

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	75072
Number of Logic Elements/Cells	1313763
Total RAM Bits	190976000
Number of I/O	702
Number of Gates	-
Voltage - Supply	0.825V ~ 0.876V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	2104-BBGA, FCBGA
Supplier Device Package	2104-FCBGA (47.5x47.5)
Purchase URL	https://www.e-xfl.com/product-detail/xillinx/xcvu5p-1flvb2104e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Migrating Devices

UltraScale and UltraScale+ families provide footprint compatibility to enable users to migrate designs from one device or family to another. Any two packages with the same footprint identifier code are footprint compatible. For example, Kintex UltraScale devices in the A1156 packages are footprint compatible with Kintex UltraScale+ devices in the A1156 packages. Likewise, Virtex UltraScale devices in the B2104 packages are compatible with Virtex UltraScale+ devices and Kintex UltraScale devices in the B2104 packages. All valid device/package combinations are provided in the Device-Package Combinations and Maximum I/Os tables in this document. Refer to UG583, UltraScale Architecture PCB Design User Guide for more detail on migrating between UltraScale and UltraScale+ devices and packages.

Kintex UltraScale FPGA Feature Summary

Table 3: Kintex UltraScale FPGA Feature Summary

	KU025 ⁽¹⁾	KU035	KU040	KU060	KU085	KU095	KU115
System Logic Cells	318,150	444,343	530,250	725,550	1,088,325	1,176,000	1,451,100
CLB Flip-Flops	290,880	406,256	484,800	663,360	995,040	1,075,200	1,326,720
CLB LUTs	145,440	203,128	242,400	331,680	497,520	537,600	663,360
Maximum Distributed RAM (Mb)	4.1	5.9	7.0	9.1	13.4	4.7	18.3
Block RAM Blocks	360	540	600	1,080	1,620	1,680	2,160
Block RAM (Mb)	12.7	19.0	21.1	38.0	56.9	59.1	75.9
CMTs (1 MMCM, 2 PLLs)	6	10	10	12	22	16	24
I/O DLLs	24	40	40	48	56	64	64
Maximum HP I/Os ⁽²⁾	208	416	416	520	572	650	676
Maximum HR I/Os ⁽³⁾	104	104	104	104	104	52	156
DSP Slices	1,152	1,700	1,920	2,760	4,100	768	5,520
System Monitor	1	1	1	1	2	1	2
PCIe Gen3 x8	1	2	3	3	4	4	6
150G Interlaken	0	0	0	0	0	2	0
100G Ethernet	0	0	0	0	0	2	0
GTH 16.3Gb/s Transceivers ⁽⁴⁾	12	16	20	32	56	32	64
GTY 16.3Gb/s Transceivers ⁽⁵⁾	0	0	0	0	0	32	0
Transceiver Fractional PLLs	0	0	0	0	0	16	0

- 1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section for details.
- 2. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 3. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.
- 4. GTH transceivers in SF/FB packages support data rates up to 12.5Gb/s. See Table 4.
- 5. GTY transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s. See Table 4.

Kintex UltraScale Device-Package Combinations and Maximum I/Os

Table 4: Kintex UltraScale Device-Package Combinations and Maximum I/Os

Daalaana	Package	KU025	KU035	KU040	KU060	KU085	KU095	KU115
Package (1)(2)(3)	Dimensions (mm)	HR, HP GTH	HR, HP GTH, GTY ⁽⁴⁾	HR, HP GTH				
SFVA784 ⁽⁵⁾	23x23		104, 364 8	104, 364 8				
FBVA676 ⁽⁵⁾	27x27		104, 208 16	104, 208 16				
FBVA900 ⁽⁵⁾	31x31		104, 364 16	104, 364 16				
FFVA1156	35x35	104, 208 12	104, 416 16	104, 416 20	104, 416 28		52, 468 20, 8	
FFVA1517	40x40				104, 520 32			
FLVA1517	40x40					104, 520 48		104, 520 48
FFVC1517	40x40						52, 468 20, 20	
FLVD1517	40x40							104, 234 64
FFVB1760	42.5x42.5						52, 650 32, 16	
FLVB1760	42.5x42.5					104, 572 44		104, 598 52
FLVD1924	45x45							156, 676 52
FLVF1924	45x45					104, 520 56		104, 624 64
FLVA2104	47.5x47.5							156, 676 52
FFVB2104	47.5x47.5						52, 650 32, 32	
FLVB2104	47.5x47.5							104, 598 64

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF/FL packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
- 3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.
- 4. GTY transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s.
- 5. GTH transceivers in SF/FB packages support data rates up to 12.5Gb/s.

