements.

Error Detection and Correction

Each 64-bit-wide UltraRAM can generate, store and utilize eight additional Hamming code bits and perform single-bit error correction and double-bit error detection (ECC) during the read process.

High Bandwidth Memory (HBM)

Virtex UltraScale+ HBM devices incorporate 4GB HBM stacks adjacent to the FPGA die. Using stacked silicon interconnect technology, the FPGA communicates to the HBM stacks through memory controllers that connect to dedicated low-inductance interconnect in the silicon interposer. Each Virtex UltraScale+ HBM FPGA contains one or two HBM stacks, resulting in up to 8GB of HBM per FPGA.

The FPGA has 32 HBM AXI interfaces used to communicate with the HBM. Through a built-in switch mechanism, any of the 32 HBM AXI interfaces can access any memory address on either one or both of the HBM stacks due to the flexible addressing feature. This flexible connection between the FPGA and the HBM stacks results in easy floorplanning and timing closure. The memory controllers perform read and write reordering to improve bus efficiency. Data integrity is ensured through error checking and correction (ECC) circuitry.

Configurable Logic Block

Every Configurable Logic Block (CLB) in the UltraScale architecture contains 8 LUTs and 16 flip-flops. The LUTs can be configured as either one 6-input LUT with one output, or as two 5-input LUTs with separate outputs but common inputs. Each LUT can optionally be registered in a flip-flop. In addition to the LUTs and flip-flops, the CLB contains arithmetic carry logic and multiplexers to create wider logic functions.

Each CLB contains one slice. There are two types of slices: SLICEL and SLICEM. LUTs in the SLICEM can be configured as 64-bit RAM, as 32-bit shift registers (SRL32), or as two SRL16s. CLBs in the UltraScale architecture have increased routing and connectivity compared to CLBs in previous-generation Xilinx devices. They also have additional control signals to enable superior register packing, resulting in overall higher device utilization.

Interconnect

Various length vertical and horizontal routing resources in the UltraScale architecture that span 1, 2, 4, 5, 12, or 16 CLBs ensure that all signals can be transported from source to destination with ease, providing support for the next generation of wide data buses to be routed across even the highest capacity devices while simultaneously improving quality of results and software run time.

Digital Signal Processing

DSP applications use many binary multipliers and accumulators, best implemented in dedicated DSP slices. All UltraScale devices have many dedicated, low-power DSP slices, combining high speed with small size while retaining system design flexibility.

Each DSP slice fundamentally consists of a dedicated 27 × 18 bit twos complement multiplier and a 48-bit accumulator. The multiplier can be dynamically bypassed, and two 48-bit inputs can feed a single-instruction-multiple-data (SIMD) arithmetic unit (dual 24-bit add/subtract/accumulate or quad 12-bit add/subtract/accumulate), or a logic unit that can generate any one of ten different logic functions of the two operands.

The DSP includes an additional pre-adder, typically used in symmetrical filters. This pre-adder improves performance in densely packed designs and reduces the DSP slice count by up to 50%. The 96-bit-wide XOR function, programmable to 12, 24, 48, or 96-bit widths, enables performance improvements when implementing forward error correction and cyclic redundancy checking algorithms.

The DSP also includes a 48-bit-wide pattern detector that can be used for convergent or symmetric rounding. The pattern detector is also capable of implementing 96-bit-wide logic functions when used in conjunction with the logic unit.

The DSP slice provides extensive pipelining and extension capabilities that enhance the speed and efficiency of many applications beyond digital signal processing, such as wide dynamic bus shifters, memory address generators, wide bus multiplexers, and memory-mapped I/O register files. The accumulator can also be used as a synchronous up/down counter.

System Monitor

The System Monitor blocks in the UltraScale architecture are used to enhance the overall safety, security, and reliability of the system by monitoring the physical environment via on-chip power supply and temperature sensors and external channels to the ADC.

All UltraScale architecture-based devices contain at least one System Monitor. The System Monitor in UltraScale+ FPGAs and the PL of Zynq UltraScale+ MPSoCs is similar to the Kintex UltraScale and Virtex UltraScale devices but with additional features including a PMBus interface.

Zynq UltraScale+ MPSoCs contain an additional System Monitor block in the PS. See Table 20.

Table 20: Key System Monitor Features

	Kintex UltraScale Virtex UltraScale	Kintex UltraScale+ Virtex UltraScale+ Zynq UltraScale+ MPSoC PL	Zynq UltraScale+ MPSoC PS
ADC	10-bit 200kSPS	10-bit 200kSPS	10-bit 1MSPS
Interfaces	JTAG, I2C, DRP	JTAG, I2C, DRP, PMBus	APB

In FPGAs and the MPSoC PL, sensor outputs and up to 17 user-allocated external analog inputs are digitized using a 10-bit 200 kilo-sample-per-second (kSPS) ADC, and the measurements are stored in registers that can be accessed via internal FPGA (DRP), JTAG, PMBus, or I2C interfaces. The I2C interface and PMBus allow the on-chip monitoring to be easily accessed by the System Manager/Host before and after device configuration.

