
Freescale Semiconductor - MC68EC020AA16 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68020

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 16MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 100-BQFP

Supplier Device Package 100-QFP (14x20)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68ec020aa16

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68ec020aa16-4469981
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xi

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

7.3.1 Response CIR ... 7-24
7.3.2 Control CIR .. 7-24
7.3.3 Save CIR ... 7-25
7.3.4 Restore CIR ... 7-25
7.3.5 Operation Word CIR .. 7-25
7.3.6 Command CIR ... 7-25
7.3.7 Condition CIR .. 7-26
7.3.8 Operand CIR ... 7-26
7.3.9 Register Select CIR ... 7-27
7.3.10 Instruction Address CIR ... 7-27
7.3.11 Operand Address CIR ... 7-27
7.4 Coprocessor Response Primitives .. 7-27
7.4.1 ScanPC ... 7-28
7.4.2 Coprocessor Response Primitive General Format 7-28
7.4.3 Busy Primitive .. 7-30
7.4.4 Null Primitive .. 7-31
7.4.5 Supervisor Check Primitive ... 7-33
7.4.6 Transfer Operation Word Primitive .. 7-33
7.4.7 Transfer from Instruction Stream Primitive .. 7-34
7.4.8 Evaluate and Transfer Effective Address Primitive 7-35
7.4.9 Evaluate Effective Address and Transfer Data Primitive 7-35
7.4.10 Write to Previously Evaluated Effective Address Primitive 7-37
7.4.11 Take Address and Transfer Data Primitive.. 7-39
7.4.12 Transfer to/from Top of Stack Primitive ... 7-40
7.4.13 Transfer Single Main Processor Register Primitive 7-40
7.4.14 Transfer Main Processor Control Register Primitive 7-41
7.4.15 Transfer Multiple Main Processor Registers Primitive 7-42
7.4.16 Transfer Multiple Coprocessor Registers Primitive 7-42
7.4.17 Transfer Status Register and ScanPC Primitive.................................. 7-44
7.4.18 Take Preinstruction Exception Primitive .. 7-45
7.4.19 Take Midinstruction Exception Primitive .. 7-47
7.4.20 Take Postinstruction Exception Primitive .. 7-48
7.5 Exceptions ... 7-49
7.5.1 Coprocessor-Detected Exceptions .. 7-49
7.5.1.1 Coprocessor-Detected Protocol Violations 7-50
7.5.1.2 Coprocessor-Detected Illegal Command or Condition Words 7-51
7.5.1.3 Coprocessor Data-Processing-Related Exceptions 7-51
7.5.1.4 Coprocessor System-Related Exceptions 7-51
7.5.1.5 Format Errors ... 7-52
7.5.2 Main-Processor-Detected Exceptions ... 7-52
7.5.2.1 Protocol Violations ... 7-52
7.5.2.2 F-Line Emulator Exceptions ... 7-54

MOTOROLA M68020 USER’S MANUAL 3-3

Table 3-1. Signal Index

Signal Name Mnemonic Function

Function Codes FC2–FC0 3-bit function code used to identify the address space of each bus cycle.

Address Bus
MC68020
MC68EC020

A31–A0
A23–A0

32-bit address bus
24-bit address bus

Data Bus D31–D0 32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus
cycle.

Size SIZ1, SIZ0 Indicates the number of bytes remaining to be transferred for this cycle.
These signals, together with A1 and A0, define the active sections of the
data bus.

*External Cycle Start ECS Provides an indication that a bus cycle is beginning.

*Operand Cycle Start OCS Identical operation to that of ECS except that OCS is asserted only during
the first bus cycle of an operand transfer.

Read/Write R/W Defines the bus transfer as a processor read or write.

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an indivisible
read-modify-write operation.

Address Strobe AS Indicates that a valid address is on the bus.

Data Strobe DS Indicates that valid data is to be placed on the data bus by an external
device or has been placed on the data bus by the MC68020/EC020.

*Data Buffer Enable DBEN Provides an enable signal for external data buffers.

Data Transfer and Size
Acknowledge

DSACK1,
DSACK0

Bus response signals that indicate the requested data transfer operation
has completed. In addition, these two lines indicate the size of the
external bus port on a cycle-by-cycle basis and are used for
asynchronous transfers.

Interrupt Priority Level IPL2–IPL0 Provides an encoded interrupt level to the processor.

*Interrupt Pending IPEND Indicates that an interrupt is pending.

Autovector AVEC Requests an autovector during an interrupt acknowledge cycle.

Bus Request BR Indicates that an external device requires bus mastership.

Bus Grant BG Indicates that an external device may assume bus mastership.

*Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus mastership.

Reset RESET System reset.

Halt HALT Indicates that the processor should suspend bus activity or that the
processor has halted due to a double bus fault.

Bus Error BERR Indicates that an erroneous bus operation is being attempted.

Cache Disable CDIS Statically disables the on-chip cache to assist emulator support.

Clock CLK Clock input to the processor.

Power Supply VCC Power supply.

Ground GND Ground connection.

