
E·XFL

Welcome to E-XFL.COM

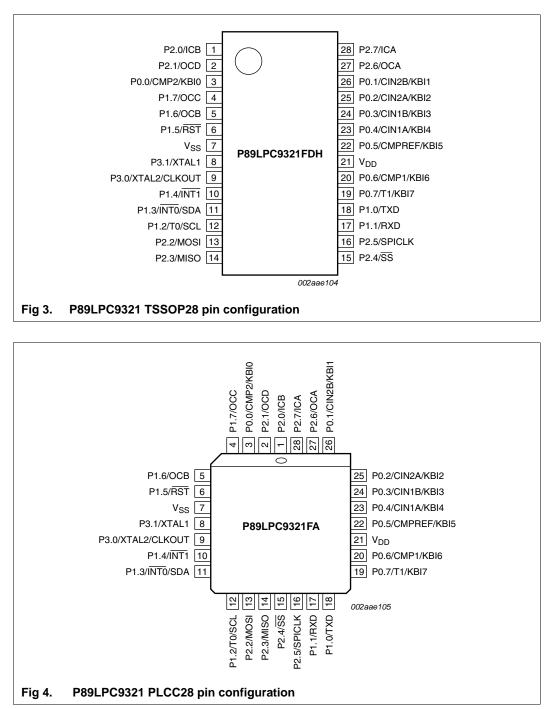
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc9321fdh-512


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-bit microcontroller with accelerated two-clock 80C51 core

6. Pinning information

6.1 Pinning

8-bit microcontroller with accelerated two-clock 80C51 core

NXP Semiconductors

P89LPC9321

8-bit microcontroller with accelerated two-clock 80C51 core

ontinued	
	Description
1/0	P0.6 — Port 0 bit 6. High current source.
0	CMP1 — Comparator 1 output.
	KBI6 — Keyboard input 6.
I/O	P0.7 — Port 0 bit 7. High current source.
I/O	T1 — Timer/counter 1 external count input or overflow output.
	KBI7 — Keyboard input 7.
I/O, I [<u>1]</u>	Port 1: Port 1 is an 8-bit I/O port with a user-configurable output type, except for three pins as noted below. During reset Port 1 latches are configured in the input only mode with the internal pull-up disabled. The operation of the configurable Port 1 pins as inputs and outputs depends upon the port configuration selected. Each of the configurable port pins are programmed independently. Refer to <u>Section 7.16.1 "Port configurations"</u> and <u>Table 10 "Static characteristics"</u> for details. P1.2 to P1.3 are open drain when used as outputs. P1.5 is input only. All pins have Schmitt trigger inputs.
	Port 1 also provides various special functions as described below:
I/O	P1.0 — Port 1 bit 0.
0	TXD — Transmitter output for serial port.
I/O	P1.1 — Port 1 bit 1.
1	RXD — Receiver input for serial port.
I/O	P1.2 — Port 1 bit 2 (open-drain when used as output).
I/O	T0 — Timer/counter 0 external count input or overflow output (open-drain when
., •	used as output).
I/O	SCL — I ² C-bus serial clock input/output.
I/O	P1.3 — Port 1 bit 3 (open-drain when used as output).
I	INT0 — External interrupt 0 input.
I/O	SDA — I ² C-bus serial data input/output.
I/O	P1.4 — Port 1 bit 4. High current source.
I	INT1 — External interrupt 1 input.
I	P1.5 — Port 1 bit 5 (input only).
Ι	RST — External Reset input during power-on or if selected via UCFG1. When functioning as a reset input, a LOW on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor begins execution at address 0. Also used during a power-on sequence to force ISP mode.
I/O	P1.6 — Port 1 bit 6. High current source.
0	OCB — Output Compare B
I/O	P1.7 — Port 1 bit 7. High current source.
0	OCC — Output Compare C.
I/O	Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type. During reset Port 2 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 2 pins as inputs and outputs depends upon the port configuration selected. Each port pin is configured independently. Refer to <u>Section</u> <u>7.16.1 "Port configurations"</u> and <u>Table 10 "Static characteristics"</u> for details. All pins have Schmitt trigger inputs. Port 2 also provides various special functions as described below:

Table 3. Pin description ...continued

P89LPC9321 Product data sheet

8-bit microcontroller with accelerated two-clock 80C51 core

Symbol	Pin	Туре	Description
P2.0/ICB	1	I/O	P2.0 — Port 2 bit 0.
		I	ICB — Input Capture B.
P2.1/OCD	2	I/O	P2.1 — Port 2 bit 1.
		0	OCD — Output Compare D.
P2.2/MOSI	13	I/O	P2.2 — Port 2 bit 2.
		I/O	MOSI — SPI master out slave in. When configured as master, this pin is output; when configured as slave, this pin is input.
P2.3/MISO	14	I/O	P2.3 — Port 2 bit 3.
		I/O	MISO — When configured as master, this pin is input, when configured as slave, this pin is output.
P2.4/SS	15	I/O	P2.4 — Port 2 bit 4.
		I/O	SS — SPI Slave select.
P2.5/SPICLK	16	I/O	P2.5 — Port 2 bit 5.
		I/O	SPICLK — SPI clock. When configured as master, this pin is output; when configured as slave, this pin is input.
P2.6/OCA	27	I/O	P2.6 — Port 2 bit 6.
		0	OCA — Output Compare A.
P2.7/ICA	28	I/O	P2.7 — Port 2 bit 7.
		I	ICA — Input Capture A.
P3.0 to P3.1		I/O	Port 3: Port 3 is a 2-bit I/O port with a user-configurable output type. During reset Port 3 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 3 pins as inputs and outputs depends upon the port configuration selected. Each port pin is configured independently. Refer to <u>Section</u> 7.16.1 "Port configurations" and Table 10 "Static characteristics" for details.
			All pins have Schmitt trigger inputs.
			Port 3 also provides various special functions as described below:
P3.0/XTAL2/	9	I/O	P3.0 — Port 3 bit 0.
CLKOUT		0	XTAL2 — Output from the oscillator amplifier (when a crystal oscillator option is selected via the flash configuration.
		0	CLKOUT — CPU clock divided by 2 when enabled via SFR bit (ENCLK -TRIM.6). It can be used if the CPU clock is the internal RC oscillator, watchdog oscillator or external clock input, except when XTAL1/XTAL2 are used to generate clock source for the RTC/system timer.
P3.1/XTAL1	8	I/O	P3.1 — Port 3 bit 1.
		Ι	XTAL1 — Input to the oscillator circuit and internal clock generator circuits (when selected via the flash configuration). It can be a port pin if internal RC oscillator or watchdog oscillator is used as the CPU clock source, and if XTAL1/XTAL2 are not used to generate the clock for the RTC/system timer.
V _{SS}	7	I	Ground: 0 V reference.
V _{DD}	21	I	Power supply: This is the power supply voltage for normal operation as well as Idle and Power-down modes.

[1] Input/output for P1.0 to P1.4, P1.6, P1.7. Input for P1.5.

Table 4.Special function registers ...continued* indicates SFRs that are bit addressable. P89LPC9

P89LPC9321	Name	Description	SFR	Bit function	ns and addro	esses						Reset	value
			addr.	MSB							LSB	Hex	Binary
	DEEDAT	Data EEPROM data register	F2H									00	0000 0000
	DEEADR	Data EEPROM address register	F3H									00	0000 0000
	DIVM	CPU clock divide-by-M control	95H									00	0000 0000
AII	DPTR	Data pointer (2 bytes)											
All information provided in this document is	DPH	Data pointer high	83H									00	0000 0000
provided in 1	DPL	Data pointer low	82H									00	0000 0000
his docume	FMADRH	Program flash address high	E7H									00	0000 0000
nt is subiect	FMADRL	Program flash address low	E6H									00	0000 0000
subject to legal disc	FMCON	Program flash control (Read)	E4H	BUSY	-	-	-	HVA	HVE	SV	OI	70	0111 0000
claimers.		Program flash control (Write)	E4H	FMCMD.7	FMCMD.6	FMCMD.5	FMCMD.4	FMCMD.3	FMCMD.2	FMCMD.1	FMCMD.0		
	FMDATA	Program flash data	E5H									00	0000 0000
	I2ADR	l ² C-bus slave address register	DBH	I2ADR.6	I2ADR.5	I2ADR.4	I2ADR.3	I2ADR.2	I2ADR.1	I2ADR.0	GC	00	0000 0000
		Bit a	ddress	DF	DE	DD	DC	DB	DA	D9	D8		
© NXP B.V. 2010. All rights	I2CON*	l ² C-bus control register	D8H	-	I2EN	STA	STO	SI	AA	-	CRSEL	00	x000 00x0
2010. All	I2DAT	l ² C-bus data register	DAH										