The System Monitor in the MPSoC PS uses a 10-bit, 1 mega-sample-per-second (MSPS) ADC to digitize the sensor outputs. The measurements are stored in registers and are accessed via the Advanced Peripheral Bus (APB) interface by the processors and the platform management unit (PMU) in the PS.

Configuration

The UltraScale architecture-based devices store their customized configuration in SRAM-type internal latches. The configuration storage is volatile and must be reloaded whenever the device is powered up. This storage can also be reloaded at any time. Several methods and data formats for loading configuration are available, determined by the mode pins, with more dedicated configuration datapath pins to simplify the configuration process.

UltraScale architecture-based devices support secure and non-secure boot with optional Advanced Encryption Standard - Galois/Counter Mode (AES-GCM) decryption and authentication logic. If only authentication is required, the UltraScale architecture provides an alternative form of authentication in the form of RSA algorithms. For RSA authentication support in the Kintex UltraScale and Virtex UltraScale families, go to UG570, UltraScale Architecture Configuration User Guide.

UltraScale architecture-based devices also have the ability to select between multiple configurations, and support robust field-update methodologies. This is especially useful for updates to a design after the end product has been shipped. Designers can release their product with an early version of the design, thus getting their product to market faster. This feature allows designers to keep their customers current with the most up-to-date design while the product is already deployed in the field.

Booting MPSoCs

Zynq UltraScale+ MPSoCs use a multi-stage boot process that supports both a non-secure and a secure boot. The PS is the master of the boot and configuration process. For a secure boot, the AES-GCM, SHA-3/384 decryption/authentication, and 4096-bit RSA blocks decrypt and authenticate the image.

Upon reset, the device mode pins are read to determine the primary boot device to be used: NAND, Quad-SPI, SD, eMMC, or JTAG. JTAG can only be used as a non-secure boot source and is intended for debugging purposes. One of the CPUs, Cortex-A53 or Cortex-R5, executes code out of on-chip ROM and copies the first stage boot loader (FSBL) from the boot device to the on-chip memory (OCM).

Ordering Information

Table 21 shows the speed and temperature grades available in the different device families. V_{CCINT} supply voltage is listed in parentheses.

Table 21: Speed Grade and Temperature Grade

Device Family	Devices	Speed Grade and Temperature Grade			
		Commercial Extended (C) (E)		Industrial (I)	
		0°C to +85°C	0°C to +100°C	0°C to +110°C	-40°C to +100°C
Kintex UltraScale	All VU065 VU080 VU095 VU125 VU160 VU190 VU440		-3E ⁽¹⁾ (1.0V)		
			-2E (0.95V)		-21 (0.95V)
		-1C (0.95V)			-1I (0.95V)
					-1LI ⁽¹⁾ (0.95V or 0.90V)
Kintex UltraScale+	All		-3E (0.90V)		
			-2E (0.85V)		-2I (0.85V)
				-2LE ⁽²⁾ (0.85V or 0.72V)	
			-1E (0.85V)		-1I (0.85V)
					-1LI (0.85V or 0.72V)
Virtex UltraScale	VU080 VU095 VU125 VU160		-3E (1.0V)		
			-2E (0.95V)		-21 (0.95V)
			-1HE (0.95V or 1.0V)		-1I (0.95V)
			-3E (1.0V)		
	VU440		-2E (0.95V)		-21 (0.95V)
		-1C (0.95V)	Extended (E) 5°C 0°C to +100°C 0°C to +110°C -3E(1) (1.0V) -2E (0.95V) V) -3E (0.90V) -2E (0.85V) -1E (0.85V) -3E (1.0V) -2E (0.95V) -1HE (0.95V or 1.0V) -3E (1.0V) -2E (0.95V)	-1I (0.95V)	
Virtex UltraScale+	VU5P VU7P VU9P VU11P		-3E (0.90V)		
			-2E (0.85V)		-21 (0.85V)
				-2LE ⁽²⁾ (0.85V or 0.72V)	
			-1E (0.85V)		-1I (0.85V)
	VU33P VU35P		-3E (0.90V)		
			-2E (0.85V)		
				-2LE ⁽²⁾ (0.85V or 0.72V)	
			-1E (0.85V)		

Date	Version	Description of Revisions
02/06/2014	1.1	Updated PCIe information in Table 1 and Table 3. Added FFVJ1924 package to Table 8.
12/10/2013	1.0	Initial Xilinx release.