

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 10x10b, 4x24b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	36-TFBGA
Supplier Device Package	36-TFBGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11cccgbg-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Outline of Functions

[32-pin, 36-pin products]

			(1/2)			
	ltom	32-pin	36-pin			
	Item	R5F11CBC	R5F11CCC			
Code flash memo	ory	32 KB				
Data flash memo	ry	4 KB				
RAM		8 KB				
Address space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main syster 1 to 20 MHz: Vod = 2.7 to 5.5 V, 1 to 16 MHz: Vod	n clock input (EXCLK) p = 2.4 to 2.7 V			
	High-speed on-chip	1 to 32 MHz (VDD = 2.7 to 5.5 V)Note 1				
		1 to 16 MHZ (VDD = 2.4 to 5.5 V)				
	by 2, 4, or 8)	3 to 32 MHz (V _{DD} = 2.7 to 5.5 V) ^{Note 2} 3 to 16 MHz (V _{DD} = 2.4 to 5.5 V)				
General-purpose	register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instruct	ion execution time	0.03125 μ s (high-speed on-chip oscillator clock: fi μ =	= 32 MHz operation) ^{Note 3}			
		0.03125 μs (PLL clock: fPLL = 64 MHz, fiн = 32 MHz operation) ^{Note 4}				
		0.05 μs (high-speed system clock: fмx = 20 MHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), divi Multiplication and Accumulation (16 bits × 16 bits + Rotate, barrel shift, and bit manipulation (Set, rese 	sion (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) ⊦ 32 bits) t, test, and Boolean operation), etc.			
I/O port	Total	10	14			
	CMOS I/O	7	11			
	CMOS input	3	3			
Timer	16-bit timer	8 channels (TAU: 6 channels, Timer RJ: 1 channel,	Timer RG: 1 channel)			
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
	Interval timer	1 channel				
	Timer output	Timer outputs: 10 channels PWM outputs: 9 channels				
	RTC output	1				
Clock output/buz	zer output	1				
		2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)				
8/10-bit A/D conv	verter	8 channels	10 channels			
Serial interface		CSI: 2 channels/UART: 2 channels (UART supporting LIN-bus: 1 channel)/simplified I ² C: 2 channels				

Note 1. 1 to 24 MHz (VDD = 2.7 to 5.5 V) for M products (industrial applications, $T_A = -40$ to +125°C)

Note 2. 3 to 24 MHz (VDD = 2.7 to 5.5 V) for M products (industrial applications, $T_A = -40$ to $+125^{\circ}C$)

Note 3. 0.04167 μs (high-speed on-chip oscillator clock: fiH = 24 MHz operation) for M products (industrial applications, TA = -40 to +125°C)

Note 4. 0.04167 µs (PLL clock: fPLL = 64 MHz, fiH = 24 MHz operation) for M products (industrial applications, TA = -40 to +125°C

2. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)

This chapter describes the electrical specifications for the products "G: Industrial applications (TA = -40 to +105°C)".

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product.
- Caution 3. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- **Remark** The electrical characteristics of the products G: Industrial applications (TA = -40 to +105°C) are different from those of the products "M: Industrial applications". For details, refer to **2.1** to **2.10**.

2.2 Oscillator Characteristics

2.2.1 X1 characteristics

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
(1 clock oscillation frequency (fx) Note Ceramic resonator/		$2.7~V \leq V\text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~\text{V} \leq \text{Vdd} < 2.7~\text{V}$	1.0		16.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	gh-speed on-chip oscillator clock frequency fine $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1		32	MHz	
Notes 1, 2	-	$2.4 \text{ V} \leq \text{VDD} < 2.$	7 V	1		16	MHz
High-speed on-chip oscillator clock frequency accuracy		-40 to +105°C 2.4 V \leq VDD \leq 5.5 V		-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(1/3)