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core

P89LPC9321

13 of 71

Table 4.Special function registers ...continued* indicates SFRs that are bit addressable. P89LPC93

	Name	Description	SFR	Bit functio	ns and addre	sses						Reset	value
			addr.	MSB							LSB	Hex	Binary
	I2SCLH	Serial clock generator/SCL duty cycle register high	DDH									00	0000 000
	I2SCLL	Serial clock generator/SCL duty cycle register low	DCH									00	0000 000
	I2STAT	l ² C-bus status register	D9H	STA.4	STA.3	STA.2	STA.1	STA.0	0	0	0	F8	1111 1000
	ICRAH	Input capture A register high	ABH									00	0000 000
	ICRAL	Input capture A register low	AAH									00	0000 000
	ICRBH	Input capture B register high	AFH									00	0000 000
	ICRBL	Input capture B register low	AEH									00	0000 000
		Bit a	ddress	AF	AE	AD	AC	AB	AA	A9	A8		
	IEN0*	Interrupt enable 0	A8H	EA	EWDRT	EBO	ES/ESR	ET1	EX1	ET0	EX0	00	0000 000
		Bit a	ddress	EF	EE	ED	EC	EB	EA	E9	E8		
	IEN1*	Interrupt enable 1	E8H	EIEE	EST	-	ECCU	ESPI	EC	EKBI	EI2C	00 <u>[1]</u>	00x0 000
		Bit a	ddress	BF	BE	BD	BC	BB	BA	B9	B8		
	IP0*	Interrupt priority 0	B8H	-	PWDRT	PBO	PS/PSR	PT1	PX1	PT0	PX0	00 <u>[1]</u>	x000 000
	IP0H	Interrupt priority 0 high	B7H	-	PWDRTH	PBOH	PSH/ PSRH	PT1H	PX1H	PT0H	PX0H	00 <u>[1]</u>	x000 000
		Bit a	ddress	FF	FE	FD	FC	FB	FA	F9	F8		
	IP1*	Interrupt priority 1	F8H	PIEE	PST	-	PCCU	PSPI	PC	PKBI	PI2C	00 <u>[1]</u>	00x0 000
-	IP1H	Interrupt priority 1 high	F7H	PIEEH	PSTH	-	PCCUH	PSPIH	PCH	PKBIH	PI2CH	00 <u>[1]</u>	00x0 000

8-bit microcontroller with accelerated two-clock 80C51 core

Table 4.Special function registers ...continued* indicates SFRs that are bit addressable. P89LPC9

009321	Name	Description	SFR	Bit function	s and add	esses						Reset value	
			addr.	MSB							LSB	Hex	Binary
	KBCON	Keypad control register	94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 <u>[1]</u>	xxxx xx00
	KBMASK	Keypad interrupt mask register	86H									00	0000 0000
	KBPATN	Keypad pattern register	93H									FF	1111 1111
	OCRAH	Output compare A register high	EFH									00	0000 0000
All information provided in this document is subject to legal disclaimen	OCRAL	Output compare A register low	EEH									00	0000 0000
ded in this docur	OCRBH	Output compare B register high	FBH									00	0000 0000
nent is subject to	OCRBL	Output compare B register low	FAH									00	0000 0000
lenal disclaimers	OCRCH	Output compare C register high	FDH									00	0000 0000
	OCRCL	Output compare C register low	FCH									00	0000 0000
	OCRDH	Output compare D register high	FFH									00	0000 0000
© NXP B	OCRDL	Output compare D register low	FEH									00	0000 0000
/ 2010		Bit a	ddress	87	86	85	84	83	82	81	80		
© NXP R V 2010 All rights reserved	P0*	Port 0	80H	T1/KB7	CMP1 /KB6	CMPREF /KB5	CIN1A /KB4	CIN1B /KB3	CIN2A /KB2	CIN2B /KB1	CMP2 /KB0	[1]	
PSPN		Bit a	ddress	97	96	95	94	93	92	91	90		

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core

P89LPC9321

15 of 71

Rev. 2 Τ

16 November 2010

Product data sheet

Table 4. Special function registers ... continued

* indicates SFRs that are bit addressable.

