

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detuns	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	42K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2265n40f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.6 4.7	Flash Memory Parameters
	AC Parameters
4.7.1	Testing Waveforms
4.7.2	Definition of Internal Timing
4.7.2.1	Phase Locked Loop (PLL) 98
4.7.2.2	Wakeup Clock 101
4.7.2.3	Selecting and Changing the Operating Frequency
4.7.3	External Clock Input Parameters 102
4.7.4	Pad Properties
4.7.5	External Bus Timing 108
4.7.5.1	Bus Cycle Control with the READY Input 113
4.7.6	Synchronous Serial Interface Timing 116
4.7.7	Debug Interface Timing 120
5	Package and Reliability
5.1	Packaging
5.2	Thermal Considerations
5.3	Quality Declarations
0.0	

General Device Information

Table 6Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output	
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output	
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output	
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output	
	A1	OH	St/B	External Bus Interface Address Line 1	
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input	
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input	
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input	
56	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output	
	U0C1_SCLK OUT	O1	DP/B	USIC0 Channel 1 Shift Clock Output	
	EXTCLK	O2	DP/B	Programmable Clock Signal Output	
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.	
	A21	OH	DP/B	External Bus Interface Address Line 21	
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input	
57	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output	
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.	
	A22	OH	St/B	External Bus Interface Address Line 22	
	CLKIN1	I	St/B	Clock Signal Input 1	
	TCK_A	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.	

General Device Information

Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output	
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output	
	RxDC2D	I	St/B	CAN Node 2 Receive Data Input	
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output	
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.	
	A23	ОН	St/B	External Bus Interface Address Line 23	
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input	
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input	
67	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output	
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output	
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3	
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input	
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input	
68	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output	
	U1C1_SCLK OUT	O1	St/B	USIC1 Channel 1 Shift Clock Output	
	U1C0_SELO 2	O2	St/B	USIC1 Channel 0 Select/Control 2 Output	
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output	
	A5	ОН	St/B	External Bus Interface Address Line 5	
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input	
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input	
	RXDC3E	I	St/B	CAN Node 3 Receive Data Input	

Table 6

XC2261N/68N, XC2263N/64N/65N XC2000 Family / Value Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
2, 25, 27, 50, 52, 75, 77, 100	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent V_{DDP}/V_{SS} pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage V_{DDPB} .
1, 26, 51,	V _{SS}	-	PS/	Digital Ground All V _{SS} pins must be connected to the ground-line or ground-plane.
76				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Pin Definitions and Functions (cont'd)

 To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹:

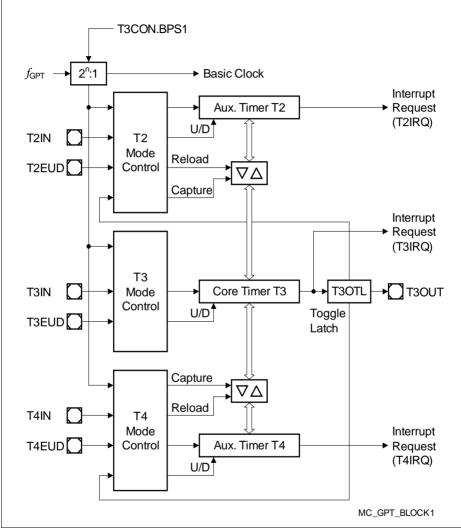
- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

External \overline{CS} signals (address windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.


In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

Functional Description

3.14 MultiCAN Module

The MultiCAN module contains independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

Note: The number of CAN nodes and message objects depends on the selected device type.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.

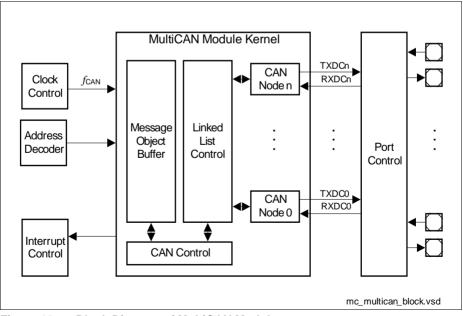


Figure 12 Block Diagram of MultiCAN Module

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC226xN from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

3.18 Parallel Ports

The XC226xN provides up to 76 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN
P1	8	I/O	EBC (A15A8), CCU6, USIC
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG
P4	4	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC
P5	11	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	3	I/O	ADC, CAN, GPT12E
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN
P15	5	I	Analog Inputs, GPT12E