*This signal is implemented in the MC68020 and not implemented in the MC68EC020.

3-8 M68020 USER’S MANUAL MOTOROLA

3.13 SIGNAL SUMMARY

Table 3-2 provides a summary of the characteristics of the signals discussed in this
section. Signal names preceded by an asterisk (*) are implemented in the MC68020 and
not implemented in the MC68EC020.

Table 3-2. Signal Summary

Signal Function Signal Name Input/Output Active State Three-State

Function Codes FC2–FC0 Output High Yes

Address Bus
MC68020
MC68EC020

A31–A0
A23–A0

Output High Yes

Data Bus D31–D0 Input/Output High Yes

Transfer Size SIZ1, SIZ0 Output High Yes

*Operand Cycle Start OCS Output Low No

*External Cycle Start ECS Output Low No

Read/Write R/W Output High/Low Yes

Read-Modify-Write Cycle RMC Output Low Yes

Address Strobe AS Output Low Yes

Data Strobe DS Output Low Yes

*Data Buffer Enable DBEN Output Low Yes

Data Transfer and Size Acknowledge DSACK1, DSACK0 Input Low —

Interrupt Priority Level IPL2–IPL0 Input Low —

*Interrupt Pending IPEND Output Low No

Autovector AVEC Input Low —

Bus Request BR Input Low —

Bus Grant BG Output Low No

*Bus Grant Acknowledge BGACK Input Low —

Reset RESET Input/Output Low No**

Halt HALT Input/Output Low No**

Bus Error BERR Input Low —

Cache Disable CDIS Input Low —

Clock CLK Input — —

Power Supply VCC Input — —

Ground GND Input — —

*This signal is implemented in the MC68020 and not implemented in the MC68EC020.
**Open-drain

4–4 M68020 USER’S MANUAL MOTOROLA

F—Freeze Cache
The F-bit is set to freeze the instruction cache. When the F-bit is set and a cache miss
occurs, the entry (or line) is not replaced. When the F-bit is clear, a cache miss causes
the entry (or line) to be filled. A reset operation clears the F-bit.

E—Enable Cache
The E-bit is set to enable the instruction cache. When it is clear, the instruction cache is
disabled. A reset operation clears the E-bit. The supervisor normally enables the
instruction cache, but it can clear the E-bit for system debugging or emulation, as
required. Disabling the instruction cache does not flush the entries. If the cache is
reenabled, the previously valid entries remain valid and may be used.

4.3.2 Cache Address Register (CAAR)

The format of the 32-bit CAAR is shown in Figure 4-3.

031

RESERVED

12

INDEX

78

RESERVED

Figure 4-3. Cache Address Register

Bits 31–8, 1, and 0—Reserved
These bits are reserved for use by Motorola.

Index Field
The index field contains the address for the “clear cache entry” operations. The bits of
this field, which correspond to A7–A2, specify the index and a long word of a cache line.

MOTOROLA M68020 USER’S MANUAL 5-3

When initiating a bus cycle, the MC68020 asserts ECS in addition to A1–A0, SIZ1, SIZ0,
FC2–FC0, and R/W . ECS can be used to initiate various timing sequences that are
eventually qualified with AS. Qualification with AS may be required since, in the case of an
internal cache hit, a bus cycle may be aborted after ECS has been asserted. During the
first MC68020 external bus cycle of an operand transfer, OCS is asserted with ECS. When
several bus cycles are required to transfer the entire operand, OCS is asserted only at the
beginning of the first external bus cycle. With respect to OCS , an “operand” is any entity
required by the execution unit, whether a program or data item. Note that ECS and OCS

are not implemented in the MC68EC020.

The FC2–FC0 signals select one of eight address spaces (see Table 2-1) to which the
address applies. Five address spaces are presently defined. Of the remaining three, one
is reserved for user definition, and two are reserved by Motorola for future use. FC2–FC0
are valid while AS is asserted.

The SIZ1 and SIZ0 signals indicate the number of bytes remaining to be transferred
during an operand cycle (consisting of one or more bus cycles) or during a cache fill
operation from a device with a port size that is less than 32 bits. Table 5-2 lists the
encoding of SIZ1 and SIZ0. SIZ1 and SIZ0 are valid while AS is asserted.

The R/W signal determines the direction of the transfer during a bus cycle. When required,
this signal changes state at the beginning of a bus cycle and is valid while AS is asserted.
R/W only transitions when a write cycle is preceded by a read cycle or vice versa. This
signal may remain low for two consecutive write cycles.

The RMC signal is asserted at the beginning of the first bus cycle of a read-modify-write
operation and remains asserted until completion of the final bus cycle of the operation.
The RMC signal is guaranteed to be negated before the end of state 0 for a bus cycle
following a read-modify-write operation.

5.1.2 Address Bus

A31–A0 (for the MC68020) or A23–A0 (for the MC68EC020) define the address of the
byte (or the most significant byte) to be transferred during a bus cycle. The processor
places the address on the bus at the beginning of a bus cycle. The address is valid while
AS is asserted. In the MC68EC020, A31–A24 are used internally, but not externally.