9321	Name		-	Bit functions and addresses	Reset value		
			addr.	MSB	LSB	Hex	Binary
	WDL	Watchdog load	C1H			FF	1111 1111
	WFEED1	Watchdog feed 1	C2H				
	WFEED2	Watchdog feed 2	СЗН				

[1] All ports are in input only (high-impedance) state after power-up.

[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.

[3] The RSTSRC register reflects the cause of the P89LPC9321 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is x011 0000.

[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset. Other resets will not affect WDTOF.

[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.

[6] The only reset sources that affect these SFRs are power-on reset and watchdog reset.

Þ

NXP

Semiconductors

7.13 Memory organization

The various P89LPC9321 memory spaces are as follows:

DATA

128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect addressing, using instructions other than MOVX and MOVC. All or part of the Stack may be in this area.

IDATA

Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via indirect addressing using instructions other than MOVX and MOVC. All or part of the Stack may be in this area. This area includes the DATA area and the 128 bytes immediately above it.

SFR

Special Function Registers. Selected CPU registers and peripheral control and status registers, accessible only via direct addressing.

XDATA

'External' Data or Auxiliary RAM. Duplicates the classic 80C51 64 kB memory space addressed via the MOVX instruction using the DPTR, R0, or R1. All or part of this space could be implemented on-chip. The P89LPC9321 has 512 bytes of on-chip XDATA memory, plus extended SFRs located in XDATA.

• CODE

64 kB of Code memory space, accessed as part of program execution and via the MOVC instruction. The P89LPC9321 has 8 kB of on-chip Code memory.

The P89LPC9321 also has 512 bytes of on-chip data EEPROM that is accessed via SFRs (see Section 7.14).

7.14 Data RAM arrangement

The 768 bytes of on-chip RAM are organized as shown in Table 6.

Table 6. On-chip data memory usages

Туре	Data RAM	Size (bytes)
DATA	Memory that can be addressed directly and indirectly	128
IDATA	Memory that can be addressed indirectly	256
XDATA	Auxiliary ('External Data') on-chip memory that is accessed using the MOVX instructions	512

7.15 Interrupts

The P89LPC9321 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the many interrupt sources. The P89LPC9321 supports 15 interrupt sources: external interrupts 0 and 1, timers 0 and 1, serial port TX, serial port RX, combined serial port RX/TX, brownout detect, watchdog/RTC, I²C-bus, keyboard, comparators 1 and 2, SPI, CCU, data EEPROM write completion.

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global disable bit, EA, which disables all interrupts.

All information provided in this document is subject to legal disclaimers.		40 November 2010
	 All information provided i	n this document is subject to legal disclaimers.

7.19.1 Reset vector

Following reset, the P89LPC9321 will fetch instructions from either address 0000H or the Boot address. The Boot address is formed by using the boot vector as the high byte of the address and the low byte of the address = 00H.

The boot address will be used if a UART break reset occurs, or the non-volatile boot status bit (BOOTSTAT.0) = 1, or the device is forced into ISP mode during power-on (see P89LPC9321 *User manual*). Otherwise, instructions will be fetched from address 0000H.

7.20 Timers/counters 0 and 1

The P89LPC9321 has two general purpose counter/timers which are upward compatible with the standard 80C51 Timer 0 and Timer 1. Both can be configured to operate either as timers or event counters. An option to automatically toggle the T0 and/or T1 pins upon timer overflow has been added.

In the 'Timer' function, the register is incremented every machine cycle.

In the 'Counter' function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0 or T1. In this function, the external input is sampled once during every machine cycle.

Timer 0 and Timer 1 have five operating modes (Modes 0, 1, 2, 3 and 6). Modes 0, 1, 2 and 6 are the same for both Timers/Counters. Mode 3 is different.

7.20.1 Mode 0

Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a 13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.

7.20.2 Mode 1

Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.

7.20.3 Mode 2

Mode 2 configures the Timer register as an 8-bit Counter with automatic reload. Mode 2 operation is the same for Timer 0 and Timer 1.