Virtex UltraScale Device-Package Combinations and Maximum I/Os

Table 8: Virtex UltraScale Device-Package Combinations and Maximum I/Os

	Package	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Package ⁽¹⁾⁽²⁾⁽³⁾	Dimensions (mm)	HR, HP GTH, GTY						
FFVC1517	40x40	52, 468 20, 20	52, 468 20, 20	52, 468 20, 20				
FFVD1517	40x40		52, 286 32, 32	52, 286 32, 32				
FLVD1517	40x40				52, 286 40, 32			
FFVB1760	42.5x42.5		52, 650 32, 16	52, 650 32, 16				
FLVB1760	42.5x42.5				52, 650 36, 16			
FFVA2104	47.5x47.5		52, 780 28, 24	52, 780 28, 24				
FLVA2104	47.5x47.5				52, 780 28, 24			
FFVB2104	47.5x47.5		52, 650 32, 32	52, 650 32, 32				
FLVB2104	47.5x47.5				52, 650 40, 36			
FLGB2104	47.5x47.5					52, 650 40, 36	52, 650 40, 36	
FFVC2104	47.5x47.5			52, 364 32, 32				
FLVC2104	47.5x47.5				52, 364 40, 40			
FLGC2104	47.5x47.5					52, 364 52, 52	52, 364 52, 52	
FLGB2377	50x50							52, 1248 36, 0
FLGA2577	52.5x52.5						0, 448 60, 60	
FLGA2892	55x55							52, 1404 48, 0

- 1. Go to Ordering Information for package designation details.
- 2. All packages have 1.0mm ball pitch.
- 3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.

Zynq UltraScale+: CG Device Feature Summary

Table 11: Zynq UltraScale+: CG Device Feature Summary

	ZU2CG	ZU3CG	ZU4CG	ZU5CG	ZU6CG	ZU7CG	ZU9CG			
Application Processing Unit	Dual-core AR	Dual-core ARM Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1MB L2 Cache								
Real-Time Processing Unit	Dua	II-core ARM Co	rtex-R5 with Co 32KB/32	oreSight; Singl 2KB L1 Cache,	e/Double Preci and TCM	sion Floating Po	oint;			
Embedded and External Memory	256K	(B On-Chip Mer	mory w/ECC; E External	xternal DDR4; Quad-SPI; NAN	DDR3; DDR3L ID; eMMC	; LPDDR4; LPD	DR3;			
General Connectivity	214 PS I/O;	UART; CAN; U	SB 2.0; I2C; S	PI; 32b GPIO; Timer Counters	Real Time Cloc	k; WatchDog T	imers; Triple			
High-Speed Connectivity	4	PS-GTR; PCI	Gen1/2; Seria	al ATA 3.1; Disp	olayPort 1.2a;	USB 3.0; SGMI				
System Logic Cells	103,320	154,350	192,150	256,200	469,446	504,000	599,550			
CLB Flip-Flops	94,464	141,120	175,680	234,240	429,208	460,800	548,160			
CLB LUTs	47,232	70,560	87,840	117,120	214,604	230,400	274,080			
Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8			
Block RAM Blocks	150	216	128	144	714	312	912			
Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1			
UltraRAM Blocks	0	0	48	64	0	96	0			
UltraRAM (Mb)	0	0	14.0	18.0	0	27.0	0			
DSP Slices	240	360	728	1,248	1,973	1,728	2,520			
CMTs	3	3	4	4	4	8	4			
Max. HP I/O ⁽¹⁾	156	156	156	156	208	416	208			
Max. HD I/O ⁽²⁾	96	96	96	96	120	48	120			
System Monitor	2	2	2	2	2	2	2			
GTH Transceiver 16.3Gb/s ⁽³⁾	0	0	16	16	24	24	24			
GTY Transceivers 32.75Gb/s	0	0	0	0	0	0	0			
Transceiver Fractional PLLs	0	0	8	8	12	12	12			
PCIe Gen3 x16 and Gen4 x8	0	0	2	2	0	2	0			
150G Interlaken	0	0	0	0	0	0	0			
100G Ethernet w/ RS-FEC	0	0	0	0	0	0	0			

- 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
- 3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 12.

Zynq UltraScale+: CG Device-Package Combinations and Maximum I/Os

Table 12: Zynq UltraScale+: CG Device-Package Combinations and Maximum I/Os

Package	Package	ZU2CG	ZU3CG	ZU4CG	ZU5CG	ZU6CG	ZU7CG	ZU9CG
(1)(2)(3)(4)(5)	Dimensions (mm)	HD, HP GTH, GTY						
SBVA484 ⁽⁶⁾	19x19	24, 58 0, 0	24, 58 0, 0					
SFVA625	21x21	24, 156 0, 0	24, 156 0, 0					
SFVC784 ⁽⁷⁾	23x23	96, 156 0, 0	96, 156 0, 0	96, 156 4, 0	96, 156 4, 0			
FBVB900	31x31			48, 156 16, 0	48, 156 16, 0		48, 156 16, 0	
FFVC900	31x31					48, 156 16, 0		48, 156 16, 0
FFVB1156	35x35					120, 208 24, 0		120, 208 24, 0
FFVC1156	35x35						48, 312 20, 0	
FFVF1517	40x40						48, 416 24, 0	

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF packages have 1.0mm ball pitch. SB/SF packages have 0.8mm ball pitch.
- 3. All device package combinations bond out 4 PS-GTR transceivers.
- All device package combinations bond out 214 PS I/O except ZU2CG and ZU3CG in the SBVA484 and SFVA625 packages, which bond out 170 PS I/Os.
- 5. Packages with the same last letter and number sequence, e.g., A484, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.
- 6. All 58 HP I/O pins are powered by the same V_{CCO} supply.
- 7. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.

