
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	147780
Number of Logic Elements/Cells	2586150
Total RAM Bits	391168000
Number of I/O	832
Number of Gates	-
Voltage - Supply	0.825V ~ 0.876V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 100°C (TJ)
Package / Case	2104-BBGA, FCBGA
Supplier Device Package	2104-FCBGA (47.5x47.5)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcvu9p-1flga2104e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Processing System Overview

UltraScale+ MPSoCs feature dual and quad core variants of the ARM Cortex-A53 (APU) with dual-core ARM Cortex-R5 (RPU) processing system (PS). Some devices also include a dedicated ARM Mali[™]-400 MP2 graphics processing unit (GPU). See Table 2.

	CG Devices	EG Devices	EV Devices						
APU	Dual-core ARM Cortex-A53	Quad-core ARM Cortex-A53	Quad-core ARM Cortex-A53						
RPU	Dual-core ARM Cortex-R5	Dual-core ARM Cortex-R5	Dual-core ARM Cortex-R5						
GPU	-	Mali-400MP2	Mali-400MP2						
VCU	-	_	H.264/H.265						

To support the processors' functionality, a number of peripherals with dedicated functions are included in the PS. For interfacing to external memories for data or configuration storage, the PS includes a multi-protocol dynamic memory controller, a DMA controller, a NAND controller, an SD/eMMC controller and a Quad SPI controller. In addition to interfacing to external memories, the APU also includes a Level-1 (L1) and Level-2 (L2) cache hierarchy; the RPU includes an L1 cache and Tightly Coupled memory subsystem. Each has access to a 256KB on-chip memory.

For high-speed interfacing, the PS includes 4 channels of transmit (TX) and receive (RX) pairs of transceivers, called PS-GTR transceivers, supporting data rates of up to 6.0Gb/s. These transceivers can interface to the high-speed peripheral blocks to support PCIe Gen2 root complex or end point in x1, x2, or x4 configurations; Serial-ATA (SATA) at 1.5Gb/s, 3.0Gb/s, or 6.0Gb/s data rates; and up to two lanes of Display Port at 1.62Gb/s, 2.7Gb/s, or 5.4Gb/s data rates. The PS-GTR transceivers can also interface to components over USB 3.0 and Serial Gigabit Media Independent Interface (SGMII).

For general connectivity, the PS includes: a pair of USB 2.0 controllers, which can be configured as host, device, or On-The-Go (OTG); an I2C controller; a UART; and a CAN2.0B controller that conforms to ISO11898-1. There are also four triple speed Ethernet MACs and 128 bits of GPIO, of which 78 bits are available through the MIO and 96 through the EMIO.

High-bandwidth connectivity based on the ARM AMBA® AXI4 protocol connects the processing units with the peripherals and provides interface between the PS and the programmable logic (PL).

For additional information, go to: <u>DS891</u>, *Zynq UltraScale+ MPSoC Overview*.

Kintex UltraScale+ FPGA Feature Summary

Table 5: Kintex UltraScale+ FPGA Feature Summary

	KU3P	KU5P	KU9P	KU11P	KU13P	KU15P
System Logic Cells	355,950	474,600	599,550	653,100	746,550	1,143,450
CLB Flip-Flops	325,440	433,920	548,160	597,120	682,560	1,045,440
CLB LUTs	162,720	216,960	274,080	298,560	341,280	522,720
Max. Distributed RAM (Mb)	4.7	6.1	8.8	9.1	11.3	9.8
Block RAM Blocks	360	480	912	600	744	984
Block RAM (Mb)	12.7	16.9	32.1	21.1	26.2	34.6
UltraRAM Blocks	48	64	0	80	112	128
UltraRAM (Mb)	13.5	18.0	0	22.5	31.5	36.0
CMTs (1 MMCM and 2 PLLs)	4	4	4	8	4	11
Max. HP I/O ⁽¹⁾	208	208	208	416	208	572
Max. HD I/O ⁽²⁾	96	96	96	96	96	96
DSP Slices	1,368	1,824	2,520	2,928	3,528	1,968
System Monitor	1	1	1	1	1	1
GTH Transceiver 16.3Gb/s	0	0	28	32	28	44
GTY Transceivers 32.75Gb/s ⁽³⁾	16	16	0	20	0	32
Transceiver Fractional PLLs	8	8	14	26	14	38
PCIe Gen3 x16 and Gen4 x8	1	1	0	4	0	5
150G Interlaken	0	0	0	1	0	4
100G Ethernet w/RS-FEC	0	1	0	2	0	4

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s. See Table 6.

Kintex UltraScale+ Device-Package Combinations and Maximum I/Os

Table 6: Kintex UltraScale+	Dovico Dockago	Combinations a	nd Maximum L/Oc
	Device-Package	compinations a	nu waximum 1705

Dookogo	Package	KU3P	KU5P	KU9P	KU11P	KU13P	KU15P
Package (1)(2)(4)	Dimensions (mm)	HD, HP GTH, GTY					
SFVB784 ⁽³⁾	23x23	96, 208 0, 16	96, 208 0, 16				
FFVA676 ⁽³⁾	27x27	48, 208 0, 16	48, 208 0, 16				
FFVB676	27x27	72, 208 0, 16	72, 208 0, 16				
FFVD900 ⁽³⁾	31x31	96, 208 0, 16	96, 208 0, 16		96, 312 16, 0		
FFVE900	31x31			96, 208 28, 0		96, 208 28, 0	
FFVA1156 ⁽³⁾	35x35				48, 416 20, 8		48, 468 20, 8
FFVE1517	40x40				96, 416 32, 20		96, 416 32, 24
FFVA1760	42.5x42.5						96, 416 44, 32
FFVE1760	42.5x42.5						96, 572 32, 24

Notes:

1. Go to Ordering Information for package designation details.

2. FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.

3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s.

