
NXP USA Inc. - MC68EC020FG25 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68020

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 25MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 100-BQFP

Supplier Device Package 100-QFP (14x20)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68ec020fg25

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68ec020fg25-4473092
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

x M68020 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 7
Coprocessor Interface Description

7.1 Introduction ... 7-1
7.1.1 Interface Features ... 7-2
7.1.2 Concurrent Operation Support .. 7-2
7.1.3 Coprocessor Instruction Format .. 7-3
7.1.4 Coprocessor System Interface .. 7-4
7.1.4.1 Coprocessor Classification .. 7-4
7.1.4.2 Processor-Coprocessor Interface .. 7-5
7.1.4.3 Coprocessor Interface Register Selection 7-6
7.2 Coprocessor Instruction Types ... 7-7
7.2.1 Coprocessor General Instructions ... 7-8
7.2.1.1 Format ... 7-8
7.2.1.2 Protocol.. 7-9
7.2.2 Coprocessor Conditional Instructions.. 7-10
7.2.2.1 Branch on Coprocessor Condition Instruction 7-12
7.2.2.1.1 Format .. 7-12
7.2.2.1.2 Protocol .. 7-12
7.2.2.2 Set on Coprocessor Condition Instruction 7-13
7.2.2.2.1 Format .. 7-13
7.2.2.2.2 Protocol .. 7-14
7.2.2.3 Test Coprocessor Condition, Decrement, and Branch Instruction ... 7-14
7.2.2.3.1 Format .. 7-14
7.2.2.3.2 Protocol .. 7-15
7.2.2.4 Trap on Coprocessor Condition Instruction 7-15
7.2.2.4.1 Format .. 7-15
7.2.2.4.2 Protocol .. 7-16
7.2.3 Coprocessor Context Save and Restore Instructions 7-16
7.2.3.1 Coprocessor Internal State Frames ... 7-17
7.2.3.2 Coprocessor Format Words... 7-18
7.2.3.2.1 Empty/Reset Format Word ... 7-18
7.2.3.2.2 Not-Ready Format Word .. 7-19
7.2.3.2.3 Invalid Format Word ... 7-19
7.2.3.2.4 Valid Format Word ... 7-20
7.2.3.3 Coprocessor Context Save Instruction .. 7-20
7.2.3.3.1 Format .. 7-20
7.2.3.3.2 Protocol .. 7-21
7.2.3.4 Coprocessor Context Restore Instruction .. 7-22
7.2.3.4.1 Format .. 7-22
7.2.3.4.2 Protocol .. 7-23
7.3 Coprocessor Interface Register Set .. 7-24

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

xiv M68020 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS
Figure Page

Number Title Number

1-1 MC68020/EC020 Block Diagram ... 1-3
1-2 User Programming Model .. 1-5
1-3 Supervisor Programming Model Supplement .. 1-6
1-4 Status Register (SR) .. 1-7
1-5 Instruction Pipe .. 1-13

2-1 General Exception Stack Frame .. 2-6

3-1 Functional Signal Groups ... 3-1

4-1 MC68020/EC020 On-Chip Cache Organization .. 4-2
4-2 Cache Control Register .. 4-3
4-3 Cache Address Register .. 4-4

