

Welcome to E-XFL.COM

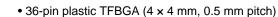
What is "Embedded - Microcontrollers"?

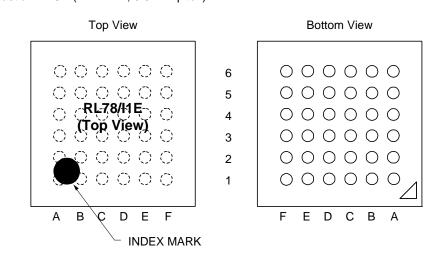
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \mathbf{X}


Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	10
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x10b, 3x24b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11cbcmna-u0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 36-pin products

<R>

	А	В	С	D	Е	F	
6	PGA2P	PGA1N	PGA1P	PGA0P	PGA3P	AVss	6
5	PGA2N	P40/TOOL0	PGA0N	PGA3N	REGA	SBIAS	5
	RESET	P137/SSI00/ INTP0	P11/SI01/RXD1/ SDA01/TI03/	P12/SCK01/ SCL01/TI11/	ANIO	AVdd	
4			TO03/INTP2/ TRGCLKA/ TRJIO0	TO11/INTP3/ PCLBUZ0/ TRGIOB/TRJO0			4
3	P122/EXCLK/X2	P15/SCK00/ SCL00/T110/ TO10/INTP6/ TRGCLKB	P10/S001/TXD1/ TI01/T001/ INTP1/TRGIOA	ANI3/AMP0P/ ANX1	ANI2/AMP0N/ ANX0	ANI1/AMP0O	3
2	P121/X1	REGC	P14/SI00/RXD0/ SDA00/TI02/ TO02/INTP5/ TOOLRXD	P41/ANI6/ AMP1P/ANX3	P42/ANI5/ AMP1N/ANX2	ANI4/AMP1O	2
1	Vdd	Vss	P13/SO00/TXD0/ TI00/TO00/INTP4/ TOOLTXD/ RTC1HZ	P16/INTP7/ANI9/ AMP2P/ANX5	P17/ANI8/ AMP2N/ANX4	ANI7/AMP2O	1
	A	В	С	D	E	F	1

Caution 1. Connect the REGC pin to the Vss pin via a capacitor (0.47 to 1 μ F).

Caution 2. Connect the REGA pin to the AVss pin via a capacitor (0.22 $\mu\text{F}).$

Caution 3. Make the AVss pin the same potential as the Vss pin.

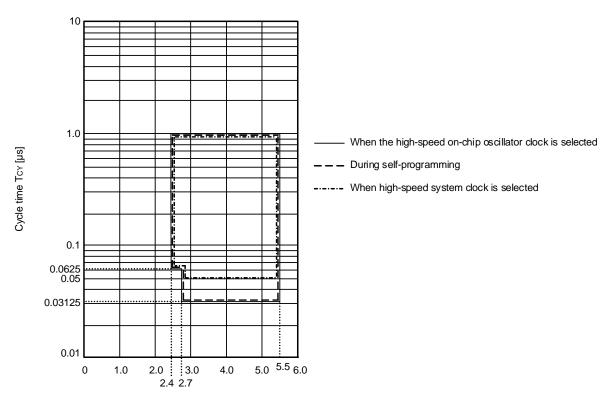
Caution 4. Make the AVDD pin the same potential as the VDD pin.

Caution 5. Connect the SBIAS pin to the AVss pin via a capacitor (0.22 $\mu\text{F}).$

AFE functions

```
(TA = -40 to +105°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)
```