4. Packages with the same last letter and number sequence, e.g., A676, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the <u>UltraScale Architecture Product Selection Guide</u> for details on inter-family migration.

Virtex UltraScale Device-Package Combinations and Maximum I/Os

Table 0. Vinter Illing Coole Device Deckage Combinations and Meximum I	10-
Table 8: Virtex UltraScale Device-Package Combinations and Maximum I	70s

	Package	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Package ⁽¹⁾⁽²⁾⁽³⁾	Dimensions (mm)	HR, HP GTH, GTY						
FFVC1517	40x40	52, 468 20, 20	52, 468 20, 20	52, 468 20, 20				
FFVD1517	40x40		52, 286 32, 32	52, 286 32, 32				
FLVD1517	40x40				52, 286 40, 32			
FFVB1760	42.5x42.5		52, 650 32, 16	52, 650 32, 16				
FLVB1760	42.5x42.5				52, 650 36, 16			
FFVA2104	47.5x47.5		52, 780 28, 24	52, 780 28, 24				
FLVA2104	47.5x47.5				52, 780 28, 24	-		
FFVB2104	47.5x47.5		52, 650 32, 32	52, 650 32, 32				
FLVB2104	47.5x47.5				52, 650 40, 36			
FLGB2104	47.5x47.5					52, 650 40, 36	52, 650 40, 36	
FFVC2104	47.5x47.5			52, 364 32, 32				
FLVC2104	47.5x47.5				52, 364 40, 40			
FLGC2104	47.5x47.5					52, 364 52, 52	52, 364 52, 52	
FLGB2377	50x50							52, 1248 36, 0
FLGA2577	52.5x52.5						0, 448 60, 60	
FLGA2892	55x55							52, 1404 48, 0

Notes:

2. All packages have 1.0mm ball pitch.

3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the <u>UltraScale Architecture Product Selection Guide</u> for details on inter-family migration.

^{1.} Go to Ordering Information for package designation details.

Virtex UltraScale+ FPGA Feature Summary

Table 9: Virtex UltraScale+ FPGA Feature Summary

	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU31P	VU33P	VU35P	VU37P
System Logic Cells	862,050	1,313,763	1,724,100	2,586,150	2,835,000	3,780,000	961,800	961,800	1,906,800	2,851,800
CLB Flip-Flops	788,160	1,201,154	1,576,320	2,364,480	2,592,000	3,456,000	879,360	879,360	1,743,360	2,607,360
CLB LUTs	394,080	600,577	788,160	1,182,240	1,296,000	1,728,000	439,680	439,680	871,680	1,303,680
Max. Distributed RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	12.5	12.5	24.6	36.7
Block RAM Blocks	720	1,024	1,440	2,160	2,016	2,688	672	672	1,344	2,016
Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	23.6	23.6	47.3	70.9
UltraRAM Blocks	320	470	640	960	960	1,280	320	320	640	960
UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	90.0	90.0	180.0	270.0
HBM DRAM (GB)	_	_	_	-	_	_	4	8	8	8
CMTs (1 MMCM and 2 PLLs)	10	20	20	30	12	16	4	4	8	12
Max. HP I/O ⁽¹⁾	520	832	832	832	624	832	208	208	416	624
DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	2,880	2,880	5,952	9,024
System Monitor	1	2	2	3	3	4	1	1	2	3
GTY Transceivers 32.75Gb/s ⁽²⁾	40	80	80	120	96	128	32	32	64	96
Transceiver Fractional PLLs	20	40	40	60	48	64	16	16	32	48
PCIe Gen3 x16 and Gen4 x8	2	4	4	6	3	4	4	4	5	6
CCIX Ports ⁽³⁾	_	_	_	_	_	_	4	4	4	4
150G Interlaken	3	4	6	9	6	8	0	0	2	4
100G Ethernet w/RS-FEC	3	4	6	9	9	12	2	2	5	8

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. GTY transceivers in the FLGF1924 package support data rates up to 16.3Gb/s. See Table 10.