5.1.3 Address Strobe

AS is a timing signal that indicates the validity of an address on the address bus and of
many control signals. It is asserted one-half clock after the beginning of a bus cycle.

5.1.4 Data Bus

D31–D0 comprise a bidirectional, nonmultiplexed parallel bus that contains the data being
transferred to or from the processor. A read or write operation may transfer 8, 16, 24, or
32 bits of data (one, two, three, or four bytes) in one bus cycle. During a read cycle, the
data is latched by the processor on the last falling edge of the clock for that bus cycle. For

5-22 M68020 USER’S MANUAL MOTOROLA

Table 5-7. Data Bus Byte Enable Signals for Byte, Word, and Long-Word Ports

Data Bus Active Sections
Byte (B), Word (W) , Long-Word (L) Ports

Transfer Size SIZ1 SIZ0 A1 A0 D31–D24 D23–D16 D15–D8 D7–D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

—
W L
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

—
L
L
—

—
—
L
L

3 Bytes 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

L
L
L
L

Figure 5-18 shows a logic diagram of one method for generating byte enable signals for
16- and 32-bit ports from the SIZ1, SIZ0, A1, and A0 encodings and the R/W signal.

5.2.5 Cache Interactions

The organization and requirements of the on-chip instruction cache affect the
interpretation of DSACK1 and DSACK0. Since the MC68020/EC020 attempts to load all
instructions into the on-chip cache, the bus may operate differently when caching is
enabled. Specifically, on read cycles that terminate normally, the A1, A0, SIZ1, and SIZ0
signals do not apply.

The cache can also affect the assertion of AS and the operation of a read cycle. The
search of the cache by the processor begins when the sequencer requires an instruction.
At this time, the bus controller may also initiate an external bus cycle in case the
requested item is not resident in the instruction cache. If an internal cache hit occurs, the
external cycle aborts, and AS is not asserted.

For the MC68020, if the bus is not occupied with another read or write cycle, the bus
controller asserts the ECS signal (and the OCS signal, if appropriate). It is possible to have
ECS asserted on multiple consecutive clock cycles. Note that there is a minimum time
specified from the negation of ECS to the next assertion of ECS (refer to Section 10
Electrical Characteristics). Instruction prefetches can occur every other clock so that if,
after an aborted cycle due to an instruction cache hit, the bus controller asserts ECS on
the next clock, this second cycle is for a data fetch. Note that, if the bus controller is
executing other cycles, these aborted cycles due to cache hits may not be seen externally.

5-40 M68020 USER’S MANUAL MOTOROLA

LOCK BUS

1) ASSERT RMC

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION CODES ON FC2–FC0
5) DRIVE SIZ1, SIZ0
6) ASSERT AS
7) ASSERT DS
8) ASSERT DBEN

ACQUIRE DATA

1) LATCH DATA
2) NEGATE AS AND DS
3) NEGATE DBEN
4) START DATA MODIFICATION

START OUTPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31–A0 (IF DIFFERENT)
3) DRIVE SIZ1, SIZ0
4) SET R/W TO WRITE
5) ASSERT AS
6) ASSERT DBEN
7) PLACE DATA ON D31–D0
8) ASSERT DS

TERMINATE OUTPUT TRANSFER

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31–D0
3) NEGATE DBEN

UNLOCK BUS

1) NEGATE RMC

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE DSACK1/DSACK0

ACCEPT DATA

1) DECODE ADDRESS
2) STORE DATA FROM D31–D0
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

A

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND
READ, THEN GO TO A ;
IF OPERANDS DO NOT
MATCH, THEN GO TO

C ; ELSE GO TO B
C

B

1) NEGATE DSACK1/DSACK0

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND

WRITTEN, THEN GO TO
D ; ELSE GO TO E

E

D

PROCESSOR EXTERNAL DEVICE

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.**

*

**

*

*

*

*
**

*

Figure 5-29. Read-Modify-Write Cycle Flowchart

5-62 M68020 USER’S MANUAL MOTOROLA

5.6 BUS SYNCHRONIZATION

The MC68020/EC020 overlaps instruction execution—that is, during bus activity for one
instruction, instructions that do not use the external bus can be executed. Due to the
independent operation of the on-chip cache relative to the operation of the bus controller,
many subsequent instructions can be executed, resulting in seemingly nonsequential
instruction execution. When this is not desired and the system depends on sequential
execution following bus activity, the NOP instruction can be used. The NOP instruction
forces instruction and bus synchronization by freezing instruction execution until all
pending bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of a write
operation of control information to an external register in which the external hardware
attempts to control program execution based on the data that is written with the
conditional assertion of BERR. Since the MC68020/EC020 cannot process the bus error
until the end of the bus cycle, the external hardware has not successfully interrupted
program execution. To prevent a subsequent instruction from executing until the external
cycle completes, the NOP instruction can be inserted after the instruction causing the
write. In this case, bus error exception processing proceeds immediately after the write
and before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP instruction for this purpose is not required by most systems.