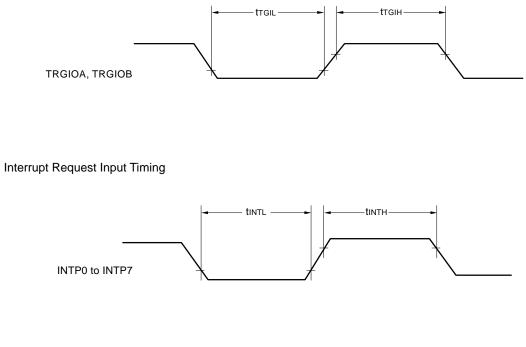
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
24-bit $\Delta\Sigma$ A/D converter operating current	Idsad	Normal mode Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, VREFAMP, PGA, 24-bit $\Delta\Sigma$ A/D converter, and digital filter Differential input mode OSR = 256 SBIAS Iout = 0 mA		0.94	1.46	mA
		Low power mode Notes 1, 2 Circuits that operate: ABGR, REGA, SBIAS, VREFAMP, PGA, 24-bit $\Delta\Sigma$ A/D converter, and digital filter Differential input mode OSR = 256 SBIAS lour = 0 mA		0.60	0.91	mA
10-bit A/D converter operating current	IADC	During conversion at the highest speed Notes 1, 2 $AV_{DD} = 5.0 V$		1.30	1.70	mA
Configurable amplifier operating current	Іамр	Normal mode Notes 1, 2 Circuits that operate: ABGR and configurable amplifier IL = 0 mA Per channel		0.13	0.24	mA
		High-speed mode Notes 1, 2 Circuits that operate: ABGR and configurable amplifier IL = 0 mA Per channel		0.30	0.45	mA
12-bit D/A converter operating current	Idac	When AV _{DD} is selected as the reference voltage Notes 1, 2 Circuits that operate: ABGR and internal reference voltage (VREFDA)		0.61	0.97	mA


Note 1. Current flowing to AVDD

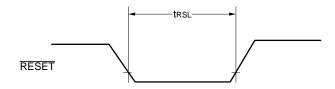
Note 2. Current flowing only to the circuits that operate shown in the Conditions column.

TCY vs VDD

Minimum Instruction Execution Time During Main System Clock Operation


Supply voltage VDD [V]

R01DS0274EJ0110 Rev. 1.10 Jun 30, 2016



AC Timing Test Points Vін/Vон Vін/Vон Test points Vil/Vol VIL/VOL External System Clock Timing — 1/fex texl **t**EXH EXCLK TI/TO Timing t⊤ı∟ ttiH-TI00 to TI03, TI10, TI11 1/fto TO00 to TO03, TO10, TI11, TRJIO0, TRJO0, TRGIOA, TRGIOB t⊤JIL -ttjih **TRJIO0**

RESET Input Timing

(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-spee	d main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tнigн	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq V_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 220 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 3 \; \text{k}\Omega \end{array}$	1/fмск + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{split} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{split}$	0	1420	ns

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

Note 1. The value must also be equal to or less than fmck/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

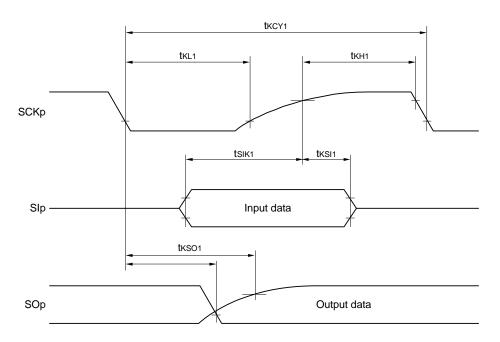
•	•						(
Parameter	Symbol	Conditions		HS (hig	Unit		
					MIN.	MAX.	
Transfer rate		Reception	4.0) V \leq Vdd \leq 5.5 V, 2.7 V \leq Vb \leq 4.0 V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.6	Mbps
			2.7	$V \leq V_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.6	Mbps
			2.4	$V \leq V_{\text{DD}} < 3.3$ V, 1.6 V $\leq V_{b} \leq 2.0$ V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

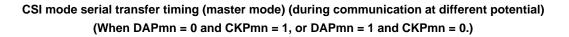
Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