3. A CCIX port requires the use of a PCIe Gen3 x16 / Gen4 x8 block.

www.xilinx.com

Zynq UltraScale+: CG Device Feature Summary

Table 11: Zynq UltraScale+: CG Device Feature Summary

	ZU2CG	ZU3CG	ZU4CG	ZU5CG	ZU6CG	ZU7CG	ZU9CG			
Application Processing Unit	Dual-core AR	RM Cortex-A53	MPCore with C 32KB/32KI	oreSight; NEO 3 L1 Cache, 1M	N & Single/Dou B L2 Cache	ble Precision F	loating Point			
Real-Time Processing Unit	Dua	Dual-core ARM Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM								
Embedded and External Memory	256k	(B On-Chip Me	mory w/ECC; E External	xternal DDR4; Quad-SPI; NAN	DDR3; DDR3L ID; eMMC	; LPDDR4; LPD	DR3;			
General Connectivity	214 PS I/O;	UART; CAN; U	SB 2.0; I2C; S	PI; 32b GPIO; Timer Counters	Real Time Cloc	k; WatchDog T	imers; Triple			
High-Speed Connectivity	2	1 PS-GTR; PCI	e Gen1/2; Seria	al ATA 3.1; Dis	playPort 1.2a;	USB 3.0; SGM	1			
System Logic Cells	103,320	154,350	192,150	256,200	469,446	504,000	599,550			
CLB Flip-Flops	94,464	141,120	175,680	234,240	429,208	460,800	548,160			
CLB LUTs	47,232	70,560	87,840	117,120	214,604	230,400	274,080			
Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8			
Block RAM Blocks	150	216	128	144	714	312	912			
Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1			
UltraRAM Blocks	0	0	48	64	0	96	0			
UltraRAM (Mb)	0	0	14.0	18.0	0	27.0	0			
DSP Slices	240	360	728	1,248	1,973	1,728	2,520			
CMTs	3	3	4	4	4	8	4			
Max. HP I/O ⁽¹⁾	156	156	156	156	208	416	208			
Max. HD I/O ⁽²⁾	96	96	96	96	120	48	120			
System Monitor	2	2	2	2	2	2	2			
GTH Transceiver 16.3Gb/s ⁽³⁾	0	0	16	16	24	24	24			
GTY Transceivers 32.75Gb/s	0	0	0	0	0	0	0			
Transceiver Fractional PLLs	0	0	8	8	12	12	12			
PCIe Gen3 x16 and Gen4 x8	0	0	2	2	0	2	0			
150G Interlaken	0	0	0	0	0	0	0			
100G Ethernet w/ RS-FEC	0	0	0	0	0	0	0			

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 12.

Zynq UltraScale+: CG Device-Package Combinations and Maximum I/Os

Table 12.	7 una Illtra Saala	· CC Davias Daskar	a Combinations	and Maximum L/Oc
TADIE IZ.	Zyny Ulliascale+	-: CG Device-Packag	je compinations	and Maximum I/Os

Deekege	Package	ZU2CG	ZU3CG	ZU4CG	ZU5CG	ZU6CG	ZU7CG	ZU9CG
Package (1)(2)(3)(4)(5)	Dimensions (mm)	HD, HP GTH, GTY						
SBVA484 ⁽⁶⁾	19x19	24, 58 0, 0	24, 58 0, 0					
SFVA625	21x21	24, 156 0, 0	24, 156 0, 0					
SFVC784 ⁽⁷⁾	23x23	96, 156 0, 0	96, 156 0, 0	96, 156 4, 0	96, 156 4, 0			
FBVB900	31x31			48, 156 16, 0	48, 156 16, 0		48, 156 16, 0	
FFVC900	31x31					48, 156 16, 0		48, 156 16, 0
FFVB1156	35x35					120, 208 24, 0		120, 208 24, 0
FFVC1156	35x35						48, 312 20, 0	
FFVF1517	40x40						48, 416 24, 0	

Notes:

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF packages have 1.0mm ball pitch. SB/SF packages have 0.8mm ball pitch.
- 3. All device package combinations bond out 4 PS-GTR transceivers.
- 4. All device package combinations bond out 214 PS I/O except ZU2CG and ZU3CG in the SBVA484 and SFVA625 packages, which bond out 170 PS I/Os.
- 5. Packages with the same last letter and number sequence, e.g., A484, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.
- 6. All 58 HP I/O pins are powered by the same V_{CCO} supply.
- 7. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.

Zynq UltraScale+: EG Device-Package Combinations and Maximum I/Os

Table 14: Zynq UltraScale+: EG Device-Package Combinations and Maximum I/Os

Deekege	Package	ZU2EG	ZU3EG	ZU4EG	ZU5EG	ZU6EG	ZU7EG	ZU9EG	ZU11EG	ZU15EG	ZU17EG	ZU19EG
Package (1)(2)(3)(4)(5)	Dimensions (mm)	HD, HP GTH, GTY										
SBVA484 ⁽⁶⁾	19x19	24, 58 0, 0	24, 58 0, 0									
SFVA625	21x21	24, 156 0, 0	24, 156 0, 0									
SFVC784 ⁽⁷⁾	23x23	96, 156 0, 0	96, 156 0, 0	96, 156 4, 0	96, 156 4, 0							
FBVB900	31x31			48, 156 16, 0	48, 156 16, 0		48, 156 16, 0					
FFVC900	31x31					48, 156 16, 0		48, 156 16, 0		48, 156 16, 0		
FFVB1156	35x35					120, 208 24, 0		120, 208 24, 0		120, 208 24, 0		
FFVC1156	35x35						48, 312 20, 0		48, 312 20, 0			
FFVB1517	40x40								72, 416 16, 0		72, 572 16, 0	72, 572 16, 0
FFVF1517	40x40						48, 416 24, 0		48, 416 32, 0			
FFVC1760	42.5x42.5								96, 416 32, 16		96, 416 32, 16	96, 416 32, 16
FFVD1760	42.5x42.5										48, 260 44, 28	48, 260 44, 28
FFVE1924	45x45										96, 572 44, 0	96, 572 44, 0

Notes:

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF packages have 1.0mm ball pitch. SB/SF packages have 0.8mm ball pitch.
- 3. All device package combinations bond out 4 PS-GTR transceivers.
- 4. All device package combinations bond out 214 PS I/O except ZU2EG and ZU3EG in the SBVA484 and SFVA625 packages, which bond out 170 PS I/Os.
- 5. Packages with the same last letter and number sequence, e.g., A484, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.
- 6. All 58 HP I/O pins are powered by the same V_{CCO} supply.
- 7. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.