5.7 BUS ARBITRATION

The bus design of the MC68020/EC020 provides for a single bus master at any one time:
either the processor or an external device. One or more of the external devices on the bus
can have the capability of becoming bus master. Bus arbitration is the protocol by which
an external device becomes bus master; the bus controller in the MC68020/EC020
manages the bus arbitration signals so that the processor has the lowest priority.

Bus arbitration differs in the MC68020 and MC68EC020 due to the absence of BGACK in
the MC68EC020. Because of this difference, bus arbitration of the MC68020 and
MC68EC020 is discussed separately.

External devices that need to obtain the bus must assert the bus arbitration signals in the
sequences described in 5.7.1 MC68020 Bus Arbitration or 5.7.2 MC68EC020 Bus
Arbitration. Systems having several devices that can become bus master require
external circuitry to assign priorities to the devices, so that when two or more external
devices attempt to become bus master at the same time, the one having the highest
priority becomes bus master first.

MOTOROLA M68020 USER’S MANUAL 6-3

Table 6-1. Exception Vector Assignments

Vector Offset

Vector Number Hex Space Assignment

0
1
2
3

000
004
008
00C

SP
SP
SD
SD

Reset Initial Interrupt Stack Pointer
Reset Initial Program Counter
Bus Error
Address Error

4
5
6
7

010
014
018
01C

SD
SD
SD
SD

Illegal Instruction
Zero Divide
CHK, CHK2 Instruction
cpTRAPcc, TRAPcc, TRAPV Instructions

8
9

10
11

020
024
028
02C

SD
SD
SD
SD

Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator

12
13
14
15

030
034
038
03C

SD
SD
SD
SD

(Unassigned, Reserved)
Coprocessor Protocol Violation
Format Error
Uninitialized Interrupt

16–23 040
05C

SD
SD

Unassigned, Reserved

24
25
26
27

060
064
068
06C

SD
SD
SD
SD

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

28
29
30
31

070
074
078
07C

SD
SD
SD
SD

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

32–47 080
0BC

SD
SD

TRAP #0–15 Instruction Vectors

48
49
50
51

0C0
0C4
0C8
0CC

SD
SD
SD
SD

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow

52
53
54
55

0D0
0D4
0D8
0DC

SD
SD
SD
SD

FPCP Operand Error
FPCP Overflow
FPCP Signaling NAN
Unassigned, Reserved

56
57
58

0E0
0E4
0E8

SD
SD
SD

PMMU Configuration
PMMU Illegal Operation
PMMU Access Level Violation

59–63 0EC
0FC

SD
SD

Unassigned, Reserved

64–255 100
3FC

SD
SD

User-Defined Vectors (192)

SP—Supervisor Program Space
SD—Supervisor Data Space

MOTOROLA M68020 USER’S MANUAL 6-5

OTHERWISE
SP (VECTOR #0)

EXIT

FETCH VECTOR #0

(DOUBLE BUS FAULT)

 S (SR)
M (SR)

T1, T0 (SR)
I2–I0 (SR)

VBR
CACR

1
0
0
$7
$00000000
$00000000

➧
➧
➧
➧
➧
➧

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE

INSTRUCTION CACHE
ENTRIES INVALIDATED

➧

FETCH VECTOR #1

PC (VECTOR #1)

➧

PREFETCH 3 WORDS

EXIT

EXIT

EXIT

BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

Figure 6-1. Reset Operation Flowchart

The processor begins exception processing for a bus error by making an internal copy of
the current SR. The processor then enters the supervisor privilege level (by setting the S-
bit in the SR) and clears the T1 and T0 bits in the SR. The processor generates exception
vector number 2 for the bus error vector. It saves the vector offset, PC, and the internal
copy of the SR on the active supervisor stack. The saved PC value is the logical address
of the instruction that was executing at the time the fault was detected. This is not
necessarily the instruction that initiated the bus cycle since the processor overlaps

6-6 M68020 USER’S MANUAL MOTOROLA

execution of instructions. The processor also saves the contents of some of its internal
registers. The information saved on the stack is sufficient to identify the cause of the bus
fault and recover from the error.

For efficiency, the MC68020/EC020 uses two different bus error stack frame formats.
When the bus error exception is taken at an instruction boundary, less information is
required to recover from the error, and the processor builds the short bus fault stack frame
as shown in Table 6-5. When the exception is taken during the execution of an instruction,
the processor must save its entire state for recovery and uses the long bus fault stack
frame shown in Table 6-5. The format code in the stack frame distinguishes the two stack
frame formats. Stack frame formats are described in detail in 6.4 Exception Stack Frame
Formats.

If a bus error occurs during the exception processing for a bus error, address error, or
reset or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs and the processor enters the
halted state. In this case, the processor does not attempt to alter the current state of
memory. Only an external RESET can restart a processor halted by a double bus fault.