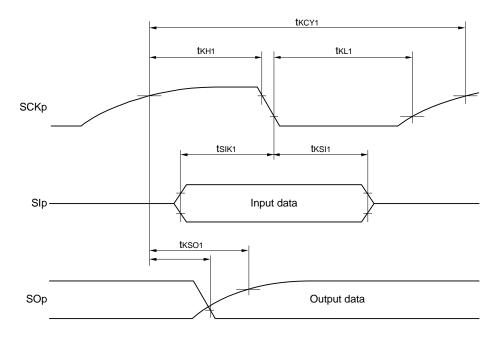
32 MHz (2.7 V \leq VDD \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

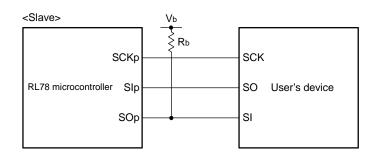

Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0, 1), g: PIM or POM number (g = 1)


Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM or POM number (g = 1)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp and SCKp pins, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM or POM number (g = 1)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Remark 4. Communication at different potential cannot be performed during clocked serial communication with the slave select function.

3.1 **Absolute Maximum Ratings**

Absolute Maximum R	atings				(1/2)
Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	Vdd				V
	AVdd	AVDD = VDD		-0.5 to +6.5	V
	AVss	AVss = Vss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC		-0.3 to +2.8 and -0.3 to VDD + 0.3 ^{Note 1}	V
REGA pin input voltage	Virega	REGA		-0.3 to +2.8 and -0.3 to AV _{DD} + 0.3 ^{Note 2}	V
Input voltage	VI1	P10 to P15, P40, P121 RESET	P10 to P15, P40, P121, P122, P137, EXCLK, RESET		V
Alternate-function pin	VI2	P16, P17, P41, P42	Digital input voltage	-0.3 to VDD + 0.3 Note 3	V
input voltage		(36-pin products only)	Analog input voltage	-0.3 to AVDD + 0.3 Note 3	V
Analog input voltage	VIA	PGA0P to PGA3P, PG/ ANI0 to ANI9, ANX0 to	·	-0.3 to AVDD + 0.3 Note 3	V
Output voltage	V01	P10 to P15, P40		-0.3 to VDD + 0.3 Note 3	V
Alternate-function pin	n Vo2 P16, P17, P41, P42 Digital output voltage		Digital output voltage	-0.3 to VDD + 0.3 Note 3	V
output voltage		(36-pin products only)	Analog output voltage	-0.3 to AVDD + 0.3 Note 3	V
Analog output voltage	Voa	SBIAS, AMP0O to AMI	P2O, ANX0 to ANX5	-0.3 to AVDD + 0.3 Note 3	V

Absolute Maximum Ratings

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Connect the REGA pin to AVss via a capacitor (0.22 µF). This value regulates the absolute maximum rating of the REGA pin. Do not use this pin with voltage applied to it.

- Note 3. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. Vss is used as the reference voltage.

3.2.3 PLL characteristics

$(T_{A} = -40 \text{ to } +125^{\circ}\text{C})$, 2.4 V \leq AVDD = VDD \leq 5.5	$V_{\rm v}$ AVss = Vss = 0 V)
(IA = +0 10 +120 0	,	$v_{1}, v_{2}, v_{3}, $

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
PLL output frequencyNotes 1, 2,	fpll	fmx = 8 MHz	DSFRDIV = 0	DSCM = 0		48		MHz
3			DSFRDIV = 1	DSCM = 0		24		MHz
				DSCM = 1		32		MHz
		fmx = 4 MHz	DSFRDIV = 0	DSCM = 0		24		MHz
				DSCM = 1		32		MHz
Lockup wait time		Time from whe phase is locked	n PLL output is ena d	bled to when the	40			μs
Interval wait time			n the PLL stops op PLL operation is sp	-	4			μs
Setup wait time		•	from when the PLL etting is determined	input clock stabilizes to when the PLL is	1			μs

Note 1. When using a PLL, input a clock of 4 MHz or 8 MHz to the PLL.

Note 2. Be sure to specify one of these settings when using a PLL.