5-1 Relationship between External and Internal Signals.. 5-2
5-2 Input Sample Window .. 5-2
5-3 Internal Operand Representation ... 5-6
5-4 MC68020/EC020 Interface to Various Port Sizes .. 5-6
5-5 Long-Word Operand Write to Word Port Example... 5-10
5-6 Long-Word Operand Write to Word Port Timing .. 5-11
5-7 Word Operand Write to Byte Port Example ... 5-12
5-8 Word Operand Write to Byte Port Timing... 5-13
5-9 Misaligned Long-Word Operand Write to Word Port Example 5-14
5-10 Misaligned Long-Word Operand Write to Word Port Timing............................ 5-15
5-11 Misaligned Long-Word Operand Read from Word Port Example 5-16
5-12 Misaligned Word Operand Write to Word Port Example.................................. 5-16
5-13 Misaligned Word Operand Write to Word Port Timing 5-17
5-14 Misaligned Word Operand Read from Word Bus Example 5-18
5-15 Misaligned Long-Word Operand Write to Long-Word Port Example 5-18
5-16 Misaligned Long-Word Operand Write to Long-Word Port Timing 5-19
5-17 Misaligned Long-Word Operand Read from Long-Word Port Example 5-20
5-18 Byte Enable Signal Generation for 16- and 32-Bit Ports.................................. 5-23
5-19 Long-Word Read Cycle Flowchart ... 5-26
5-20 Byte Read Cycle Flowchart .. 5-27
5-21 Byte and Word Read Cycles—32-Bit Port ... 5-28
5-22 Long-Word Read—8-Bit Port ... 5-29
5-23 Long-Word Read—16- and 32-Bit Ports .. 5-30

MOTOROLA M68020 USER’S MANUAL v

MC68020/EC020 ACRONYM LIST

BCD — Binary-Coded Decimal
CAAR — Cache Address Register
CACR — Cache Control Register

CCR — Condition Code Register
CIR — Coprocessor Interface Register

CMOS — Complementary Metal Oxide Semiconductor
CPU — Central Processing Unit

CQFP — Ceramic Quad Flat Pack
DDMA — Dual-Channel Direct Memory Access

DFC — Destination Function Code Register
DMA — Direct Memory Access

DRAM — Dynamic Random Access Memory
FPCP — Floating-Point Coprocessor

HCMOS — High-Density Complementary Metal Oxide Semiconductor
IEEE — Institute of Electrical and Electronic Engineers

ISP — Interrupt Stack Pointer
LMB — Lower Middle Byte

LRAR — Limited Rate Auto Request
LSB — Least Significant Byte

MMU — Memory Management Unit
MPU — Microprocessor Unit
MSB — Most Significant Byte
MSP — Master Stack Pointer

NMOS — n-Type Metal Oxide Semiconductor
PAL — Programmable Array Logic
PC — Program Counter

PGA — Pin Grid Array
PMMU — Paged Memory Management Unit
PPGA — Plastic Pin Grid Array
PQFP — Plastic Quad Flat Pack
RAM — Random Access Memory
SFC — Source Function Code Register

SP — Stack Pointer
SR — Status Register

SSP — Supervisor Stack Pointer
SSW — Special Status Word
UMB — Upper Middle Byte
USP — User Stack Pointer
VBR — Vector Base Register
VLSI — Very Large Scale Integration

MOTOROLA M68020 USER’S MANUAL 5-3

When initiating a bus cycle, the MC68020 asserts ECS in addition to A1–A0, SIZ1, SIZ0,
FC2–FC0, and R/W . ECS can be used to initiate various timing sequences that are
eventually qualified with AS. Qualification with AS may be required since, in the case of an
internal cache hit, a bus cycle may be aborted after ECS has been asserted. During the
first MC68020 external bus cycle of an operand transfer, OCS is asserted with ECS. When
several bus cycles are required to transfer the entire operand, OCS is asserted only at the
beginning of the first external bus cycle. With respect to OCS , an “operand” is any entity
required by the execution unit, whether a program or data item. Note that ECS and OCS

are not implemented in the MC68EC020.

The FC2–FC0 signals select one of eight address spaces (see Table 2-1) to which the
address applies. Five address spaces are presently defined. Of the remaining three, one
is reserved for user definition, and two are reserved by Motorola for future use. FC2–FC0
are valid while AS is asserted.

The SIZ1 and SIZ0 signals indicate the number of bytes remaining to be transferred
during an operand cycle (consisting of one or more bus cycles) or during a cache fill
operation from a device with a port size that is less than 32 bits. Table 5-2 lists the
encoding of SIZ1 and SIZ0. SIZ1 and SIZ0 are valid while AS is asserted.