6.1.3 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This exception is similar to a bus error exception but is internally
initiated. A bus cycle is not executed, and the processor begins exception processing
immediately. After exception processing commences, the sequence is the same as that
for bus error exceptions described in the preceding paragraphs, except that the vector
number is 3 and the vector offset in the stack frame refers to the address error vector.
Either a short or long bus fault stack frame may be generated. If an address error occurs
during the exception processing for a bus error, address error, or reset, a double bus fault
occurs.

6.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, cpTRAPcc, CHK, and CHK2 instructions force exceptions if the
user program detects an error, which may be an arithmetic overflow or a subscript value
that is out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is attempted with
a divisor of zero.

When a trap exception occurs, the processor copies the SR internally, enters the
supervisor privilege level (by setting the S-bit in the SR), and clears the T1 and T0 bits in
the SR. If tracing is enabled for the instruction that caused the trap, a trace exception is
taken after the RTE instruction from the trap handler is executed, and the trace
corresponds to the trap instruction; the trap handler routine is not traced. The processor
generates a vector number according to the instruction being executed; for the TRAP

7-10 M68020 USER’S MANUAL MOTOROLA

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 WRITE COPROCESSOR COMMAND WORD TO
COMMAND CIR

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE
FROM RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE
PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE
INDICATES "COME AGAIN") GO TO M3
(SEE NOTE 1)

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION
(SEE NOTE 2)

C1 DECODE COMMAND WORD AND INITIATE
COMMAND EXECUTION

C2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW
1) REQUEST SERVICE BY PLACING APPROPRIATE

RESPONSE PRIMITIVE CODE IN RESPONSE CIR
2) RECEIVE SERVICE FROM MAIN PROCESSOR

C3 REFLECT "NO COME AGAIN" IN RESPONSE CIR

C4 COMPLETE COMMAND EXECUTION

C5 REFLECT "PROCESSING FINISHED" STATUS IN
RESPONSE CIR

MAIN PROCESSOR COPROCESSOR

NOTES: 1. "Come Again" indicates that further service of the main processor is being requested by the coprocessor.
2. The next instruction should be the operation word pointed to by the ScanPC at this point. The operation of
				the MC68020/EC020 ScanPC is discussed in 7.4.1 ScanPC.

Figure 7-7. Coprocessor Interface Protocol
for General Category Instructions

7.2.2 Coprocessor Conditional Instructions

The conditional instruction category provides program control based on the operations of
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator
to the main processor. The main processor completes the execution of the instruction
based on this true/false condition indicator.

The implementation of instructions in the conditional category promotes efficient use of
both the main processor and the coprocessor hardware. The condition specified for the
instruction is related to the coprocessor operation and is therefore evaluated by the
coprocessor. However, the instruction completion following the condition evaluation is
directly related to the operation of the main processor. The main processor performs the
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly
implements these operations for its instruction set.

Figure 7-8 shows the protocol for a conditional category coprocessor instruction. The main
processor initiates execution of an instruction in this category by writing a condition
selector to the condition CIR. The coprocessor decodes the condition selector to
determine the condition to evaluate. The coprocessor can use response primitives to
request that the main processor provide services required for the condition evaluation.

MOTOROLA M68020 USER’S MANUAL 7-17

The second word of the cpTRAPcc instruction format contains the coprocessor condition
selector in bits 5–0 and should contain zeros in bits 15–6 (these bits are reserved by
Motorola) to maintain compatibility with future M68000 products. This word is written to the
condition CIR to initiate execution of the cpTRAPcc instruction.

If the coprocessor requires additional information to evaluate a condition, the instruction
can include this information in extension words. These extension words follow the word
containing the coprocessor condition selector field in the cpTRAPcc instruction format.

The operand words of the cpTRAPcc F-line operation word follow the coprocessor-defined
extension words. These operand words are not explicitly used by the MC68020/EC020,
but can be used to contain information referenced by the cpTRAPcc exception handling
routines. The valid encodings for bits 2–0 of the F-line operation word and the
corresponding numbers of operand words are listed in Table 7-1. Other encodings of
these bits are invalid for the cpTRAPcc instruction.

Table 7-1. cpTRAPcc Opmode Encodings

Opmode Operand Words in Instruction Format

010 One

011 Two

100 Zero

7.2.2.4.2 Protocol. Figure 7-8 shows the protocol for the cpTRAPcc instructions. The
MC68020/EC020 transfers the condition selector to the coprocessor by writing the word
following the operation word to the condition CIR. The main processor then reads the
response CIR to determine its next action. The coprocessor can return a response
primitive to request any services necessary to evaluate the condition. If the coprocessor
returns the true condition indicator, the main processor initiates exception processing for
the cpTRAPcc exception (refer to 7.5.2.4 cpTRAPcc Instruction Traps). If the
coprocessor returns the false condition indicator, the main processor executes the next
instruction in the instruction stream.

7.2.3 Coprocessor Context Save and Restore Instructions

The coprocessor context save and context restore instruction categories in the M68000
coprocessor interface support multitasking programming environments. In a multitasking
environment, the context of a coprocessor may need to be changed asynchronously with
respect to the operation of that coprocessor. That is, the coprocessor may be interrupted
at any point in the execution of an instruction in the general or conditional category to
begin context change operations.