Note 3. When using the PLL output as the CPU clock, fi is divided by 2, 4, or 8 according to the setting of the RDIV1 and RDIV0 bits.

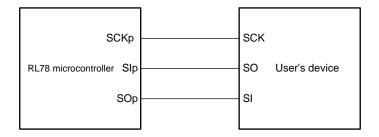
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol Conditions HS (high-speed main mode		Conditions		'	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	333		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	666		ns
SCKp high-/low-level width	t кн1, t к∟1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		t ксү1/ 2 - 24		ns
		$2.7~V \leq V_{\text{DD}} \leq$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	66		ns
		$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	66		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	113		ns
SIp hold time (from SCKp↑) Note 1	tksi1			38		ns
Delay time from SCKp↓ to SOp output Note 2	tkso1	C = 30 pF Note 3			66.6	ns

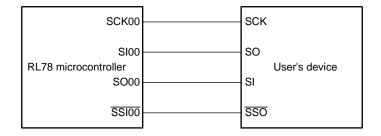
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

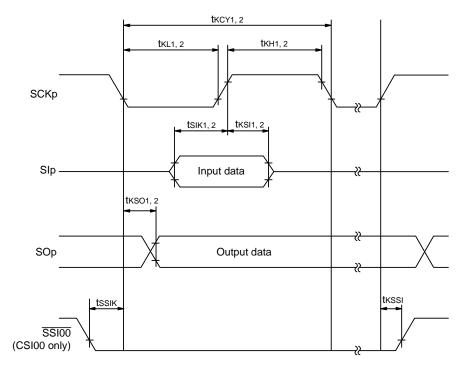
Note 3. C is the load capacitance of the SCKp and SOp output lines.


Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

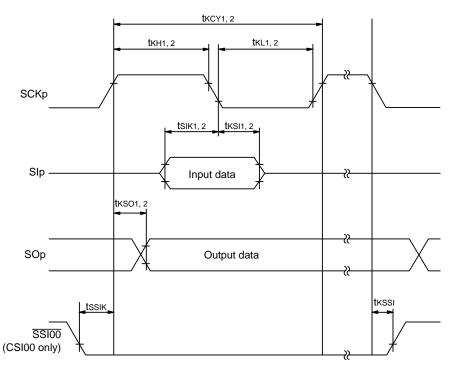
Remark 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)


Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode connection diagram (during communication at same potential)



CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark 1. p: CSI number (p = 00, 01) Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01) Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

RENESAS

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(1/2)

Parameter	Symbol	Conditions		HS (hig	Unit		
				-	MIN.	MAX.	
Transfer rate		Reception	4.0	$V \leq V_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_{\text{b}} \leq 4.0 \text{ V}$		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.0	Mbps
			2.7	$V \leq V_{\text{DD}} < 4.0$ V, 2.3 V $\leq V_{b} \leq 2.7$ V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.0	Mbps
			2.4	$V \leq V_{\text{DD}} < 3.3$ V, 1.6 V $\leq V_{b} \leq 2.0$ V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

24 MHz (2.7 V \leq VDD \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0, 1), g: PIM or POM number (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(Ta = -40 \text{ to } +125^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 5.5 \text{ V}, \text{AVss} = \text{Vss} = 0 \text{ V})$

(2/2)

			J = 0.0 v , Av $00 = 0.0 $ v)			(44)
Parameter	Symbol		Conditions	HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		Transmission	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V},~2.7~\text{V} \leq \text{V}_\text{b} \leq 4.0~\text{V}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_{b} = 50 pF, R_{b} = 1.4 k Ω , V_{b} = 2.7 V		2.0 Note 2	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_{\rm b}$ = 50 pF, $R_{\rm b}$ = 2.7 k Ω , $V_{\rm b}$ = 2.3 V		1.2 Note 4	Mbps
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate = -

Baud

rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

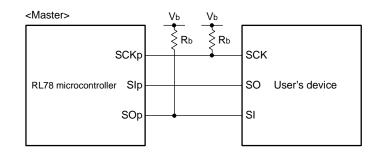
Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