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Output current, high Note 1	Юн1	Per pin for P10 to P17 and P40 to P42 Note 2	-40°C < TA ≤ +85°C			-10.0 Note 3	mA	
			85°C < Ta ≤ 105°C			-3.0 Note 3	mA	
		Total of P10 to P17, P41, and P42 Note 2	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ -40°C < Ta \le +85°C			-80.0	mA	
		(When duty ≤ 70% ^{Note 4}) 4 8 2	$\begin{array}{l} 4.0 \ V \leq VDD \leq 5.5 \ V \\ 85^\circC < TA \leq 105^\circC \end{array}$			-30.0	mA	
			$2.7~\text{V} \leq \text{Vdd} < 4.0~\text{V}$			-19.0	mA	
			$2.4~\text{V} \leq \text{Vdd} < 2.7~\text{V}$			-10.0	mA	
Output current, low Note 1	IOL1	Per pin for P10 to P17 and P40 to P42 Note 2	-40°C < TA ≤ +85°C			20.0 Note 3	mA	
				85°C < Ta ≤ 105°C			8.5 Note 3	mA
		Total of P10 to P17, P41, and P42 Note 2	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ -40°C < Ta \le +85°C			80.0	mA	
	(When duty \leq 70% ^{Note 4})	(When duty \leq 70% ^{Note 4})	$\begin{array}{l} 4.0 \ V \leq VDD \leq 5.5 \ V \\ 85^\circC < TA \leq 105^\circC \end{array}$			40.0	mA	
			$2.7~\text{V} \leq \text{Vdd} < 4.0~\text{V}$			35.0	mA	
			$2.4~V \leq V \text{DD} < 2.7~V$			20.0	mA	

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. This indicates the total current value when P16, P17, P41, and P42 are used as digital I/O ports. When using these pins as analog function (AFE) pins, refer to 2.1 Absolute Maximum Ratings.

Note 3. Do not exceed the total current value.

Note 4. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- Example: n = 80% when $I_{OH} = -10.0$ mA

Total output current of pins = (-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

RL78/I1E

2.3.2 Supply current characteristics

Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit					
Supply	IDD1	Operating	fHOCO = 32 MHz, fMAIN = 32 MHz Note 3	Basic	VDD = 5.0 V		2.1		mA					
current		mode ^{Note 2}		operation	Vdd = 3.0 V		2.1		1					
Note 1			fHOCO = 32 MHz, fMAIN = 32 MHz Note 3	Normal	Vdd = 5.0 V		4.8	8.7	mA					
			ор	operation	VDD = 3.0 V		4.8	8.7	1					
			fHOCO = 24 MHz, fMAIN = 24 MHz Note 3	Normal	VDD = 5.0 V		3.8	6.7	1					
				operation	VDD = 3.0 V		3.8	6.7	1					
		fHOCO = 16 MHz, fMAIN = 16 MHz Note 3	Normal	Vdd = 5.0 V		2.8	4.9	1						
						operation	VDD = 3.0 V		2.8	4.9	1			
			fmx = 20 MHz, fmain = 20 MHz ^{Note 4} ,	Normal	Square wave input		3.3	5.7	mA					
	VDD = 5.0 V fmx = 20 MHz, fmain = 20 VDD = 3.0 V fmx = 10 MHz, fmain = 10		$V_{DD} = 5.0 V$	operation	Resonator connection		3.5	5.8	1					
		$f_{MX} = 20 \text{ MHz}, f_{MAIN} = 20 \text{ MHz} \text{ Note } 4,$, fMAIN = 20 MHz ^{Note 4} , Normal	Square wave input		3.3	5.7							
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.5	5.8	1				
		$f_{MX} = 10 \text{ MHz}, f_{MAIN} = 10 \text{ MHz} \text{ Note } 4,$	Normal	Square wave input		2.0	3.4							
									V _{DD} = 5.0 V operation	Resonator connection		2.1	3.5	
			$f_{MX} = 10 \text{ MHz}, f_{MAIN} = 10 \text{ MHz} \text{ Note } 4,$	Normal	Square wave input		2.0	3.4						
			VDD = 3.0 V	operation	Resonator connection		2.1	3.5						
			$f_{MX} = 8 \text{ MHz}, f_{MAIN} = 32 \text{ MHz} \text{ Note } 5,$	Normal	Square wave input		5.2	9.2	mA					
			VDD = 5.0 V	operation	Resonator connection		5.3	9.3						
			fmx = 8 MHz, fmain = 32 MHz Note 5,	Normal	Square wave input		5.2	9.2						
			VDD = 3.0 V	operation	Resonator connection		5.3	9.3						
			fmx = 8 MHz, fmain = 24 MHz ^{Note 5} ,	Normal	Square wave input		5.1	9.1						
			VDD = 5.0 V	operation	Resonator connection		5.2	9.2						
			fmx = 8 MHz, fmain = 24 MHz Note 5,	Normal	Square wave input		5.1	9.1]					
			VDD = 3.0 V	operation	Resonator connection		5.2	9.2						