Table 10 Summary of the XC226xN's Ports

3.20 Instruction Set Summary

Table 11 lists the instructions of the XC226xN.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description				
ADD(B)	Add word (byte) operands	2/4			
ADDC(B)	Add word (byte) operands with Carry				
SUB(B)	Subtract word (byte) operands	2/4			
SUBC(B)	Subtract word (byte) operands with Carry	2/4			
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2			
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2			
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2			
CPL(B)	Complement direct word (byte) GPR	2			
NEG(B)	Negate direct word (byte) GPR				
AND(B)	Bitwise AND, (word/byte operands)				
OR(B)	Bitwise OR, (word/byte operands)	2/4			
XOR(B)	Bitwise exclusive OR, (word/byte operands)				
BCLR/BSET	Clear/Set direct bit				
BMOV(N)	Move (negated) direct bit to direct bit				
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4			
BCMP	Compare direct bit to direct bit	4			
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data				
CMP(B)	Compare word (byte) operands	2/4			
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2				
CMPI1/2	Compare word data to GPR and increment GPR by 1/2				
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR				
SHL/SHR	Shift left/right direct word GPR	2			

Table 11 Instruction Set Summary

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output High voltage ⁷⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\text{OH}} \ge I_{\text{OHmax}}$
		V _{DDP} - 0.4	-	-	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{8}$
Output Low Voltage ⁷⁾	$V_{\rm OL}{\rm CC}$	-	-	0.4	V	$I_{\rm OL} \le I_{\rm OLnom}^{8)}$
		-	-	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}$

Table 16 DC Characteristics for Upper Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm CV}$.
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ-) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device.
- 6) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level.
- 7) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL}->V_{SS}, V_{OH}->V_{DDP}). However, only the levels for nominal output currents are verified.

Table 18Switching Power Consumption

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	$6 + 0.6 \\ x f_{SYS}^{1)}$	8+1.0 x f _{SYS} ¹⁾	mA	power_mode= active ; voltage_range= both ²⁾³⁾⁴⁾
Power supply current in standby mode	I _{SSB} CC	-	45	125	μA	power_mode= standby ; voltage_range= lower ⁵⁾
		-	70	220	μA	power_mode= standby ; voltage_range= upper ⁵⁾
Power supply current in stopover mode, EVVRs on	I _{SSO} CC	-	0.7	2.0	mA	power_mode= stopover ; voltage_range= both ⁴⁾

1) f_{SYS} in MHz

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x f_{SVS}.

- 3) Please consider the additional conditions described in section "Active Mode Power Supply Current".
- 4) The pad supply voltage has only a minor influence on this parameter.
- 5) These values are valid if the voltage validation circuits for V_{DDPB} (SWD) and V_{DDIM} (PVC_M) are off. Leaving SWD and PVC_M active adds another 90 μA.

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC226xN's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

Sample time and conversion time of the XC226xN's A/D converters are programmable. The timing above can be calculated using Table 21.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock f_{ADCI}	INPCRx.7-0 (STC)	Sample Time ¹⁾ t _s
000000 _B	$f_{\rm SYS}$	00 _H	$t_{ADCI} \times 2$
000001 _B	f _{SYS} / 2	01 _H	$t_{ADCI} imes 3$
000010 _B	f _{SYS} / 3	02 _H	$t_{ADCI} imes 4$
:	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$
111110 _B	f _{SYS} / 63	FE _H	$t_{ADCI} imes 256$
111111 _B	f _{SYS} / 64	FF _H	$t_{\rm ADCI} imes 257$

 Table 21
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 4 = 20$ MHz, i.e. $t_{ADCI} = 50$ ns
Sample time	t _S	$= t_{ADCI} \times 2 = 100 \text{ ns}$
Conversion 10-	bit:	
	<i>t</i> _{C10}	= $13 \times t_{ADCI}$ + 2 × t_{SYS} = 13 × 50 ns + 2 × 12.5 ns = 0.675 µs
Conversion 8-b	it:	
	t _{C8}	= $11 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 11×50 ns + 2×12.5 ns = 0.575 μ s