Zynq UltraScale+: EG Device Feature Summary

Table 13: Zynq UltraScale+: EG Device Feature Summary

	ZU2EG	ZU3EG	ZU4EG	ZU5EG	ZU6EG	ZU7EG	ZU9EG	ZU11EG	ZU15EG	ZU17EG	ZU19EG
Application Processing Unit	Quad-co	Quad-core ARM Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1MB L2 Cache									
Real-Time Processing Unit		Dual-core ARM Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM									
Embedded and External Memory			256KB (On-Chip Memo	ory w/ECC; Ex External (xternal DDR4; Quad-SPI; NA	DDR3; DDR3 ND; eMMC	BL; LPDDR4; I	_PDDR3;		
General Connectivity		214 PS I/0	D; UART; CAN	; USB 2.0; 12	C; SPI; 32b (GPIO; Real Tir	me Clock; Wa	tchDog Timer	s; Triple Time	r Counters	
High-Speed Connectivity			4 PS	S-GTR; PCIe C	Gen1/2; Seria	I ATA 3.1; Dis	splayPort 1.2a	; USB 3.0; S0	GMII		
Graphic Processing Unit					ARM Mali-4	100 MP2; 64K	B L2 Cache				
System Logic Cells	103,320	154,350	192,150	256,200	469,446	504,000	599,550	653,100	746,550	926,194	1,143,450
CLB Flip-Flops	94,464	141,120	175,680	234,240	429,208	460,800	548,160	597,120	682,560	846,806	1,045,440
CLB LUTs	47,232	70,560	87,840	117,120	214,604	230,400	274,080	298,560	341,280	423,403	522,720
Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8	9.1	11.3	8.0	9.8
Block RAM Blocks	150	216	128	144	714	312	912	600	744	796	984
Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1	21.1	26.2	28.0	34.6
UltraRAM Blocks	0	0	48	64	0	96	0	80	112	102	128
UltraRAM (Mb)	0	0	14.0	18.0	0	27.0	0	22.5	31.5	28.7	36.0
DSP Slices	240	360	728	1,248	1,973	1,728	2,520	2,928	3,528	1,590	1,968
CMTs	3	3	4	4	4	8	4	8	4	11	11
Max. HP I/O ⁽¹⁾	156	156	156	156	208	416	208	416	208	572	572
Max. HD I/O ⁽²⁾	96	96	96	96	120	48	120	96	120	96	96
System Monitor	2	2	2	2	2	2	2	2	2	2	2
GTH Transceiver 16.3Gb/s ⁽³⁾	0	0	16	16	24	24	24	32	24	44	44
GTY Transceivers 32.75Gb/s	0	0	0	0	0	0	0	16	0	28	28
Transceiver Fractional PLLs	0	0	8	8	12	12	12	24	12	36	36
PCIe Gen3 x16 and Gen4 x8	0	0	2	2	0	2	0	4	0	4	5
150G Interlaken	0	0	0	0	0	0	0	1	0	2	4
100G Ethernet w/ RS-FEC	0	0	0	0	0	0	0	2	0	2	4

- 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
- 3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 14.

Zynq UltraScale+: EG Device Feature Summary

Table 15: Zynq UltraScale+: EV Device Feature Summary

	ZU4EV	ZU5EV	ZU7EV
Application Processing Unit	Quad-core ARM Cortex-A53 MPC	ore with CoreSight; NEON & Single 32KB/32KB L1 Cache, 1MB L2 Cach	e/Double Precision Floating Point; e
Real-Time Processing Unit	Dual-core ARM Cortex-	R5 with CoreSight; Single/Double F 32KB/32KB L1 Cache, and TCM	Precision Floating Point;
Embedded and External Memory	256KB On-Chip Memory	w/ECC; External DDR4; DDR3; DE External Quad-SPI; NAND; eMMC	DR3L; LPDDR4; LPDDR3;
General Connectivity	214 PS I/O; UART; CAN; USB 2	.0; I2C; SPI; 32b GPIO; Real Time Timer Counters	Clock; WatchDog Timers; Triple
High-Speed Connectivity	4 PS-GTR; PCIe Ger	n1/2; Serial ATA 3.1; DisplayPort 1	.2a; USB 3.0; SGMII
Graphic Processing Unit		ARM Mali-400 MP2; 64KB L2 Cache	9
Video Codec	1	1	1
System Logic Cells	192,150	256,200	504,000
CLB Flip-Flops	175,680	234,240	460,800
CLB LUTs	87,840	117,120	230,400
Distributed RAM (Mb)	2.6	3.5	6.2
Block RAM Blocks	128	144	312
Block RAM (Mb)	4.5	5.1	11.0
UltraRAM Blocks	48	64	96
UltraRAM (Mb)	14.0	18.0	27.0
DSP Slices	728	1,248	1,728
CMTs	4	4	8
Max. HP I/O ⁽¹⁾	156	156	416
Max. HD I/O ⁽²⁾	96	96	48
System Monitor	2	2	2
GTH Transceiver 16.3Gb/s ⁽³⁾	16	16	24
GTY Transceivers 32.75Gb/s	0	0	0
Transceiver Fractional PLLs	8	8	12
PCIe Gen3 x16 and Gen4 x8	2	2	2
150G Interlaken	0	0	0
100G Ethernet w/ RS-FEC	0	0	0