7.20.4 Mode 3

When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit counters and is provided for applications that require an extra 8-bit timer. When Timer 1 is in Mode 3 it can still be used by the serial port as a baud rate generator.

7.20.5 Mode 6

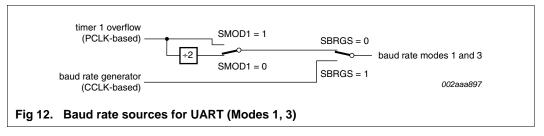
In this mode, the corresponding timer can be changed to a PWM with a full period of 256 timer clocks.

7.23.2 Mode 1

10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored in RB8 in special function register SCON. The baud rate is variable and is determined by the Timer 1 overflow rate or the baud rate generator (described in <u>Section 7.23.5 "Baud</u> rate generator and selection").

7.23.3 Mode 2

11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of logic 0 or logic 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is received, the 9th data bit goes into RB8 in special function register SCON, while the stop bit is not saved. The baud rate is programmable to either $\frac{1}{16}$ or $\frac{1}{32}$ of the CPU clock frequency, as determined by the SMOD1 bit in PCON.

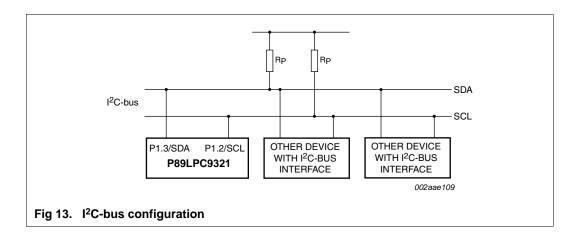

7.23.4 Mode 3

11 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable and is determined by the Timer 1 overflow rate or the baud rate generator (described in Section 7.23.5 "Baud rate generator and selection").

7.23.5 Baud rate generator and selection

The P89LPC9321 enhanced UART has an independent baud rate generator. The baud rate is determined by a baud-rate preprogrammed into the BRGR1 and BRGR0 SFRs which together form a 16-bit baud rate divisor value that works in a similar manner as Timer 1 but is much more accurate. If the baud rate generator is used, Timer 1 can be used for other timing functions.

The UART can use either Timer 1 or the baud rate generator output (see <u>Figure 12</u>). Note that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared. The independent baud rate generators use OSCCLK.


7.23.6 Framing error

Framing error is reported in the status register (SSTAT). In addition, if SMOD0 (PCON.6) is logic 1, framing errors can be made available in SCON.7 respectively. If SMOD0 is logic 0, SCON.7 is SM0. It is recommended that SM0 and SM1 (SCON.7:6) are set up when SMOD0 is logic 0.

NXP Semiconductors

P89LPC9321

8-bit microcontroller with accelerated two-clock 80C51 core

38 of 71

8-bit microcontroller with accelerated two-clock 80C51 core

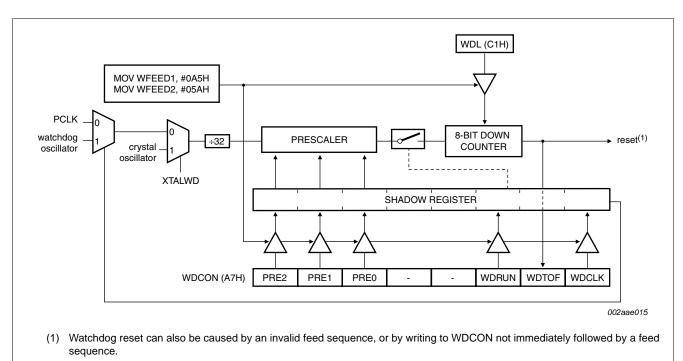


Fig 20. Watchdog timer in Watchdog mode (WDTE = 1)

7.29 Additional features

7.29.1 Software reset

The SRST bit in AUXR1 gives software the opportunity to reset the processor completely, as if an external reset or watchdog reset had occurred. Care should be taken when writing to AUXR1 to avoid accidental software resets.

7.29.2 Dual data pointers

The dual Data Pointers (DPTR) provides two different Data Pointers to specify the address used with certain instructions. The DPS bit in the AUXR1 register selects one of the two Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that the DPS bit may be toggled (thereby switching Data Pointers) simply by incrementing the AUXR1 register, without the possibility of inadvertently altering other bits in the register.