((TA = -40 to +105°C	. 2.4 V < AVDD = VDD < 5.5 V	. AVss = Vss = 0 V)
			,

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the RTC, interval timer, watchdog timer, LVD circuit, AFE, I/O ports, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. The relationship between the operation voltage range and the CPU operating frequency is as below. $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ @ 1 MHz to 32 MHz $2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$ @ 1 MHz to 16 MHz
- Note 3. When the high-speed system clock is stopped
- Note 4. When the high-speed on-chip oscillator and the PLL are stopped
- Note 5. When the high-speed on-chip oscillator is stopped and the PLL is operating

High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) Remark 1. fmx:

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency
- Remark 3. fMAIN: Main system clock frequency
- Remark 4. The temperature condition for the TYP. value is TA = 25°C

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions HS (high-speed main) Mode			Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} N_{ote 2}$		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0, 1), g: PIM or POM number (g = 1)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03))

Note 5. The smaller maximum transfer rate derived by using fMcK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 \, [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 6.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

1	T₄ = -40 to +105°C	2 4 V < ΔVpp = Vp	$n < 5.5 V \Delta V ss$	= Vss = 0 V
1	IA = 40 10 + 100 0	, =		- • • • • • • • • • • • • • • • • • • •

(2/3)

Parameter	Symbol	Conditions	HS (high-spe	HS (high-speed main) mode	
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note}	tsıkı		162		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	354		ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	958		ns
Slp hold time (from SCKp↑) ^{Note}	tksii		38		ns
		$\label{eq:VD} \begin{split} & 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	38		ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1			200	ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		390	ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		966	ns

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp and SCKp pins, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM or POM number (g = 1)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Remark 4. Communication at different potential cannot be performed during clocked serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM or POM number (g = 1)
 Remark 2. Communication at different potential cannot be performed during clocked serial communication with the slave select function.

RENESAS

2.6.8 LVD characteristics

(1) LVD detection voltage in reset mode and interrupt mode

(TA = -40 to +105°C,	$VPDR \le AVDD =$	$VDD \leq 5.5 V$,	AVss = \	/ss = 0 V	/)
•					

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	Vlvd0	Rising edge	4.62	4.74	4.84	V
threshold			Falling edge	4.52	4.64	4.74	V
		VLVD1	Rising edge	4.50	4.62	4.72	V
			Falling edge	4.40	4.52	4.62	V
		VLVD2	Rising edge	4.30	4.42	4.51	V
			Falling edge	4.21	4.32	4.41	V
		VLVD3	Rising edge	3.13	3.22	3.29	V
			Falling edge	3.07	3.15	3.22	V
		VLVD4	Rising edge	2.95	3.02	3.09	V
			Falling edge	2.89	2.96	3.02	V
		Vlvd5	Rising edge	2.74	2.81	2.87	V
			Falling edge	2.68	2.75	2.81	V
		VLVD6	Rising edge	2.55	2.61	2.67	V
			Falling edge	2.49	2.55	2.61	V
Minimum pulse wid	lth	tLW		300			μs
Detection delay tim	e					300	μs

(2) LVD detection voltage in interrupt & reset mode

(TA = -40 to +105°C, VPDR \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Voltage detection	VLVDD6	VPOC2,	VPOC1, VPOC0 = 0, 0, 0, falli	ng reset voltage	2.49	2.55	2.61	V
threshold	VLVDD4	1	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.09	V
				Falling interrupt voltage	2.89	2.96	3.02	V
	Vlvdd3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.13	3.22	3.29	V
				Falling interrupt voltage	3.07	3.15	3.22	V
	VLVDD5	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, falli	ng reset voltage	2.68	2.75	2.81	V
	VLVDD2		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	4.30	4.42	4.51	V
			Falling interrupt voltage	4.21	4.32	4.41	V	
	VLVDD5	VPOC2,	VPOC1, VPOC0 = 0, 1, 0, falli	ng reset voltage	2.68	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	4.50	4.62	4.72	V
				Falling interrupt voltage	4.40	4.52	4.62	V
	VLVDD5	VPOC2,	VPOC1, VPOC0 = 0, 1, 1, falli	ng reset voltage	2.68	2.75	2.81	V
	Vlvdd3	1	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	3.13	3.22	3.29	V
				Falling interrupt voltage	3.07	3.15	3.22	V
	VLVDD0		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	4.62	4.74	4.84	V
				Falling interrupt voltage	4.52	4.64	4.74	V