- 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
- 3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 16.

Zynq UltraScale+: EG Device-Package Combinations and Maximum I/Os

Table 16: Zynq UltraScale+: EV Device-Package Combinations and Maximum I/Os

Dackago	Package	ZU4EV	ZU5EV	ZU7EV
Package (1)(2)(3)(4)	Dimensions (mm)	HD, HP GTH, GTY	HD, HP GTH, GTY	HD, HP GTH, GTY
SFVC784 ⁽⁵⁾	23x23	96, 156 4, 0	96, 156 4, 0	
FBVB900	31x31	48, 156 16, 0	48, 156 16, 0	48, 156 16, 0
FFVC1156	35x35			48, 312 20, 0
FFVF1517	40x40			48, 416 24, 0

Notes:

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
- 3. All device package combinations bond out 4 PS-GTR transceivers.
- 4. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.
- 5. Packages with the same last letter and number sequence, e.g., B900, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.

Device Layout

UltraScale devices are arranged in a column-and-grid layout. Columns of resources are combined in different ratios to provide the optimum capability for the device density, target market or application, and device cost. At the core of UltraScale+ MPSoCs is the processing system that displaces some of the full or partial columns of programmable logic resources. Figure 1 shows a device-level view with resources grouped together. For simplicity, certain resources such as the processing system, integrated blocks for PCIe, configuration logic, and System Monitor are not shown.

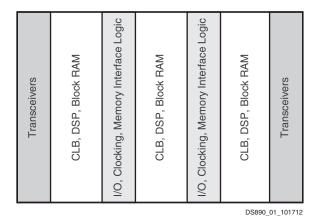


Figure 1: FPGA with Columnar Resources

Resources within the device are divided into segmented clock regions. The height of a clock region is 60 CLBs. A bank of 52 I/Os, 24 DSP slices, 12 block RAMs, or 4 transceiver channels also matches the height of a clock region. The width of a clock region is essentially the same in all cases, regardless of device size or the mix of resources in the region, enabling repeatable timing results. Each segmented clock region

contains vertical and horizontal clock routing that span its full height and width. These horizontal and vertical clock routes can be segmented at the clock region boundary to provide a flexible, high-performance, low-power clock distribution architecture. Figure 2 is a representation of an FPGA divided into regions.

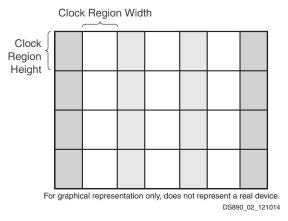


Figure 2: Column-Based FPGA Divided into Clock Regions

Processing System (PS)

Zynq UltraScale+ MPSoCs consist of a PS coupled with programmable logic. The contents of the PS varies between the different Zynq UltraScale+ devices. All devices contain an APU, an RPU, and many peripherals for connecting the multiple processing engines to external components. The EG and EV devices contain a GPU and the EV devices contain a video codec unit (VCU). The components of the PS are connected together and to the PL through a multi-layered ARM AMBA AXI non-blocking interconnect that supports multiple simultaneous master-slave transactions. Traffic through the interconnect can be regulated by the quality of service (QoS) block in the interconnect. Twelve dedicated AXI 32-bit, 64-bit, or 128-bit ports connect the PL to high-speed interconnect and DDR in the PS via a FIFO interface.

There are four independently controllable power domains: the PL plus three within the PS (full power, lower power, and battery power domains). Additionally, many peripherals support clock gating and power gating to further reduce dynamic and static power consumption.

Application Processing Unit (APU)

The APU has a feature-rich dual-core or quad-core ARM Cortex-A53 processor. Cortex-A53 cores are 32-bit/64-bit application processors based on ARM-v8A architecture, offering the best performance-to-power ratio. The ARMv8 architecture supports hardware virtualization. Each of the Cortex-A53 cores has: 32KB of instruction and data L1 caches, with parity and ECC protection respectively; a NEON SIMD engine; and a single and double precision floating point unit. In addition to these blocks, the APU consists of a snoop control unit and a 1MB L2 cache with ECC protection to enhance system-level performance. The snoop control unit keeps the L1 caches coherent thus eliminating the need of spending software bandwidth for coherency. The APU also has a built-in interrupt controller supporting virtual interrupts. The APU communicates to the rest of the PS through 128-bit AXI coherent extension (ACE) port via Cache Coherent Interconnect (CCI) block, using the System Memory Management Unit (SMMU). The APU is also connected to the Programmable Logic (PL), through the 128-bit accelerator coherency port

(ACP), providing a low latency coherent port for accelerators in the PL. To support real-time debug and trace, each core also has an Embedded Trace Macrocell (ETM) that communicates with the ARM CoreSight™ Debug System.