www.xilinx.com

Zynq UltraScale+: EG Device Feature Summary

Table	15: Zyng	UltraScale+:	EV Device	Feature	Summary
					J

		-							
	ZU4EV	ZU5EV	ZU7EV						
Application Processing Unit	Quad-core ARM Cortex-A53 MPC 3	ore with CoreSight; NEON & Single 32KB/32KB L1 Cache, 1MB L2 Cach	e/Double Precision Floating Point; e						
Real-Time Processing Unit	Dual-core ARM Cortex-	Dual-core ARM Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM							
Embedded and External Memory	256KB On-Chip Memory	w/ECC; External DDR4; DDR3; DE External Quad-SPI; NAND; eMMC	DR3L; LPDDR4; LPDDR3;						
General Connectivity	214 PS I/O; UART; CAN; USB 2	.0; I2C; SPI; 32b GPIO; Real Time Timer Counters	Clock; WatchDog Timers; Triple						
High-Speed Connectivity	4 PS-GTR; PCIe Gen	1/2; Serial ATA 3.1; DisplayPort 1	.2a; USB 3.0; SGMII						
Graphic Processing Unit		ARM Mali-400 MP2; 64KB L2 Cache	9						
Video Codec	1	1	1						
System Logic Cells	192,150	256,200	504,000						
CLB Flip-Flops	175,680	234,240	460,800						
CLB LUTs	87,840	117,120	230,400						
Distributed RAM (Mb)	2.6	3.5	6.2						
Block RAM Blocks	128	144	312						
Block RAM (Mb)	4.5	5.1	11.0						
UltraRAM Blocks	48	64	96						
UltraRAM (Mb)	14.0	18.0	27.0						
DSP Slices	728	1,248	1,728						
CMTs	4	4	8						
Max. HP I/O ⁽¹⁾	156	156	416						
Max. HD I/O ⁽²⁾	96	96	48						
System Monitor	2	2	2						
GTH Transceiver 16.3Gb/s ⁽³⁾	16	16	24						
GTY Transceivers 32.75Gb/s	0	0	0						
Transceiver Fractional PLLs	8	8	12						
PCIe Gen3 x16 and Gen4 x8	2	2	2						
150G Interlaken	0	0	0						
100G Ethernet w/ RS-FEC	0	0	0						

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 16.

www.xilinx.com

Zynq UltraScale+: EG Device-Package Combinations and Maximum I/Os

Dackago	Package	ZU4EV	ZU5EV	ZU7EV
Package (1)(2)(3)(4)	Dimensions (mm)	HD, HP GTH, GTY	HD, HP GTH, GTY	HD, HP GTH, GTY
SFVC784 ⁽⁵⁾	23x23	96, 156 4, 0	96, 156 4, 0	
FBVB900	31x31	48, 156 16, 0	48, 156 16, 0	48, 156 16, 0
FFVC1156	35x35			48, 312 20, 0
FFVF1517	40x40			48, 416 24, 0

Table 16: Zynq UltraScale+: EV Device-Package Combinations and Maximum I/Os

Notes:

- 1. Go to Ordering Information for package designation details.
- 2. FB/FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
- 3. All device package combinations bond out 4 PS-GTR transceivers.
- 4. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.
- 5. Packages with the same last letter and number sequence, e.g., B900, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.

Device Layout

UltraScale devices are arranged in a column-and-grid layout. Columns of resources are combined in different ratios to provide the optimum capability for the device density, target market or application, and device cost. At the core of UltraScale+ MPSoCs is the processing system that displaces some of the full or partial columns of programmable logic resources. Figure 1 shows a device-level view with resources grouped together. For simplicity, certain resources such as the processing system, integrated blocks for PCIe, configuration logic, and System Monitor are not shown.

Transceivers	CLB, DSP, Block RAM	I/O, Clocking, Memory Interface Logic	CLB, DSP, Block RAM	I/O, Clocking, Memory Interface Logic	CLB, DSP, Block RAM	Transceivers	
--------------	---------------------	---------------------------------------	---------------------	---------------------------------------	---------------------	--------------	--

DS890_01_101712

Figure 1: FPGA with Columnar Resources

Resources within the device are divided into segmented clock regions. The height of a clock region is 60 CLBs. A bank of 52 I/Os, 24 DSP slices, 12 block RAMs, or 4 transceiver channels also matches the height of a clock region. The width of a clock region is essentially the same in all cases, regardless of device size or the mix of resources in the region, enabling repeatable timing results. Each segmented clock region

contains vertical and horizontal clock routing that span its full height and width. These horizontal and vertical clock routes can be segmented at the clock region boundary to provide a flexible, high-performance, low-power clock distribution architecture. Figure 2 is a representation of an FPGA divided into regions.

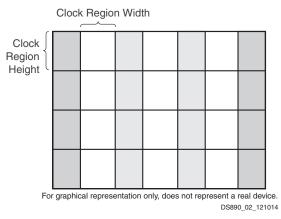


Figure 2: Column-Based FPGA Divided into Clock Regions

Processing System (PS)

Zynq UltraScale+ MPSoCs consist of a PS coupled with programmable logic. The contents of the PS varies between the different Zynq UltraScale+ devices. All devices contain an APU, an RPU, and many peripherals for connecting the multiple processing engines to external components. The EG and EV devices contain a GPU and the EV devices contain a video codec unit (VCU). The components of the PS are connected together and to the PL through a multi-layered ARM AMBA AXI non-blocking interconnect that supports multiple simultaneous master-slave transactions. Traffic through the interconnect can be regulated by the quality of service (QoS) block in the interconnect. Twelve dedicated AXI 32-bit, 64-bit, or 128-bit ports connect the PL to high-speed interconnect and DDR in the PS via a FIFO interface.