7.29.3 Data EEPROM

The P89LPC9321 has 512 bytes of on-chip Data EEPROM. The Data EEPROM is SFR based, byte readable, byte writable, and erasable (via row fill and sector fill). The user can read, write and fill the memory via SFRs and one interrupt. This Data EEPROM provides 100,000 minimum erase/program cycles for each byte.

- Byte mode: In this mode, data can be read and written one byte at a time.
- Row fill: In this mode, the addressed row (64 bytes) is filled with a single value. The entire row can be erased by writing 00H.
- Sector fill: In this mode, all 512 bytes are filled with a single value. The entire sector can be erased by writing 00H.

After the operation finishes, the hardware will set the EEIF bit, which if enabled will generate an interrupt. The flag is cleared by software.

Remark: When voltage supply is lower than 2.4 V, the BOD FLASH is tripped and Data EEPROM program or erase is blocked. EWERR1 and EWERR0 bits are used to indicate the write error for BOD EEPROM. Both can be cleared by power on reset, watchdog reset or software write.

7.30 Flash program memory

7.30.1 General description

The P89LPC9321 flash memory provides in-circuit electrical erasure and programming. The flash can be erased, read, and written as bytes. The Sector and Page Erase functions can erase any flash sector (1 kB) or page (64 bytes). The Chip Erase operation will erase the entire program memory. ICP using standard commercial programmers is available. In addition, IAP and byte-erase allows code memory to be used for non-volatile data storage. On-chip erase and write timing generation contribute to a user-friendly programming interface. The P89LPC9321 flash reliably stores memory contents even after 100,000 erase and program cycles. The cell is designed to optimize the erase and programming mechanisms. The P89LPC9321 uses V_{DD} as the supply voltage to perform the Program/Erase algorithms. When voltage supply is lower than 2.4 V, the BOD FLASH is tripped and flash erase/program is blocked.

7.30.2 Features

- Programming and erase over the full operating voltage range.
- Byte erase allows code memory to be used for data storage.
- Read/Programming/Erase using ISP/IAP/ICP.
- Internal fixed boot ROM, containing low-level IAP routines available to user code.
- Default loader providing ISP via the serial port, located in upper end of user program memory.
- Boot vector allows user-provided flash loader code to reside anywhere in the flash memory space, providing flexibility to the user.
- Any flash program/erase operation in 2 ms.
- Programming with industry-standard commercial programmers.
- Programmable security for the code in the flash for each sector.
- 100,000 typical erase/program cycles for each byte.
- 10 year minimum data retention.

7.30.3 Flash organization

The program memory consists of eight 1 kB sectors on the P89LPC9321 devices. Each sector can be further divided into 64-byte pages. In addition to sector erase, page erase, and byte erase, a 64-byte page register is included which allows from 1 to 64 bytes of a given page to be programmed at the same time, substantially reducing overall programming time.

7.32 User sector security bytes

There are eight User Sector Security Bytes on the P89LPC9321. Each byte corresponds to one sector. Please see the P89LPC9321 *User manual* for additional details.

7.33 PGA

Additional PGA module is integrated. The gain of PGA can be programmable to 2, 4, 8 and 16. Please refer to <u>Table 10 "Static characteristics"</u> for detailed specifications.

Register PGACON1 and PGACON1B are used to for PGA1 configuration. Register PGA1TRIM2X4X and PGA1TRIM8X16X provide trim value of PGA1 gain level. As power-on, default trim value for each gain setting is loaded into the PGA1 trim registers. For accurate measurements, offset calibration is required.

Please see the P89LPC9321 *User manual* for detail configuration, calibration, and usage information.

In Power-down mode or Total Power-down mode, the PGA1 does not function. If the PGAs, is enabled, it will consume power. Power can be reduced by disabling the PGA1.