1	(TA = -40 to +125°C	2 4 V < ΔVpp -	- VDD < 5.5 V	$\Delta V_{SS} = V_{SS} = 0 V$
١.	1A = -40 10 + 123 0	, Z.4 V ≥ AVDD -	- VDD - J.J V, A	mv 33 - v 33 - u vj

(3/3)

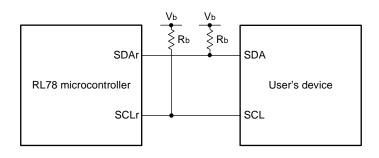
Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note}	tsıkı		88		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	88		ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	220		ns
SIp hold time (from SCKp↓) ^{Note}	tksii		38		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	38		ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note}	tkso1			50	ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		50	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		50	ns


Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

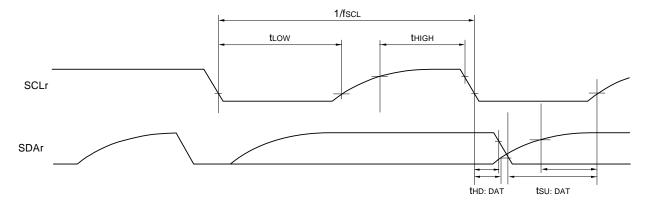
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential


Remark 1. Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM or POM number (g = 1) **Remark 3.** fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
- **Remark 2.** r: IIC number (r = 00, 01), g: PIM, POM number (g = 1)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0), mn = 00, 01)

3.6.4 A/D converter characteristics

(1) When positive reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), negative reference voltage (-) = AVss (ADREFM = 0), pins subject to A/D conversion: ANI0 to ANI9 and SBIAS

(TA = -40 to +125°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V, positive reference voltage (+) = AVDD, negative reference voltage (-) = AVss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		10	bit
Overall error Note 1	AINL	10-bit resolution ANI0 to ANI9, SBIAS	4.0 V ≤ A	$VDD \leq 5.5 V$		1.2	±6.5	LSB
			2.7 V ≤ A	$VDD \leq 5.5 V$		1.2	±7.0	LSB
Conversion time	tсолv	10-bit resolution	4.0 V ≤ A	$VDD \leq 5.5 V$	2.125		39	μs
			2.7 V ≤ A	$VDD \leq 5.5 V$	3.1875		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution ANI0 to ANI9, SBIAS	4.0 V ≤ A	$VDD \leq 5.5 V$			±0.50	%FSR
			2.7 V ≤ A	$VDD \leq 5.5 V$			±0.60	%FSR
Full-scale error Notes 1, 2		10-bit resolution ANI0 to ANI9, SBIAS	4.0 V ≤ A	$VDD \leq 5.5 V$			±0.50	%FSR
			2.7 V ≤ A	$VDD \leq 5.5 V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution ANI0 to ANI9, SBIAS	4.0 V ≤ A	$VDD \leq 5.5 V$			±3.5	LSB
			2.7 V ≤ /	$VDD \leq 5.5 V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	2.7 V ≤ /	$VDD \leq 5.5 V$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI9			AVss		AVdd	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The number of pins depends on the product. For details, see a list of pin functions.

(2) When positive reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), negative reference voltage (-) = AVss (ADREFM = 0), pins subject to A/D conversion: ANI0 to ANI9 and SBIAS

(TA = -40 to +125°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V, positive reference voltage (+) = VBGR, negative reference voltage (-) = AVss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.7~V \leq AV_{\text{DD}} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.7~V \leq AV_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.7~V \leq AV_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.7~V \leq AV_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Internal reference voltage (+)	Vbgr	$2.7~V \leq AV_{\text{DD}} \leq 5.5~V$		V _{BGR} Note 3		V	
Analog input voltage	VAIN	ANI0 to ANI9		0		Vbgr	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. See the Internal reference voltage characteristics.