There are four independently controllable power domains: the PL plus three within the PS (full power, lower power, and battery power domains). Additionally, many peripherals support clock gating and power gating to further reduce dynamic and static power consumption.

Application Processing Unit (APU)

The APU has a feature-rich dual-core or quad-core ARM Cortex-A53 processor. Cortex-A53 cores are 32-bit/64-bit application processors based on ARM-v8A architecture, offering the best performance-to-power ratio. The ARMv8 architecture supports hardware virtualization. Each of the Cortex-A53 cores has: 32KB of instruction and data L1 caches, with parity and ECC protection respectively; a NEON SIMD engine; and a single and double precision floating point unit. In addition to these blocks, the APU consists of a snoop control unit and a 1MB L2 cache with ECC protection to enhance system-level performance. The snoop control unit keeps the L1 caches coherent thus eliminating the need of spending software bandwidth for coherency. The APU also has a built-in interrupt controller supporting virtual interrupts. The APU communicates to the rest of the PS through 128-bit AXI coherent extension (ACE) port via Cache Coherent Interconnect (CCI) block, using the System Memory Management Unit (SMMU). The APU is also connected to the Programmable Logic (PL), through the 128-bit accelerator coherency port

(ACP), providing a low latency coherent port for accelerators in the PL. To support real-time debug and trace, each core also has an Embedded Trace Macrocell (ETM) that communicates with the ARM CoreSight[™] Debug System.

Real-Time Processing Unit (RPU)

The RPU in the PS contains a dual-core ARM Cortex-R5 PS. Cortex-R5 cores are 32-bit real-time processor cores based on ARM-v7R architecture. Each of the Cortex-R5 cores has 32KB of level-1 (L1) instruction and data cache with ECC protection. In addition to the L1 caches, each of the Cortex-R5 cores also has a 128KB tightly coupled memory (TCM) interface for real-time single cycle access. The RPU also has a dedicated interrupt controller. The RPU can operate in either split or lock-step mode. In split mode, both processors run independently of each other. In lock-step mode, they run in parallel with each other, with integrated comparator logic, and the TCMs are used as 256KB unified memory. The RPU communicates with the rest of the PS via the 128-bit AXI-4 ports connected to the low power domain switch. It also communicates directly with the PL through 128-bit low latency AXI-4 ports. To support real-time debug and trace each core also has an embedded trace macrocell (ETM) that communicates with the ARM CoreSight Debug System.

External Memory

The PS can interface to many types of external memories through dedicated memory controllers. The dynamic memory controller supports DDR3, DDR3L, DDR4, LPDDR3, and LPDDR4 memories. The multi-protocol DDR memory controller can be configured to access a 2GB address space in 32-bit addressing mode and up to 32GB in 64-bit addressing mode using a single or dual rank configuration of 8-bit, 16-bit, or 32-bit DRAM memories. Both 32-bit and 64-bit bus access modes are protected by ECC using extra bits.

The SD/eMMC controller supports 1 and 4 bit data interfaces at low, default, high-speed, and ultra-high-speed (UHS) clock rates. This controller also supports 1-, 4-, or 8-bit-wide eMMC interfaces that are compliant to the eMMC 4.51 specification. eMMC is one of the primary boot and configuration modes for Zynq UltraScale+ MPSoCs and supports boot from managed NAND devices. The controller has a built-in DMA for enhanced performance.

The Quad-SPI controller is one of the primary boot and configuration devices. It supports 4-byte and 3-byte addressing modes. In both addressing modes, single, dual-stacked, and dual-parallel configurations are supported. Single mode supports a quad serial NOR flash memory, while in double stacked and double parallel modes, it supports two quad serial NOR flash memories.

The NAND controller is based on ONFI3.1 specification. It has an 8-pin interface and provides 200Mb/s of bandwidth in synchronous mode. It supports 24 bits of ECC thus enabling support for SLC NAND memories. It has two chip-selects to support deeper memory and a built-in DMA for enhanced performance.

Graphics Processing Unit (GPU)

The dedicated ARM Mali-400 MP2 GPU in the PS supports 2D and 3D graphics acceleration up to 1080p resolution. The Mali-400 supports OpenGL ES 1.1 and 2.0 for 3D graphics and Open VG 1.1 standards for 2D vector graphics. It has a geometry processor (GP) and 2 pixel processors to perform tile rendering operations in parallel. It has dedicated Memory management units for GP and pixel processors, which supports 4 KB page size. The GPU also has 64KB level-2 (L2) read-only cache. It supports 4X and 16X Full scene Anti-Aliasing (FSAA). It is fully autonomous, enabling maximum parallelization between APU and GPU. It has built-in hardware texture decompression, allowing the texture to remain compressed (in ETC format) in graphics hardware and decompress the required samples on the fly. It also supports efficient alpha blending of multiple layers in hardware without additional bandwidth consumption. It has a pixel fill rate of 2Mpixel/sec/MHz and a triangle rate of 0.1Mvertex/sec/MHz. The GPU supports extensive texture format for RGBA 8888, 565, and 1556 in Mono 8, 16, and YUV formats. For power sensitive applications, the GPU supports clock and power gating for each GP, pixel processors, and L2 cache. During power gating, GPU does not consume any static or dynamic power; during clock gating, it only consumes static power.