2.6.9 Power supply voltage rising slope characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				50	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

<R> 2.7 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0 V))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.47 Notes 1, 2		5.5	V

Note 1. The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4~V \leq V \text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C ^{Note 4}		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

<R>

<R>

<R>

3.2 Oscillator Characteristics

3.2.1 X1 characteristics

RL78/I1E

(TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V\text{dd} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~\text{V} \leq \text{Vdd} < 2.7~\text{V}$	1.0		16.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/I1E User's Manual..

3.2.2 On-chip oscillator characteristics

(TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	fін	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
Notes 1, 2		$2.4 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$	1		16	MHz
High-speed on-chip oscillator clock frequency		-40 to +105°C	-2.0		+2.0	%
accuracy		+105 to +125°C	-3.0		+3.0	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency			-15		+15	%
accuracy						

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(·, _							(0,0)
Item	Symbol	Condit	ions		MIN.	TYP.	MAX.	Unit
Input leakage	Ішні	P10 to P17, and P40 to P42 VI = VDD					1	μΑ
current, high	Ilih2	P137, RESET	VI = VDD				1	μΑ
	Іцнз	P121, P122 (X1, X2, EXCLK)	VI = VDD	In input port mode or when using external clock input			1	μΑ
				When a resonator is connected			10	μA
Input leakage	ILIL1	P10 to P17, and P40 to P42	VI = VSS	·			-1	μΑ
current, low	ILIL2	P137, RESET	VI = VSS				-1	μΑ
	ILIL3	P121, P122 (X1, X2, EXCLK)	VI = VSS	In input port mode or when using external clock input When a resonator			-1	μΑ
				is connected			10	μι
On-chip pull-up resistance	Ru	P10 to P15, P40	VI = Vss, ir	n input port mode	10	20	100	kΩ

(TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVSS = VSS = 0 V)

(3/3)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.4 AC Characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle	Тсү	Main system clock (fMAIN) operation	$2.7~V \leq V\text{DD} \leq 5.5~V$	0.04167		1	μS
(minimum instruction			$2.4~\text{V} \leq \text{Vdd} < 2.7~\text{V}$	0.0625		1	μS
execution time)		In the self-programming mode	$2.7~V \leq V\text{DD} \leq 5.5~V$	0.04167		1	μS
			$2.4~\text{V} \leq \text{VDD} < 2.7~\text{V}$	0.0625		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$		1.0		8.0	MHz
External system clock	texн,	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$		24			ns
input high-level width, low-level width	tEXL	$2.4 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$		60			ns
TI00 to TI03, TI10,	t⊤ıн, t⊤ı∟			1/fмск + 10			ns
TI11 input high-level width, low-level width							
Timer RJ input cycle	fc	TRJIO0	$2.7~V \leq V\text{DD} \leq 5.5~V$	100			ns
			$2.4~\text{V} \leq \text{VDD} < 2.7~\text{V}$	300			ns
Timer RJ input high-	t⊤jiH,	TRJIO0	$2.7~V \leq V\text{DD} \leq 5.5~V$	40			ns
level width, low-level width	t⊤JIL		$2.4~\text{V} \leq \text{Vdd} < 2.7~\text{V}$	120			ns
Timer RG input high- level width, low-level	tтGiH, tтGiL	TRGIOA, TRGIOB		2.5/fclк			ns
TO00 to TO03	fто		4 0 V < Vpp < 5 5 V			12	MH7
TO10, TO11,			$27 V \le VDD \le 0.0 V$			6	MHz
TRJIO0, TRJO0,			$24 V \le VD \le 27 V$			3	MHz
TRGIOA, TRGIOB output frequency							
PCLBUZ0 output	fpcl		$4.0~V \leq V_{DD} \leq 5.5~V$			12	MHz
frequency			$2.7~V \leq V_{DD} \leq 4.0~V$			6	MHz
			$2.4~V \leq V\text{DD} < 2.7~V$			3	MHz
Interrupt input high-	tinth,	INTP1 to INTP7		1			μS
level width, low-level width	tint∟						
RESET low-level width	trsl			10			μS

(TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +125°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Cond	ditions	HS (high-speed	d main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			$f_{MCK} \le 20 \ MHz$	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tĸн₂, tĸ∟₂	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/ 2 - 14		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/ 2 - 16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/ 2 - 36		ns
SIp setup time (to SCKp↑) Note 2	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 66	ns
Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 113	ns
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	240		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	400		ns
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1/fмск + 240		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	1/fмск + 400		ns
SSI00 hold time	t kssi	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1/fмск + 240		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	240		ns
			$2.4 \ \overline{V \leq V_{\text{DD}} \leq 5.5} \ V$	400		ns

Note 1. The maximum transfer rate in the SNOOZE mode is 1 Mbps.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb [Ω]: Communication line (TxDq) pull-up resistance,

Cb [F]: Communication line (TxDq) load capacitance, Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0, 1), g: PIM or POM number (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp and SCKp pins, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM or POM number (g = 1)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

Remark 4. Communication at different potential cannot be performed during clocked serial communication with the slave select function.

3.6.6 Configurable amplifier

(TA = -40 to +125°C, 2.7 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V, VCOM = 1/2 AVDD, internally connected voltage follower)

AMP0 configuration SW setting: Positive (+) pin = ANX1, negative (-) pin = ANX0 AMP1 configuration SW setting: Positive (+) pin = ANX3, negative (-) pin = ANX2 AMP2 configuration SW setting: Positive (+) pin = ANX5, negative (-) pin = ANX4

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	Vin		AVss		AVdd	V
Output voltage	Vol	$I_{L=}$ -1 mA, AV_{DD} = 2.7 to 5.5 V		AVss +0.02	AVss +0.07	V
	Vон	IL= 1 mA, AV _{DD} = 2.7 to 5.5 V	AV _{DD} -0.15	AVdd -0.02		V
Maximum output current	Іоит	$4.5~V \leq AV_{DD} \leq 5.5~V$	±10			mA
		$2.7~V \le AV_{DD} \le 5.5~V$	±5			mA
Input-referred offset voltage	Voff	TA = 25°C without trimming IL = 0 mA, VCOM = 1.0 V		±1	±4	mV
		TA = 25°C with trimming IL = 0 mA, VCOM = 1.0 V			±0.35	mV
Temperature coefficient for inputreferred offset voltage	Vотс	IL = 0 mA		(±2)	(±8)	µV/°C
Slew rate	SR1	Normal mode CL = 50 pF, RL = 10 kΩ		(0.1)		V/µs
	SR2	High-speed mode $C_L = 50 \text{ pF, } R_L = 10 \text{ k}\Omega$		(0.8)		V/µs
Gain bandwidth	GBW1	Normal mode CL = 50 pF, RL = 10 kΩ		(350)		kHz
	GBW2	High-speed mode $C_L = 50 \text{ pF, } R_L = 10 \text{ k}\Omega$		(1.8)		MHz
Phase margin	θM1	Normal mode CL = 50 pF, RL = 10 kΩ		(70)		deg
	θΜ2	High-speed mode $C_L = 50 \text{ pF, } R_L = 10 \text{ k}\Omega$		(60)		deg
Settling time	tset1	Normal mode CL = 50 pF, RL = 10 kΩ		(20)		μs
	tset2	High-speed mode $CL = 50 \text{ pF}, RL = 10 \text{ k}\Omega$		(10)		μs
Peak-to-peak voltage noise	Enb	0.1 to 10 Hz Normal mode CL = 50 pF, RL = 10 k Ω		(2.0)		μVrms
Input-referred noise	En	f = 1 kHz Normal mode CL = 50 pF, RL = 10 k Ω		(70)		nV/√Hz
Common mode rejection ratio	CMRR	f = 1 KHz, CL = 50 pF, RL = 10 kΩ		(70)		dB
Power supply rejection ratio	PSRR	$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq AV_{DD} \leq 5.5 \ V \\ CL = 50 \ pF, \ RL = 10 \ k\Omega \end{array}$		(62)		dB

(Remarks are listed on the next page.)

3.9 Dedicated Flash Memory Programmer Communication (UART)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing for Switching Flash Memory Programming Modes

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)											
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit					
How long from when an external reset ends until the initial communication settings are specified	tsuini⊤	POR and LVD reset must end before the external reset ends.			100	ms					
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs					
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms					

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