Converter Timing Example B:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H			
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 3 = 13.3 \text{ MHz}$, i.e. $t_{ADCI} = 75 \text{ ns}$			
Sample time	t _S	$= t_{ADCI} \times 5 = 375 \text{ ns}$			
Conversion 10-bit:					
	<i>t</i> _{C10}	= $16 \times t_{ADCI}$ + 2 × t_{SYS} = 16 × 75 ns + 2 × 25 ns = 1.25 µs			
Conversion 8-b	it:				
	t _{C8}	= $14 \times t_{ADCI}$ + 2 × t_{SYS} = 14 × 75 ns + 2 × 25 ns = 1.10 µs			

- The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.
- This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization
- 3) $f_{\rm WU}$ in MHz
- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) $V_{\rm LV}$ = selected SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for *t*_{SPO} Timing Measurement

The time required for the transition from **Power-on** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0V and remains above 3.0V even though the XC226xN is starting up. No debugger is attached.

Start condition: Power-on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for *t*_{SSB} Timing Measurement

The time required for the transition from **Standby** to **Base** mode is called t_{SSB} . It is measured under the following conditions:

Precondition: The **Standby** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on ESR pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for *t*_{SSO} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on $\overline{\text{ESR}}$ pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

4.7 AC Parameters

These parameters describe the dynamic behavior of the XC226xN.

4.7.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

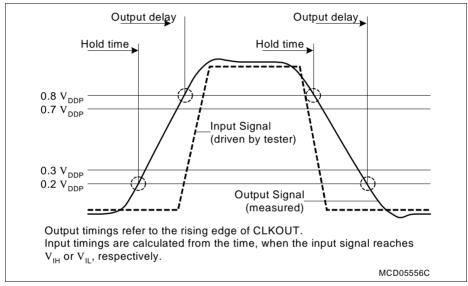
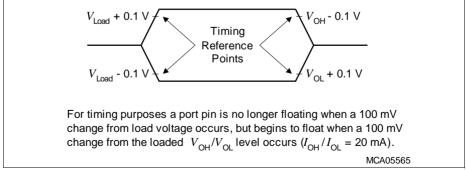




Figure 17 Input Output Waveforms

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 D_{max} = $\pm(220$ / (4 \times 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{array}$

Electrical Parameters

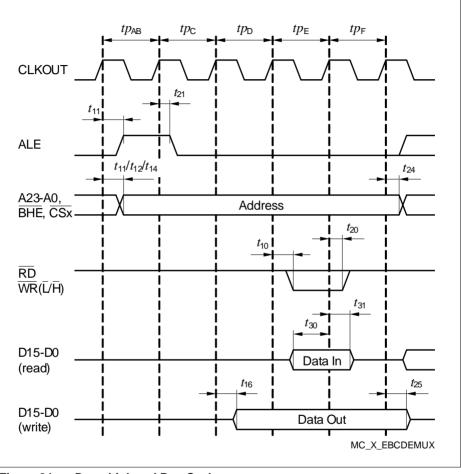


Figure 24 Demultiplexed Bus Cycle

4.7.5.1 Bus Cycle Control with the READY Input

The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum

4.7.7 Debug Interface Timing

The debugger can communicate with the XC226xN either via the 2-pin DAP interface or via the standard JTAG interface.

Debug via DAP

The following parameters are applicable for communication through the DAP debug interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 38 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period ¹⁾	t ₁₁ SR	25	-	_	ns	
DAP0 high time	t ₁₂ SR	8	-	_	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	_	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	17	20	-	ns	

 Table 38
 DAP Interface Timing for Upper Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Table 39 is valid under the following conditions: C_{L} = 20 pF; voltage_range= lower

Table 41 JTAG Interface Timing for Lower Voltage Range (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ¹⁾	t ₈ CC	-	32	36	ns	
TDO high impedance to valid output from TCK falling edge ²⁾¹⁾	t ₉ CC	-	32	36	ns	
TDO valid output to high impedance from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	32	36	ns	
TDO hold after TCK falling edge ¹⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

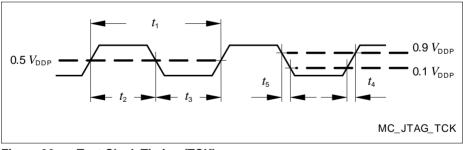


Figure 30 Test Clock Timing (TCK)

www.infineon.com

Published by Infineon Technologies AG