Real-Time Processing Unit (RPU)

The RPU in the PS contains a dual-core ARM Cortex-R5 PS. Cortex-R5 cores are 32-bit real-time processor cores based on ARM-v7R architecture. Each of the Cortex-R5 cores has 32KB of level-1 (L1) instruction and data cache with ECC protection. In addition to the L1 caches, each of the Cortex-R5 cores also has a 128KB tightly coupled memory (TCM) interface for real-time single cycle access. The RPU also has a dedicated interrupt controller. The RPU can operate in either split or lock-step mode. In split mode, both processors run independently of each other. In lock-step mode, they run in parallel with each other, with integrated comparator logic, and the TCMs are used as 256KB unified memory. The RPU communicates with the rest of the PS via the 128-bit AXI-4 ports connected to the low power domain switch. It also communicates directly with the PL through 128-bit low latency AXI-4 ports. To support real-time debug and trace each core also has an embedded trace macrocell (ETM) that communicates with the ARM CoreSight Debug System.

External Memory

The PS can interface to many types of external memories through dedicated memory controllers. The dynamic memory controller supports DDR3, DDR3L, DDR4, LPDDR3, and LPDDR4 memories. The multi-protocol DDR memory controller can be configured to access a 2GB address space in 32-bit addressing mode and up to 32GB in 64-bit addressing mode using a single or dual rank configuration of 8-bit, 16-bit, or 32-bit DRAM memories. Both 32-bit and 64-bit bus access modes are protected by ECC using extra bits.

The SD/eMMC controller supports 1 and 4 bit data interfaces at low, default, high-speed, and ultra-high-speed (UHS) clock rates. This controller also supports 1-, 4-, or 8-bit-wide eMMC interfaces that are compliant to the eMMC 4.51 specification. eMMC is one of the primary boot and configuration modes for Zynq UltraScale+ MPSoCs and supports boot from managed NAND devices. The controller has a built-in DMA for enhanced performance.

The Quad-SPI controller is one of the primary boot and configuration devices. It supports 4-byte and 3-byte addressing modes. In both addressing modes, single, dual-stacked, and dual-parallel configurations are supported. Single mode supports a quad serial NOR flash memory, while in double stacked and double parallel modes, it supports two quad serial NOR flash memories.

The NAND controller is based on ONFI3.1 specification. It has an 8-pin interface and provides 200Mb/s of bandwidth in synchronous mode. It supports 24 bits of ECC thus enabling support for SLC NAND memories. It has two chip-selects to support deeper memory and a built-in DMA for enhanced performance.

Transmitter

The transmitter is fundamentally a parallel-to-serial converter with a conversion ratio of 16, 20, 32, 40, 64, or 80 for the GTH and 16, 20, 32, 40, 64, 80, 128, or 160 for the GTY. This allows the designer to trade off datapath width against timing margin in high-performance designs. These transmitter outputs drive the PC board with a single-channel differential output signal. TXOUTCLK is the appropriately divided serial data clock and can be used directly to register the parallel data coming from the internal logic. The incoming parallel data is fed through an optional FIFO and has additional hardware support for the 8B/10B, 64B/66B, or 64B/67B encoding schemes to provide a sufficient number of transitions. The bit-serial output signal drives two package pins with differential signals. This output signal pair has programmable signal swing as well as programmable pre- and post-emphasis to compensate for PC board losses and other interconnect characteristics. For shorter channels, the swing can be reduced to reduce power consumption.

Receiver

The receiver is fundamentally a serial-to-parallel converter, changing the incoming bit-serial differential signal into a parallel stream of words, each 16, 20, 32, 40, 64, or 80 bits in the GTH or 16, 20, 32, 40, 64, 80, 128, or 160 for the GTY. This allows the designer to trade off internal datapath width against logic timing margin. The receiver takes the incoming differential data stream, feeds it through programmable DC automatic gain control, linear and decision feedback equalizers (to compensate for PC board, cable, optical and other interconnect characteristics), and uses the reference clock input to initiate clock recognition. There is no need for a separate clock line. The data pattern uses non-return-to-zero (NRZ) encoding and optionally ensures sufficient data transitions by using the selected encoding scheme. Parallel data is then transferred into the device logic using the RXUSRCLK clock. For short channels, the transceivers offer a special low-power mode (LPM) to reduce power consumption by approximately 30%. The receiver DC automatic gain control and linear and decision feedback equalizers can optionally "auto-adapt" to automatically learn and compensate for different interconnect characteristics. This enables even more margin for 10G+ and 25G+ backplanes.