Video Codec Unit (VCU)

The video codec unit (VCU) provides multi-standard video encoding and decoding capabilities, including: High Efficiency Video Coding (HEVC), i.e., H.265; and Advanced Video Coding (AVC), i.e., H.264 standards. The VCU is capable of simultaneous encode and decode at rates up to 4Kx2K at 60 frames per second (fps) (approx. 600Mpixel/sec) or 8Kx4K at a reduced frame rate (~15fps).

Input/Output

All UltraScale devices, whether FPGA or MPSoC, have I/O pins for communicating to external components. In addition, in the MPSoC's PS, there are another 78 I/Os that the I/O peripherals use to communicate to external components, referred to as multiplexed I/O (MIO). If more than 78 pins are required by the I/O peripherals, the I/O pins in the PL can be used to extend the MPSoC interfacing capability, referred to as extended MIO (EMIO).

The number of I/O pins in UltraScale FPGAs and in the programmable logic of UltraScale+ MPSoCs varies depending on device and package. Each I/O is configurable and can comply with a large number of I/O standards. The I/Os are classed as high-range (HR), high-performance (HP), or high-density (HD). The HR I/Os offer the widest range of voltage support, from 1.2V to 3.3V. The HP I/Os are optimized for highest performance operation, from 1.0V to 1.8V. The HD I/Os are reduced-feature I/Os organized in banks of 24, providing voltage support from 1.2V to 3.3V.

All I/O pins are organized in banks, with 52 HP or HR pins per bank or 24 HD pins per bank. Each bank has one common V_{CCO} output buffer power supply, which also powers certain input buffers. In addition, HR banks can be split into two half-banks, each with their own V_{CCO} supply. Some single-ended input buffers require an internally generated or an externally applied reference voltage (V_{REF}). V_{REF} pins can be driven directly from the PCB or internally generated using the internal V_{REF} generator circuitry present in each bank.

Cache Coherent Interconnect for Accelerators (CCIX)

CCIX is a chip-to-chip interconnect operating at data rates up to 25Gb/s that allows two or more devices to share memory in a cache coherent manner. Using PCIe for the transport layer, CCIX can operate at several standard data rates (2.5, 5, 8, and 16Gb/s) with an additional high-speed 25Gb/s option. The specification employs a subset of full coherency protocols and ensures that FPGAs used as accelerators can coherently share data with processors using different instruction set architectures.

Virtex UltraScale+ HBM devices support CCIX data rates up to 16Gb/s and contain four CCIX ports and at least four integrated blocks for PCIe. Each CCIX port requires the use of one integrated block for PCIe. If not used with a CCIX port, the integrated blocks for PCIe can still be used for PCIe communication.

Integrated Block for Interlaken

Some UltraScale architecture-based devices include integrated blocks for Interlaken. Interlaken is a scalable chip-to-chip interconnect protocol designed to enable transmission speeds from 10Gb/s to 150Gb/s. The Interlaken integrated block in the UltraScale architecture is compliant to revision 1.2 of the Interlaken specification with data striping and de-striping across 1 to 12 lanes. Permitted configurations are: 1 to 12 lanes at up to 12.5Gb/s and 1 to 6 lanes at up to 25.78125Gb/s, enabling flexible support for up to 150Gb/s per integrated block. With multiple Interlaken blocks, certain UltraScale devices enable easy, reliable Interlaken switches and bridges.

Integrated Block for 100G Ethernet

Compliant to the IEEE Std 802.3ba, the 100G Ethernet integrated blocks in the UltraScale architecture provide low latency 100Gb/s Ethernet ports with a wide range of user customization and statistics gathering. With support for 10 x 10.3125Gb/s (CAUI) and 4 x 25.78125Gb/s (CAUI-4) configurations, the integrated block includes both the 100G MAC and PCS logic with support for IEEE Std 1588v2 1-step and 2-step hardware timestamping.

In UltraScale+ devices, the 100G Ethernet blocks contain a Reed Solomon Forward Error Correction (RS-FEC) block, compliant to IEEE Std 802.3bj, that can be used with the Ethernet block or stand alone in user applications. These families also support OTN mapping mode in which the PCS can be operated without using the MAC.

Stacked Silicon Interconnect (SSI) Technology

Many challenges associated with creating high-capacity devices are addressed by Xilinx with the second generation of the pioneering 3D SSI technology. SSI technology enables multiple super-logic regions (SLRs) to be combined on a passive interposer layer, using proven manufacturing and assembly techniques from industry leaders, to create a single device with more than 20,000 low-power inter-SLR connections. Dedicated interface tiles within the SLRs provide ultra-high bandwidth, low latency connectivity to other SLRs. Table 19 shows the number of SLRs in devices that use SSI technology and their dimensions.

	KintexVirtexUltraScaleUltraScale										e+				
Device	KU085	KU115	VU125	VU160	VU190	VU440	VU5P	VU7P	VU9P	VU11P	VU13P	VU31P	VU33P	VU35P	VU37P
# SLRs	2	2	2	3	3	3	2	2	3	3	4	1	1	2	3
SLR Width (in regions)	6	6	6	6	6	9	6	6	6	8	8	8	8	8	8
SLR Height (in regions)	5	5	5	5	5	5	5	5	5	4	4	4	4	4	4

Clock Management

The clock generation and distribution components in UltraScale devices are located adjacent to the columns that contain the memory interface and input and output circuitry. This tight coupling of clocking and I/O provides low-latency clocking to the I/O for memory interfaces and other I/O protocols. Within every clock management tile (CMT) resides one mixed-mode clock manager (MMCM), two PLLs, clock distribution buffers and routing, and dedicated circuitry for implementing external memory interfaces.