The R/W signal determines the direction of the transfer during a bus cycle. When required,
this signal changes state at the beginning of a bus cycle and is valid while AS is asserted.
R/W only transitions when a write cycle is preceded by a read cycle or vice versa. This
signal may remain low for two consecutive write cycles.

The RMC signal is asserted at the beginning of the first bus cycle of a read-modify-write
operation and remains asserted until completion of the final bus cycle of the operation.
The RMC signal is guaranteed to be negated before the end of state 0 for a bus cycle
following a read-modify-write operation.

5.1.2 Address Bus

A31–A0 (for the MC68020) or A23–A0 (for the MC68EC020) define the address of the
byte (or the most significant byte) to be transferred during a bus cycle. The processor
places the address on the bus at the beginning of a bus cycle. The address is valid while
AS is asserted. In the MC68EC020, A31–A24 are used internally, but not externally.

5.1.3 Address Strobe

AS is a timing signal that indicates the validity of an address on the address bus and of
many control signals. It is asserted one-half clock after the beginning of a bus cycle.

5.1.4 Data Bus

D31–D0 comprise a bidirectional, nonmultiplexed parallel bus that contains the data being
transferred to or from the processor. A read or write operation may transfer 8, 16, 24, or
32 bits of data (one, two, three, or four bytes) in one bus cycle. During a read cycle, the
data is latched by the processor on the last falling edge of the clock for that bus cycle. For

5-24 M68020 USER’S MANUAL MOTOROLA

5.2.6 Bus Operation

The MC68020/EC020 bus is used in an asynchronous manner allowing external devices
to operate at clock frequencies different from the MC68020/EC020 clock. Bus operation
uses the handshake lines (AS, DS, DSACK0, DSACK1, BERR, and HALT) to control data
transfers. AS signals the start of a bus cycle, and DS is used as a condition for valid data
on a write cycle. Decoding SIZ1, SIZ0, A1, and A0 provides byte enable signals that select
the active portion of the data bus. The slave device (memory or peripheral) then responds
by placing the requested data on the correct portion of the data bus for a read cycle or
latching the data on a write cycle and by asserting the DSACK0/DSACK1 combination that
corresponds to the port size to terminate the cycle. If no slave responds or the access is
invalid, external control logic asserts BERR to abort or BERR and HALT to retry the bus
cycle.

DSACK1/DSACK0 can be asserted before the data from a slave device is valid on a read
cycle. The length of time that DSACK1/DSACK0 may precede data is given by parameter
#31, and it must be met in any asynchronous system to ensure that valid data is latched
into the processor. (Refer to Section 10 Electrical Characteristics for timing
parameters.) Note that no maximum time is specified from the assertion of AS to the
assertion of DSACK1/DSACK0. Although the processor can transfer data in a minimum of
three clock cycles when the cycle is terminated with DSACK1/DSACK0, the processor
inserts wait cycles in clock period increments until DSACK1/DSACK0 is recognized.

The BERR and/or HALT signals can be asserted after DSACK1/DSACK0 is asserted.
BERR and/or HALT must be asserted within the time given (parameter #48), after
DSACK1/DSACK0 is asserted in any asynchronous system. If this maximum delay time is
violated, the processor may exhibit erratic behavior.

5.2.7 Synchronous Operation with DSACK1/DSACK0

Although cycles terminated with DSACK1/DSACK0 are classified as asynchronous, cycles
terminated with DSACK1/DSACK0 can also operate synchronously in that signals are
interpreted relative to clock edges. The devices that use these synchronous cycles must
synchronize the responses to the MC68020/EC020 clock. Since these devices terminate
bus cycles with DSACK1/DSACK0 , the dynamic bus sizing capabilities of the
MC68020/EC020 are available. In addition, the minimum cycle time for these synchronous
cycles is three clocks.