Out-of-Band Signaling

The transceivers provide out-of-band (OOB) signaling, often used to send low-speed signals from the transmitter to the receiver while high-speed serial data transmission is not active. This is typically done when the link is in a powered-down state or has not yet been initialized. This benefits PCIe and SATA/SAS and QPI applications.

Integrated Interface Blocks for PCI Express Designs

The UltraScale architecture includes integrated blocks for PCIe technology that can be configured as an Endpoint or Root Port. UltraScale devices are compliant to the PCI Express Base Specification Revision 3.0. UltraScale+ devices are compliant to the PCI Express Base Specification Revision 3.1 for Gen3 and lower data rates, and compatible with the PCI Express Base Specification Revision 4.0 (rev 0.5) for Gen4 data rates.

The Root Port can be used to build the basis for a compatible Root Complex, to allow custom chip-to-chip communication via the PCI Express protocol, and to attach ASSP Endpoint devices, such as Ethernet Controllers or Fibre Channel HBAs, to the FPGA or MPSoC.

This block is highly configurable to system design requirements and can operate up to the maximum lane widths and data rates listed in Table 18.

Table 18: PCIe Maximum Configurations

	Kintex UltraScale	Kintex UltraScale+	Virtex UltraScale	Virtex UltraScale+	Zynq UltraScale+
Gen1 (2.5Gb/s)	x8	x16	x8	x16	x16
Gen2 (5Gb/s)	x8	x16	x8	x16	x16
Gen3 (8Gb/s)	x8	x16	x8	x16	x16
Gen4 (16Gb/s) ⁽¹⁾		x8		x8	x8

Notes:

For high-performance applications, advanced buffering techniques of the block offer a flexible maximum payload size of up to 1,024 bytes. The integrated block interfaces to the integrated high-speed transceivers for serial connectivity and to block RAMs for data buffering. Combined, these elements implement the Physical Layer, Data Link Layer, and Transaction Layer of the PCI Express protocol.

Xilinx provides a light-weight, configurable, easy-to-use LogiCORE™ IP wrapper that ties the various building blocks (the integrated block for PCIe, the transceivers, block RAM, and clocking resources) into an Endpoint or Root Port solution. The system designer has control over many configurable parameters: link width and speed, maximum payload size, FPGA or MPSoC logic interface speeds, reference clock frequency, and base address register decoding and filtering.

^{1.} Transceivers in Kintex UltraScale and Virtex UltraScale devices are capable of operating at Gen4 data rates.

Cache Coherent Interconnect for Accelerators (CCIX)

CCIX is a chip-to-chip interconnect operating at data rates up to 25Gb/s that allows two or more devices to share memory in a cache coherent manner. Using PCIe for the transport layer, CCIX can operate at several standard data rates (2.5, 5, 8, and 16Gb/s) with an additional high-speed 25Gb/s option. The specification employs a subset of full coherency protocols and ensures that FPGAs used as accelerators can coherently share data with processors using different instruction set architectures.

Virtex UltraScale+ HBM devices support CCIX data rates up to 16Gb/s and contain four CCIX ports and at least four integrated blocks for PCIe. Each CCIX port requires the use of one integrated block for PCIe. If not used with a CCIX port, the integrated blocks for PCIe can still be used for PCIe communication.

Integrated Block for Interlaken

Some UltraScale architecture-based devices include integrated blocks for Interlaken. Interlaken is a scalable chip-to-chip interconnect protocol designed to enable transmission speeds from 10Gb/s to 150Gb/s. The Interlaken integrated block in the UltraScale architecture is compliant to revision 1.2 of the Interlaken specification with data striping and de-striping across 1 to 12 lanes. Permitted configurations are: 1 to 12 lanes at up to 12.5Gb/s and 1 to 6 lanes at up to 25.78125Gb/s, enabling flexible support for up to 150Gb/s per integrated block. With multiple Interlaken blocks, certain UltraScale devices enable easy, reliable Interlaken switches and bridges.

Integrated Block for 100G Ethernet

Compliant to the IEEE Std 802.3ba, the 100G Ethernet integrated blocks in the UltraScale architecture provide low latency 100Gb/s Ethernet ports with a wide range of user customization and statistics gathering. With support for 10 x 10.3125Gb/s (CAUI) and 4 x 25.78125Gb/s (CAUI-4) configurations, the integrated block includes both the 100G MAC and PCS logic with support for IEEE Std 1588v2 1-step and 2-step hardware timestamping.

In UltraScale+ devices, the 100G Ethernet blocks contain a Reed Solomon Forward Error Correction (RS-FEC) block, compliant to IEEE Std 802.3bj, that can be used with the Ethernet block or stand alone in user applications. These families also support OTN mapping mode in which the PCS can be operated without using the MAC.