Mixed-Mode Clock Manager

The mixed-mode clock manager (MMCM) can serve as a frequency synthesizer for a wide range of frequencies and as a jitter filter for incoming clocks. At the center of the MMCM is a voltage-controlled oscillator (VCO), which speeds up and slows down depending on the input voltage it receives from the phase frequency detector (PFD).

There are three sets of programmable frequency dividers (D, M, and O) that are programmable by configuration and during normal operation via the Dynamic Reconfiguration Port (DRP). The pre-divider D reduces the input frequency and feeds one input of the phase/frequency comparator. The feedback divider M acts as a multiplier because it divides the VCO output frequency before feeding the other input of the phase comparator. D and M must be chosen appropriately to keep the VCO within its specified frequency range. The VCO has eight equally-spaced output phases (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). Each phase can be selected to drive one of the output dividers, and each divider is programmable by configuration to divide by any integer from 1 to 128.

The MMCM has three input-jitter filter options: low bandwidth, high bandwidth, or optimized mode. Low-Bandwidth mode has the best jitter attenuation. High-Bandwidth mode has the best phase offset. Optimized mode allows the tools to find the best setting.

UltraRAM

UltraRAM is a high-density, dual-port, synchronous memory block available in UltraScale+ devices. Both of the ports share the same clock and can address all of the 4K x 72 bits. Each port can independently read from or write to the memory array. UltraRAM supports two types of write enable schemes. The first mode is consistent with the block RAM byte write enable mode. The second mode allows gating the data and parity byte writes separately. UltraRAM blocks can be connected together to create larger memory arrays. Dedicated routing in the UltraRAM column enables the entire column height to be connected together. If additional density is required, all the UltraRAM columns in an SLR can be connected together with a few fabric resources to create single instances of RAM approximately 100Mb in size. This makes UltraRAM an ideal solution for replacing external memories such as SRAM. Cascadable anywhere from 288Kb to 100Mb, UltraRAM provides the flexibility to fulfill many different memory requirements.

Error Detection and Correction

Each 64-bit-wide UltraRAM can generate, store and utilize eight additional Hamming code bits and perform single-bit error correction and double-bit error detection (ECC) during the read process.

High Bandwidth Memory (HBM)

Virtex UltraScale+ HBM devices incorporate 4GB HBM stacks adjacent to the FPGA die. Using stacked silicon interconnect technology, the FPGA communicates to the HBM stacks through memory controllers that connect to dedicated low-inductance interconnect in the silicon interposer. Each Virtex UltraScale+ HBM FPGA contains one or two HBM stacks, resulting in up to 8GB of HBM per FPGA.

The FPGA has 32 HBM AXI interfaces used to communicate with the HBM. Through a built-in switch mechanism, any of the 32 HBM AXI interfaces can access any memory address on either one or both of the HBM stacks due to the flexible addressing feature. This flexible connection between the FPGA and the HBM stacks results in easy floorplanning and timing closure. The memory controllers perform read and write reordering to improve bus efficiency. Data integrity is ensured through error checking and correction (ECC) circuitry.

Configurable Logic Block

Every Configurable Logic Block (CLB) in the UltraScale architecture contains 8 LUTs and 16 flip-flops. The LUTs can be configured as either one 6-input LUT with one output, or as two 5-input LUTs with separate outputs but common inputs. Each LUT can optionally be registered in a flip-flop. In addition to the LUTs and flip-flops, the CLB contains arithmetic carry logic and multiplexers to create wider logic functions.

Each CLB contains one slice. There are two types of slices: SLICEL and SLICEM. LUTs in the SLICEM can be configured as 64-bit RAM, as 32-bit shift registers (SRL32), or as two SRL16s. CLBs in the UltraScale architecture have increased routing and connectivity compared to CLBs in previous-generation Xilinx devices. They also have additional control signals to enable superior register packing, resulting in overall higher device utilization.

After copying the FSBL to OCM, the processor executes the FSBL. Xilinx supplies example FSBLs or users can create their own. The FSBL initiates the boot of the PS and can load and configure the PL, or configuration of the PL can be deferred to a later stage. The FSBL typically loads either a user application or an optional second stage boot loader (SSBL) such as U-Boot. Users obtain example SSBL from Xilinx or a third party, or they can create their own SSBL. The SSBL continues the boot process by loading code from any of the primary boot devices or from other sources such as USB, Ethernet, etc. If the FSBL did not configure the PL, the SSBL can do so, or again, the configuration can be deferred to a later stage.

The static memory interface controller (NAND, eMMC, or Quad-SPI) is configured using default settings. To improve device configuration speed, these settings can be modified by information provided in the boot image header. The ROM boot image is not user readable or executable after boot.

Configuring FPGAs

The SPI (serial NOR) interface (x1, x2, x4, and dual x4 modes) and the BPI (parallel NOR) interface (x8 and x16 modes) are two common methods used for configuring the FPGA. Users can directly connect an SPI or BPI flash to the FPGA, and the FPGA's internal configuration logic reads the bitstream out of the flash and configures itself, eliminating the need for an external controller. The FPGA automatically detects the bus width on the fly, eliminating the need for any external controls or switches. Bus widths supported are x1, x2, x4, and dual x4 for SPI, and x8 and x16 for BPI. The larger bus widths increase configuration speed and reduce the amount of time it takes for the FPGA to start up after power-on.