In contrast to the general and conditional instruction categories, the context save and
context restore instruction categories do not use the coprocessor response primitives. A
set of format codes defined by the M68000 coprocessor interface communicates status

7-18 M68020 USER’S MANUAL MOTOROLA

information to the main processor during the execution of these instructions. These
coprocessor format codes are discussed in detail in 7.2.3.2 Coprocessor Format Words.

7.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) and
context restore (cpRESTORE) instructions transfer an internal coprocessor state frame
between memory and a coprocessor. This internal coprocessor state frame represents the
state of coprocessor operations. Using the cpSAVE and cpRESTORE instructions, it is
possible to interrupt coprocessor operation, save the context associated with the current
operation, and initiate coprocessor operations with a new context.

A cpSAVE instruction stores a coprocessor internal state frame as a sequence of long-
word entries in memory. Figure 7-14 shows the format of a coprocessor state frame. The
format and length fields of the coprocessor state frame format comprise the format word.
During execution of the cpSAVE instruction, the MC68020/EC020 calculates the state
frame effective address from information in the operation word of the instruction and
stores a format word at this effective address. The processor writes the long words that
form the coprocessor state frame to descending memory addresses, beginning with the
address specified by the sum of the effective address and the length field multiplied by
four. During execution of the cpRESTORE instruction, the MC68020/EC020 reads the
state frame from ascending addresses beginning with the effective address specified in
the instruction operation word.

31

FORMAT

24 23

LENGTH

16 15

(UNUSED, RESERVED)

0

COPROCESSOR-DEPENDENT INFORMATION

0

SAVE
ORDER

0

RESTORE
ORDER

n 1

n–1 2

n–2 3

1 n

Figure 7-14. Coprocessor State Frame Format in Memory

The processor stores the coprocessor format word at the lowest address of the state
frame in memory, and this word is the first word transferred for both the cpSAVE and
cpRESTORE instructions. The word following the format word does not contain
information relevant to the coprocessor state frame, but serves to keep the information in
the state frame a multiple of four bytes in size. The number of entries following the format
word (at higher addresses) is determined by the format word length for a given
coprocessor state.

7-26 M68020 USER’S MANUAL MOTOROLA

15

(UNDEFINED, RESERVED)

2

XA

1

AB

0

Figure 7-19. Control CIR Format

When the MC68020/EC020 receives one of the three take exception coprocessor
response primitives, it acknowledges the primitive by setting the exception acknowledge
bit (XA) in the control CIR. The MC68020/EC020 sets the abort bit (AB) in the control CIR
to abort any coprocessor instruction in progress. (The 14 most significant bits of both
masks are undefined.) The MC68020/EC020 aborts a coprocessor instruction when it
detects one of the following exception conditions:

• An F-line emulator exception condition after reading a response primitive

• A privilege violation exception as it performs a supervisor check in response to a
supervisor check primitive

• A format error exception when it receives an invalid format word or a valid format
word that contains an invalid length

7.3.3 Save CIR

The coprocessor uses the 16-bit save CIR to communicate status and state frame format
information to the main processor while executing a cpSAVE instruction. The main
processor reads the save CIR to initiate execution of the cpSAVE instruction by the
coprocessor. The offset from the base address of the CIR set for the save CIR is $04.
Refer to 7.2.3.2 Coprocessor Format Words for more information on the save CIR.

7.3.4 Restore CIR

The main processor initiates the cpRESTORE instruction by writing a coprocessor format
word to the 16-bit restore register. During the execution of the cpRESTORE instruction,
the coprocessor communicates status and state frame format information to the main
processor through the restore CIR. The offset from the base address of the CIR set for the
restore CIR is $06. Refer to 7.2.3.2 Coprocessor Format Words for more information on
the restore CIR.

7.3.5 Operation Word CIR

The main processor writes the F-line operation word of the instruction in progress to the
16-bit operation word CIR in response to a transfer operation word coprocessor response
primitive (refer to 7.4.6 Transfer Operation Word Primitive). The offset from the base
address of the CIR set for the operation word CIR is $08.

7.3.6 Command CIR

The main processor initiates a coprocessor general category instruction by writing the
instruction command word, which follows the instruction F-line operation word in the
instruction stream, to the 16-bit command CIR. The offset from the base address of the
CIR set for the command CIR is $0A.

MOTOROLA M68020 USER’S MANUAL 7-27

7.3.7 Condition CIR

The main processor initiates a conditional category instruction by writing the condition
selector to bits 5–0 of the 16-bit condition CIR. Bits 15–6 are undefined and reserved by
Motorola. The offset from the base address of the CIR set for the condition CIR is $0E.
Figure 7-20 shows the format of the condition CIR.

15

(UNDEFINED, RESERVED)

0

CONDITION SELECTOR

56

Figure 7-20. Condition CIR Format

7.3.8 Operand CIR

When the coprocessor requests the transfer of an operand, the main processor performs
the transfer by reading from or writing to the 32-bit operand CIR. The offset from the base
address of the CIR set for the operand CIR is $10.