Block RAM

Every UltraScale architecture-based device contains a number of 36 Kb block RAMs, each with two completely independent ports that share only the stored data. Each block RAM can be configured as one 36Kb RAM or two independent 18Kb RAMs. Each memory access, read or write, is controlled by the clock. Connections in every block RAM column enable signals to be cascaded between vertically adjacent block RAMs, providing an easy method to create large, fast memory arrays, and FIFOs with greatly reduced power consumption.

All inputs, data, address, clock enables, and write enables are registered. The input address is always clocked (unless address latching is turned off), retaining data until the next operation. An optional output data pipeline register allows higher clock rates at the cost of an extra cycle of latency. During a write operation, the data output can reflect either the previously stored data or the newly written data, or it can remain unchanged. Block RAM sites that remain unused in the user design are automatically powered down to reduce total power consumption. There is an additional pin on every block RAM to control the dynamic power gating feature.

Programmable Data Width

Each port can be configured as $32K \times 1$; $16K \times 2$; $8K \times 4$; $4K \times 9$ (or 8); $2K \times 18$ (or 16); $1K \times 36$ (or 32); or 512×72 (or 64). Whether configured as block RAM or FIFO, the two ports can have different aspect ratios without any constraints. Each block RAM can be divided into two completely independent 18Kb block RAMs that can each be configured to any aspect ratio from $16K \times 1$ to 512×36 . Everything described previously for the full 36Kb block RAM also applies to each of the smaller 18Kb block RAMs. Only in simple dual-port (SDP) mode can data widths of greater than 18bits (18Kb RAM) or 36 bits (36Kb RAM) be accessed. In this mode, one port is dedicated to read operation, the other to write operation. In SDP mode, one side (read or write) can be variable, while the other is fixed to 32/36 or 64/72. Both sides of the dual-port 36Kb RAM can be of variable width.

Error Detection and Correction

Each 64-bit-wide block RAM can generate, store, and utilize eight additional Hamming code bits and perform single-bit error correction and double-bit error detection (ECC) during the read process. The ECC logic can also be used when writing to or reading from external 64- to 72-bit-wide memories.

FIFO Controller

Each block RAM can be configured as a 36Kb FIFO or an 18Kb FIFO. The built-in FIFO controller for single-clock (synchronous) or dual-clock (asynchronous or multirate) operation increments the internal addresses and provides four handshaking flags: full, empty, programmable full, and programmable empty. The programmable flags allow the user to specify the FIFO counter values that make these flags go active. The FIFO width and depth are programmable with support for different read port and write port widths on a single FIFO. A dedicated cascade path allows for easy creation of deeper FIFOs.

After copying the FSBL to OCM, the processor executes the FSBL. Xilinx supplies example FSBLs or users can create their own. The FSBL initiates the boot of the PS and can load and configure the PL, or configuration of the PL can be deferred to a later stage. The FSBL typically loads either a user application or an optional second stage boot loader (SSBL) such as U-Boot. Users obtain example SSBL from Xilinx or a third party, or they can create their own SSBL. The SSBL continues the boot process by loading code from any of the primary boot devices or from other sources such as USB, Ethernet, etc. If the FSBL did not configure the PL, the SSBL can do so, or again, the configuration can be deferred to a later stage.

The static memory interface controller (NAND, eMMC, or Quad-SPI) is configured using default settings. To improve device configuration speed, these settings can be modified by information provided in the boot image header. The ROM boot image is not user readable or executable after boot.

Configuring FPGAs

The SPI (serial NOR) interface (x1, x2, x4, and dual x4 modes) and the BPI (parallel NOR) interface (x8 and x16 modes) are two common methods used for configuring the FPGA. Users can directly connect an SPI or BPI flash to the FPGA, and the FPGA's internal configuration logic reads the bitstream out of the flash and configures itself, eliminating the need for an external controller. The FPGA automatically detects the bus width on the fly, eliminating the need for any external controls or switches. Bus widths supported are x1, x2, x4, and dual x4 for SPI, and x8 and x16 for BPI. The larger bus widths increase configuration speed and reduce the amount of time it takes for the FPGA to start up after power-on.

In master mode, the FPGA can drive the configuration clock from an internally generated clock, or for higher speed configuration, the FPGA can use an external configuration clock source. This allows high-speed configuration with the ease of use characteristic of master mode. Slave modes up to 32 bits wide that are especially useful for processor-driven configuration are also supported by the FPGA. In addition, the new media configuration access port (MCAP) provides a direct connection between the integrated block for PCIe and the configuration logic to simplify configuration over PCIe.

SEU detection and mitigation (SEM) IP, RSA authentication, post-configuration CRC, and Security Monitor (SecMon) IP are not supported in the KU025 FPGA.

Packaging

The UltraScale devices are available in a variety of organic flip-chip and lidless flip-chip packages supporting different quantities of I/Os and transceivers. Maximum supported performance can depend on the style of package and its material. Always refer to the specific device data sheet for performance specifications by package type.