8-bit microcontroller with accelerated two-clock 80C51 core

Table 10. Static characteristics ...continued

 V_{DD} = 2.4 V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$ for industrial applications, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <u>[1]</u>	Max	Unit
I _{THL}	HIGH-LOW transition current	all ports; $V_1 = 1.5 V$ at $V_{DD} = 3.6 V$	<u>[9]</u> –30	-	-450	μΑ
R _{RST_N(int)}	internal pull-up resistance on pin RST	pin RST	10	-	30	kΩ
BOD inter	rupt					
V _{trip}	trip voltage	falling stage				
		BOICFG1, BOICFG0 = 01	2.25	-	2.55	V
		BOICFG1, BOICFG0 = 10	2.60	-	2.80	V
		BOICFG1, BOICFG0 = 11	3.10	-	3.40	V
		rising stage				
		BOICFG1, BOICFG0 = 01	2.30	-	2.60	V
		BOICFG1, BOICFG0 = 10	2.70	-	2.90	V
		BOICFG1, BOICFG0 = 11	3.15	-	3.45	V
BOD rese	t					
V _{trip}	trip voltage	falling stage				
		BOE1, BOE0 = 01	2.10	-	2.30	V
		BOE1, BOE0 = 10	2.25	-	2.55	V
		BOE1, BOE0 = 11	2.80	-	3.20	V
		rising stage				
		BOE1, BOE0 = 01	2.20	-	2.40	V
		BOE1, BOE0 = 10	2.30	-	2.60	V
		BOE1, BOE0 = 11	2.90	-	3.30	V
BOD EEP	ROM/FLASH					
V _{trip}	trip voltage	falling stage	2.25	-	2.55	V
		rising stage	2.30	-	2.60	V
V _{ref(bg)}	band gap reference voltage		1.11	1.23	1.34	V
TC _{bg}	band gap temperature coefficient		-	10	20	ppm/ °C

[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.

[2] The I_{DD(oper)}, I_{DD(idle)}, and I_{DD(pd)} specifications are measured using an external clock with the following functions disabled: comparators, real-time clock, and watchdog timer.

[3] The I_{DD(tpd)} specification is measured using an external clock with the following functions disabled: comparators, real-time clock, brownout detect, and watchdog timer.

[4] See Section 8 "Limiting values" for steady state (non-transient) limits on I_{OL} or I_{OH}. If I_{OL}/I_{OH} exceeds the test condition, V_{OL}/V_{OH} may exceed the related specification.

NXP Semiconductors

P89LPC9321

8-bit microcontroller with accelerated two-clock 80C51 core

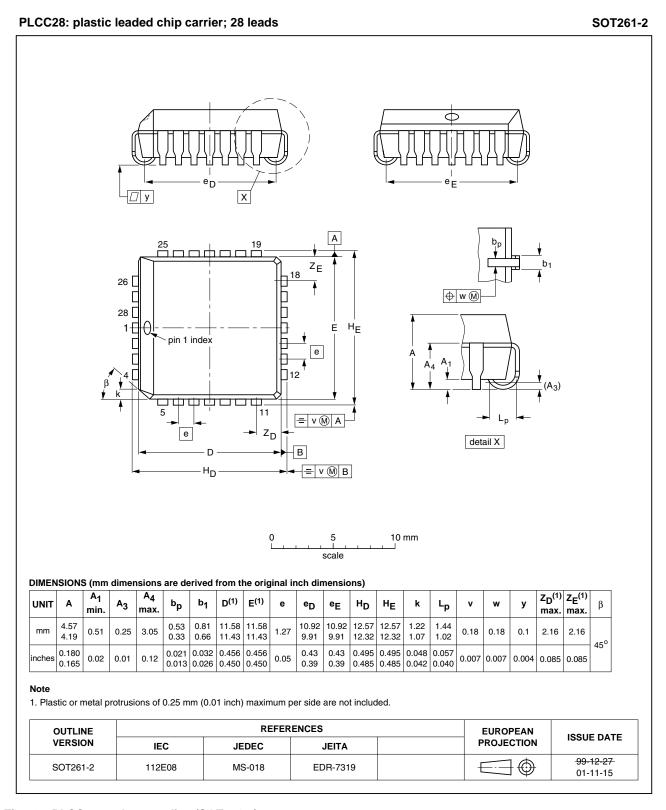
- [5] This specification can be applied to pins which have A/D input or analog comparator input functions when the pin is not being used for those analog functions. When the pin is being used as an analog input pin, the maximum voltage on the pin must be limited to 4.0 V with respect to V_{SS}.
- [6] Pin capacitance is characterized but not tested.
- [7] Measured with port in quasi-bidirectional mode.
- [8] Measured with port in high-impedance mode.
- [9] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is highest when V₁ is approximately 2 V.