In master mode, the FPGA can drive the configuration clock from an internally generated clock, or for higher speed configuration, the FPGA can use an external configuration clock source. This allows high-speed configuration with the ease of use characteristic of master mode. Slave modes up to 32 bits wide that are especially useful for processor-driven configuration are also supported by the FPGA. In addition, the new media configuration access port (MCAP) provides a direct connection between the integrated block for PCIe and the configuration logic to simplify configuration over PCIe.

SEU detection and mitigation (SEM) IP, RSA authentication, post-configuration CRC, and Security Monitor (SecMon) IP are not supported in the KU025 FPGA.

Packaging

The UltraScale devices are available in a variety of organic flip-chip and lidless flip-chip packages supporting different quantities of I/Os and transceivers. Maximum supported performance can depend on the style of package and its material. Always refer to the specific device data sheet for performance specifications by package type.

In flip-chip packages, the silicon device is attached to the package substrate using a high-performance flip-chip process. Decoupling capacitors are mounted on the package substrate to optimize signal integrity under simultaneous switching of outputs (SSO) conditions.

Ordering Information

Table 21 shows the speed and temperature grades available in the different device families. V_{CCINT} supply voltage is listed in parentheses.

		Speed Grade and Temperature Grade								
Device Family	Devices	Commercial (C)	Ex	Industrial (I)						
		0°C to +85°C	0°C to +100°C	0°C to +110°C	–40°C to +100°C					
			-3E ⁽¹⁾ (1.0V)							
Kintex	All		-2E (0.95V)		-21 (0.95V)					
UltraScale	All	-1C (0.95V)			-11 (0.95V)					
					-1LI ⁽¹⁾ (0.95V or 0.90V)					
			-3E (0.90V)							
			-2E (0.85V)		-21 (0.85V)					
Kintex UltraScale+	All			-2LE ⁽²⁾ (0.85V or 0.72V)						
			-1E (0.85V)		-11 (0.85V)					
					-1LI (0.85V or 0.72V)					
	VU065 VU080 VU095 VU125 VU160 VU190		-3E (1.0V)							
			-2E (0.95V)		-21 (0.95V)					
Virtex UltraScale			-1HE (0.95V or 1.0V)		-11 (0.95V)					
Unitablaic	VU440		-3E (1.0V)							
			-2E (0.95V)		-21 (0.95V)					
		-1C (0.95V)			-11 (0.95V)					
	VU3P		-3E (0.90V)							
	VU5P VU7P		-2E (0.85V)		-21 (0.85V)					
	VU9P VU11P			-2LE ⁽²⁾ (0.85V or 0.72V)						
Virtex	VU13P		-1E (0.85V)		-11 (0.85V)					
UltraScale+	141045		-3E (0.90V)							
	VU31P VU33P		-2E (0.85V)							
	VU35P VU37P			-2LE ⁽²⁾ (0.85V or 0.72V)						
	V037F		-1E (0.85V)							

Table 21: Speed Grade and Temperature Grade

		Speed Grade and Temperature Grade							
Device Family	Devices	Commercial (C)	E	Industrial (I)					
		0°C to +85°C	0°C to +100°C	0°C to +110°C	–40°C to +100°C				
			-2E (0.85V)		-21 (0.85V)				
	CG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
	Devices		-1E (0.85V)		-11 (0.85V)				
					-1LI ⁽³⁾ (0.85V or 0.72V)				
			-2E (0.85V)		-21 (0.85V)				
	ZU2EG ZU3EG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
			-1E (0.85V)		-11 (0.85V)				
					-1LI ⁽³⁾ (0.85V or 0.72V)				
	ZU4EG		-3E (0.90V)						
Zynq	ZU5EG ZU6EG		-2E (0.85V)		-21 (0.85V)				
UltraScale+	ZUBEG ZU7EG			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
	ZU9EG		-1E (0.85V)		-11 (0.85V)				
	ZU11EG ZU15EG ZU17EG ZU19EG				-1LI ⁽³⁾ (0.85V or 0.72V)				
			-3E (0.90V)						
			-2E (0.85V)		-21 (0.85V)				
	EV Devices			-2LE ⁽²⁾⁽³⁾ (0.85V or 0.72V)					
	Devices		-1E (0.85V)		-1I (0.85V)				
					-1LI ⁽³⁾ (0.85V or 0.72V)				

Table 21: Speed Grade and Temperature Grade (Cont'd)

Notes:

1. KU025 and KU095 are not available in -3E or -1LI speed/temperature grades.

In -2LE speed/temperature grade, devices can operate for a limited time with junction temperature of 110°C. Timing parameters adhere to the same speed file at 110°C as they do below 110°C, regardless of operating voltage (nominal at 0.85V or low voltage at 0.72V). Operation at 110°C Tj is limited to 1% of the device lifetime and can occur sequentially or at regular intervals as long as the total time does not exceed 1% of device lifetime.

3. In Zynq UltraScale+ MPSoCs, when operating the PL at low voltage (0.72V), the PS operates at nominal voltage (0.85V).

Date	e Version Description of Revisions				
02/06/2014	1.1	Updated PCIe information in Table 1 and Table 3. Added FFVJ1924 package to Table 8.			
12/10/2013	1.0	Initial Xilinx release.			