In flip-chip packages, the silicon device is attached to the package substrate using a high-performance flip-chip process. Decoupling capacitors are mounted on the package substrate to optimize signal integrity under simultaneous switching of outputs (SSO) conditions.

Table 21: Speed Grade and Temperature Grade (Cont'd)

		Speed Grade and Temperature Grade							
Device Family	Devices	Commercial (C)	E	xtended (E)	Industrial (I)				
		0°C to +85°C	0°C to +100°C	0°C to +110°C	-40°C to +100°C				
			-2E (0.85V)		-2I (0.85V)				
	CG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
	Devices		-1E (0.85V)		-1I (0.85V)				
					-1LI ⁽³⁾ (0.85V or 0.72V)				
			-2E (0.85V)		-2I (0.85V)				
	ZU2EG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
	ZU3EG		-1E (0.85V)		-1I (0.85V)				
					-1LI ⁽³⁾ (0.85V or 0.72V)				
	ZU4EG		-3E (0.90V)						
Zynq	ZU5EG ZU6EG		-2E (0.85V)		-2I (0.85V)				
UltraScale+	ZU7EG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
	ZU9EG		-1E (0.85V)		-1I (0.85V)				
	ZU11EG ZU15EG								
	ZU17EG				-1LI ⁽³⁾ (0.85V or 0.72V)				
	ZU19EG								
			-3E (0.90V)						
	5 , (-2E (0.85V)		-2I (0.85V)				
	EV Devices			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
			-1E (0.85V)		-1I (0.85V)				
					-1LI ⁽³⁾ (0.85V or 0.72V)				

- 1. KU025 and KU095 are not available in -3E or -1LI speed/temperature grades.
- 2. In -2LE speed/temperature grade, devices can operate for a limited time with junction temperature of 110°C. Timing parameters adhere to the same speed file at 110°C as they do below 110°C, regardless of operating voltage (nominal at 0.85V or low voltage at 0.72V). Operation at 110°C Tj is limited to 1% of the device lifetime and can occur sequentially or at regular intervals as long as the total time does not exceed 1% of device lifetime.
- 3. In Zynq UltraScale+ MPSoCs, when operating the PL at low voltage (0.72V), the PS operates at nominal voltage (0.85V).

The ordering information shown in Figure 3 applies to all packages in the Kintex UltraScale and Virtex UltraScale FPGAs. Refer to the Package Marking section of <u>UG575</u>, *UltraScale and UltraScale+ FPGAs Packaging and Pinouts User Guide* for a more detailed explanation of the device markings.

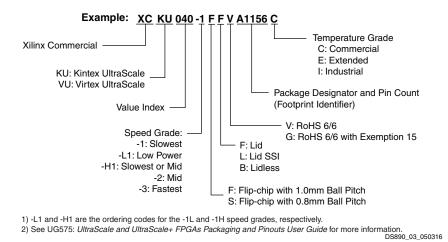


Figure 3: Kintex UltraScale and Virtex UltraScale FPGA Ordering Information

The ordering information shown in Figure 4 applies to all packages in the Kintex UltraScale+ and Virtex UltraScale+ FPGAs, and Figure 5 applies to Zyng UltraScale+s.

The -1L and -2L speed grades in the UltraScale+ families can run at one of two different V_{CCINT} operating voltages. At 0.72V, they operate at similar performance to the Kintex UltraScale and Virtex UltraScale devices with up to 30% reduction in power consumption. At 0.85V, they consume similar power to the Kintex UltraScale and Virtex UltraScale devices, but operate over 30% faster.

For UltraScale+ devices, the information in this document is pre-release, provided ahead of silicon ordering availability. Please contact your Xilinx sales representative for more information on Early Access Programs.

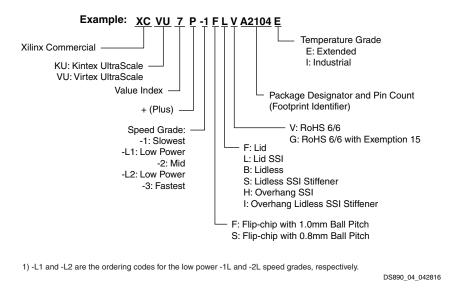


Figure 4: UltraScale+ FPGA Ordering Information

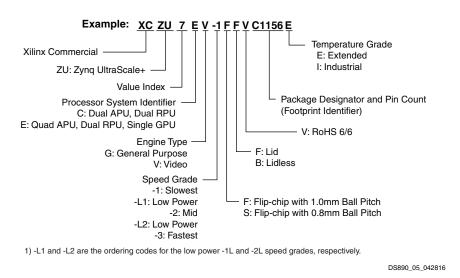


Figure 5: Zynq UltraScale+ Ordering Information

Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

This document contains preliminary information and is subject to change without notice. Information provided herein relates to products and/or services not yet available for sale, and provided solely for information purposes and are not intended, or to be construed, as an offer for sale or an attempted commercialization of the products and/or services referred to herein.

Automotive Applications Disclaimer

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.