10. Dynamic characteristics

Table 11. Dynamic characteristics (12 MHz)

 $V_{DD} = 2.4$ V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified.}$


Symbol	Parameter	Conditions	Varia	able clock	f _{osc} = '	12 MHz	Unit
			Min	Max	Min	Max	
f _{osc(RC)}	internal RC oscillator frequency	nominal f = 7.3728 MHz trimmed to ± 1 % at T_{amb} = 25 °C; clock doubler option = OFF (default)	7.189	7.557	7.189	7.557	MHz
		nominal f = 14.7456 MHz; clock doubler option = ON, V_{DD} = 2.7 V to 3.6 V	14.378	15.114	14.378	15.114	MHz
f _{osc(WD)}	internal watchdog oscillator frequency	T _{amb} = 25 °C	380	420	380	420	kHz
f _{osc}	oscillator frequency		0	12	-	-	MHz
T _{cy(clk)}	clock cycle time	see Figure 22	83	-	-	-	ns
f _{CLKLP}	low-power select clock frequency		0	8	-	-	MHz
Glitch filte	r						
t _{gr}	glitch rejection time	P1.5/RST pin	-	50	-	50	ns
		any pin except P1.5/RST	-	15	-	15	ns
t _{sa}	signal acceptance time	P1.5/RST pin	125	-	125	-	ns
		any pin except P1.5/RST	50	-	50	-	ns
External c	lock						
t _{CHCX}	clock HIGH time	see Figure 22	33	${\sf T}_{{\sf cy}({\sf clk})}-{\sf t}_{{\sf CLCX}}$	33	-	ns
t _{CLCX}	clock LOW time	see Figure 22	33	${\sf T}_{{\sf cy}({\sf clk})}-{\sf t}_{{\sf CHCX}}$	33	-	ns
t _{CLCH}	clock rise time	see Figure 22	-	8	-	8	ns
t _{CHCL}	clock fall time	see <u>Figure 22</u>	-	8	-	8	ns
Shift regis	ter (UART mode 0)						
T _{XLXL}	serial port clock cycle time	see <u>Figure 21</u>	16T _{cy(clk)}	-	1333	-	ns
t _{QVXH}	output data set-up to clock rising edge time	see Figure 21	13T _{cy(clk)}	-	1083	-	ns
t _{XHQX}	output data hold after clock rising edge time	see Figure 21	-	$T_{cy(clk)}$ + 20	-	103	ns
t _{XHDX}	input data hold after clock rising edge time	see <u>Figure 21</u>	-	0	-	0	ns
t _{XHDV}	input data valid to clock rising edge time	see <u>Figure 21</u>	150	-	150	-	ns
SPI interfa	ice						
f _{SPI}	SPI operating frequency						
	slave		0	CCLK/6	0	2.0	MHz
	master		-	CCLK	-	3.0	MHz

NXP Semiconductors

P89LPC9321

8-bit microcontroller with accelerated two-clock 80C51 core

12. Package outline

Fig 28. PLCC28 package outline (SOT261-2)

P89LPC9321

© NXP B.V. 2010. All rights reserved.

8-bit microcontroller with accelerated two-clock 80C51 core

7.30.1	General description	46
7.30.2	Features	46
7.30.3	Flash organization	46
7.30.4	Using flash as data storage	47
7.30.5	Flash programming and erasing	47
7.30.6	ICP	47
7.30.7	IAP	47
7.30.8	ISP	48
7.30.9	Power-on reset code execution	48
7.30.10	Hardware activation of the boot loader	48
7.31	User configuration bytes	48
7.32	User sector security bytes	49
7.33	PGA	49
8	Limiting values	50
9	Static characteristics	51
10	Dynamic characteristics	54
10.1	Waveforms	58
10.2	ISP entry mode	60
11	Other characteristics	61
11.1	Comparator electrical characteristics	61
11.2	PGA electrical characteristics	62
12	Package outline	63
13	Abbreviations	66
14	Revision history	67
15	Legal information	68
15.1	Data sheet status	68
15.2	Definitions	68
15.3	Disclaimers	68
15.4	Trademarks	69
16	Contact information	69
17	Contents	70

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 November 2010 Document identifier: P89LPC9321