The MC68020/EC020 aligns all operands transferred to and from the operand CIR to the
most significant byte of this CIR. The processor performs a sequence of long-word
transfers to read or write any operand larger than four bytes. If the operand size is not a
multiple of four bytes, the portion remaining after the initial long-word transfer is aligned to
the most significant byte of the operand CIR. Figure 7-21 shows the operand alignment
used by the MC68020/EC020 when accessing the operand CIR.

031 7

NO TRANSFER

WORD OPERAND

THREE-BYTE OPERAND

LONG-WORD OPERAND

23 15

NO TRANSFER

NO TRANSFER

NO TRANSFEROPERAND

BYTE-

TEN-

BYTE OPERAND

24 16 8

Figure 7-21. Operand Alignment for Operand CIR Accesses

MOTOROLA M68020 USER’S MANUAL 7-43

After reading a valid code from the register select CIR, if DR = 0, the main processor
writes the long-word operand from the specified control register to the operand CIR. If
DR = 1, the main processor reads a long-word operand from the operand CIR and places
it in the specified control register.

7.4.15 Transfer Multiple Main Processor Registers Primitive

The transfer multiple main processor registers primitive transfers long-word operands
between one or more of its data or address registers and the coprocessor. This primitive
applies to general and conditional category instructions. Figure 7-35 shows the format of
the transfer multiple main processor registers primitive.

15

CA PC DR

14 13 12

0 0

11 10 9 07

1 1

2

0

3

0

4

0

5

0

6

000

8

0 0

1

Figure 7-35. Transfer Multiple Main Processor Registers Primitive Format

The transfer multiple main processor registers primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format. If the
coprocessor issues this primitive with CA = 0 during a conditional category instruction, the
main processor initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a 16-bit register select mask
from the register select CIR. The format of the register select mask is shown in Figure
7-36. A register is transferred if the bit corresponding to the register in the register select
mask is set. The selected registers are transferred in the order D7–D0 and then A7–A0.

15

A7 A6 A5

14 13 12

A4 A3

11 10 9 07

A2 A1

2

D1

3

D3

4

D4

5

D5

6

D6D7A0

8

D2 D0

1

Figure 7-36. Register Select Mask Format

If DR = 0, the main processor writes the contents of each register indicated in the register
select mask to the operand CIR using a sequence of long-word transfers. If DR = 1, the
main processor reads a long-word operand from the operand CIR into each register
indicated in the register select mask. The registers are transferred in the same order,
regardless of the direction of transfer indicated by the DR bit.

7.4.16 Transfer Multiple Coprocessor Registers Primitive

The transfer multiple coprocessor registers primitive transfers from 0–16 operands
between the effective address specified in the coprocessor instruction and the
coprocessor. This primitive applies to general category instructions. If the coprocessor
issues this primitive during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 7-37 shows the format
of the transfer multiple coprocessor registers primitive.

7-46 M68020 USER’S MANUAL MOTOROLA

If SP = 0 and DR = 0, the main processor writes the 16-bit SR value to the operand CIR. If
SP = 0 and DR = 1, the main processor reads a 16-bit value from the operand CIR into the
main processor SR.

If SP = 1 and DR = 0, the main processor writes the long-word value in the scanPC to the
instruction address CIR and then writes the SR value to the operand CIR. If SP = 1 and
DR = 1, the main processor reads a 16-bit value from the operand CIR into the SR and
then reads a long-word value from the instruction address CIR into the scanPC.

With this primitive, a general category instruction can change the main processor program
flow by placing a new value in the SR, in the scanPC, or new values in both the SR and
the scanPC. By accessing the SR, the coprocessor can determine and manipulate the
main processor condition codes, supervisor status, trace modes, selection of the active
stack, and interrupt mask level.

The MC68020/EC020 discards any instruction words that have been prefetched beyond
the current scanPC location when this primitive is issued with DR = 1 (transfer to main
processor). The MC68020/EC020 then refills the instruction pipe from the scanPC
address in the address space indicated by the S-bit of the SR.

If the MC68020/EC020 is operating in the trace on change of flow mode (T1, T0 in the SR
= 01) when the coprocessor instruction begins to execute and if this primitive is issued
with DR = 1 (from coprocessor to main processor), the MC68020/EC020 prepares to take
a trace exception. The trace exception occurs when the coprocessor signals that it has
completed all processing associated with the instruction. Changes in the trace modes due
to the transfer of the SR to the main processor take effect on execution of the next
instruction.

7.4.18 Take Preinstruction Exception Primitive

The take preinstruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the preinstruction exception stack
frame format. This primitive applies to general and conditional category instructions.
Figure 7-40 shows the format of the take preinstruction exception primitive.

15 0

0 PC 0

14 13 12

1 1

11 10 9 8 7

VECTOR NUMBER1 0 0

Figure 7-40. Take Preinstruction Exception Primitive Format

The take preinstruction exception primitive uses the PC bit as described in 7.4.2
Coprocessor Response Primitive General Format. The vector number field contains
the exception vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask to the control CIR (refer to
7.3.2 Control CIR). The MC68020/EC020 then proceeds with exception processing as

MOTOROLA M68020 USER’S MANUAL 7-59

7.5.3 Coprocessor Reset

Either an external reset signal or a RESET instruction can reset the external devices of a
system. The system designer can design a coprocessor to be reset and initialized by both
reset types or by external reset signals only. To be consistent with the MC68020/EC020
design, the coprocessor should be affected by external reset signals only and not by
RESET instructions, because the coprocessor is an extension to the main processor
programming model and to the internal state of the MC68020/EC020.

7.6 COPROCESSOR SUMMARY

Coprocessor instruction formats are included with the instruction formats in the
M68000PM/AD, M68000 Family Programmer's Reference Manual.

The M68000 coprocessor response primitive formats are shown in this section. Any
response primitive with bits 13–8 = $00 or $3F causes a protocol violation exception.
Response primitives with bits 13–8 = $0B, $18–$1B, $1F, $28–$2B, and $38–3B currently
cause protocol violation exceptions; they are undefined and reserved for future use by
Motorola.

8-28 M68020 USER’S MANUAL MOTOROLA

WORST CASE (Concluded)

Source Destination

Address Mode ([d16,B],I) ([d16,B],I,d16) ([d16,B],I,d32) ([d32,B],I) ([d32,B],I,d16) ([d32,B],I,d32)

Rn 17(1/2/1) 20(1/2/1) 23(1/3/1) 22(1/2/1) 25(1/3/1) 27(1/3/1)

#<data>.B,W 17(1/2/1) 20(1/2/1) 23(1/3/1) 22(1/2/1) 25(1/3/1) 27(1/3/1)

#<data>.L 19(1/2/1) 22(1/2/1) 25(1/3/1) 24(1/2/1) 27(1/3/1) 29(1/3/1)

(An) 19(2/2/1) 22(2/2/1) 25(2/3/1) 24(2/2/1) 27(2/3/1) 29(2/3/1)

(An)+ 19(2/2/1) 22(2/2/1) 25(2/3/1) 24(2/2/1) 27(2/3/1) 29(2/3/1)

–(An) 20(2/2/1) 23(2/2/1) 26(2/3/1) 25(2/2/1) 28(2/3/1) 30(2/3/1)

(d16,An) or (d16,PC) 21(2/3/1) 24(2/3/1) 27(2/4/1) 26(2/3/1) 29(2/4/1) 31(2/4/1)

(xxx).W 20(2/3/1) 23(2/3/1) 26(2/4/1) 27(2/3/1) 28(2/4/1) 30(2/4/1)

(xxx).L 22(2/3/1) 25(2/3/1) 28(2/4/1) 29(2/3/1) 30(2/4/1) 32(2/4/1)

(d8,An,Xn) or
(d8,PC,Xn)

23(2/3/1) 26(2/3/1) 29(2/4/1) 30(2/3/1) 31(2/4/1) 33(2/4/1)

(d16,An,Xn) or
(d16,PC,Xn)

24(2/3/1) 27(2/3/1) 30(2/4/1) 31(2/3/1) 32(2/4/1) 34(2/4/1)

(B) 24(2/3/1) 27(2/3/1) 30(2/4/1) 31(2/3/1) 32(2/4/1) 34(2/4/1)

(d16,B) 27(2/3/1) 30(2/3/1) 33(2/4/1) 34(2/3/1) 35(2/4/1) 37(2/4/1)

(d32,B) 31(2/4/1) 34(2/4/1) 37(2/5/1) 38(2/4/1) 39(2/5/1) 41(2/5/1)

([B],I) 28(3/3/1) 31(3/3/1) 34(3/4/1) 35(3/3/1) 36(3/4/1) 38(3/4/1)

([B],I,d16) 31(3/3/1) 34(3/3/1) 37(3/4/1) 38(3/3/1) 39(3/4/1) 41(3/4/1)

([B],I,d32) 32(3/4/1) 35(3/4/1) 38(3/5/1) 39(3/4/1) 40(3/5/1) 42(3/5/1)

([d16,B],I) 31(3/3/1) 34(3/3/1) 37(3/4/1) 38(3/3/1) 39(3/4/1) 41(3/4/1)

([d16,B],I,d16) 34(3/4/1) 37(3/4/1) 40(3/5/1) 41(3/4/1) 42(3/5/1) 44(3/5/1)

([d16,B],I,d32) 35(3/4/1) 38(3/4/1) 41(3/5/1) 42(3/4/1) 43(3/5/1) 45(3/5/1)

([d32,B],I) 35(3/4/1) 38(3/4/1) 41(3/5/1) 42(3/4/1) 43(3/5/1) 45(3/5/1)

([d32,B],I,d16) 37(3/4/1) 40(3/4/1) 43(3/5/1) 44(3/4/1) 45(3/5/1) 47(3/5/1)

([d32,B],I,d32) 39(3/5/1) 42(3/5/1) 45(3/6/1) 46(3/5/1) 47(3/6/1) 49(3/6/1)