To support systems that use the system clock to generate DSACK1/DSACK0 and other
asynchronous inputs, the asynchronous input setup time (parameter #47A) and the
asynchronous input hold time (parameter #47B) are provided in Section 10 Electrical
Characteristics. (Note: although a misnomer, these “asynchronous” parameters are the
setup and hold times for synchronous operation.) If the setup and hold times are met for
the assertion or negation of a signal, such as DSACK1/DSACK0, the processor can be
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACK1/DSACK0 is recognized on a particular falling edge of the clock,
valid data is latched into the processor (for a read cycle) on the next falling clock edge
provided the data meets the data setup time (parameter #27). In this case, parameter #31

5-32 M68020 USER’S MANUAL MOTOROLA

State 4
MC68020/EC020—At the end of state 4 (S4), the processor latches the incoming data.

State 5
MC68020—The processor negates AS, DS, and DBEN during state 5 (S5). It holds the
address valid during S5 to provide address hold time for memory systems. R/W, SIZ1–
SIZ0, and FC2–FC0 also remain valid throughout S5.
The external device keeps its data and DSACK1/DSACK0 signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device must remove
its data and negate DSACK1/DSACK0 within approximately one clock period after
sensing the negation of AS or DS. DSACK1/DSACK0 signals that remain asserted
beyond this limit may be prematurely detected for the next bus cycle.

MC68EC020—The processor negates AS and DS during state S5. It holds the address
valid during S5 to provide address hold time for memory systems. R/W , SIZ1, SIZ0,
and FC2–FC0 also remain valid throughout S5.
The external device keeps its data and DSACK1/DSACK0 signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device must remove
its data and negate DSACK1/DSACK0 within approximately one clock period after
sensing the negation of AS or DS. DSACK1/DSACK0 signals that remain asserted
beyond this limit may be prematurely detected for the next bus cycle.

5-36 M68020 USER’S MANUAL MOTOROLA

BYTE WRITE

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

 D15–D8

D7–D0

 LONG WORD 3-BYTE

BYTE WRITE

CLK

WORD BYTE

BYTE WRITEBYTE WRITE

LONG-WORD OPERAND WRITE TO 8-BIT PORT

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

OP0 OP3OP2OP1

OP1 OP3OP3OP1

OP2 OP3OP2OP2

OP3 OP3OP3OP3

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.

Figure 5-27. Long-Word Operand Write—8-Bit Port

MOTOROLA M68020 USER’S MANUAL 5-47

READ CYCLE INTERRUPT
ACKNOWLEDGE WRITE STACK

CLK

A31–A4

A3–A1

A0

FC2–FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D24–D31

IPL2–IPL0

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

IPEND

D7–D0

D23–D16

VECTOR # FROM 8-BIT PORT

VECTOR # FROM 16-BIT PORT

VECTOR # FROM 32-BIT PORT

**

**

**

*

* For the MC68EC020, A23–A4.
This signal does not apply to the MC68EC020.**

**

Figure 5-33. Interrupt Acknowledge Cycle Timing

5-60 M68020 USER’S MANUAL MOTOROLA

5.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68020/EC020 halts external
bus activity at the next bus cycle boundary. HALT by itself does not terminate a bus cycle.
Negating and reasserting HALT in accordance with the correct timing requirements
provides a single-step (bus cycle to bus cycle) operation. The HALT signal affects external
bus cycles only; thus, a program that resides in the instruction cache and does not require
use of the external bus may continue executing unaffected by HALT.

The single-cycle mode allows the user to proceed through (and debug) external processor
operations, one bus cycle at a time. Figure 5-41 shows the timing requirements for a
single-cycle operation. Since the occurrence of a bus error while HALT is asserted causes
a retry operation, the user must anticipate retry cycles while debugging in the single-cycle
mode. The single-step operation and the software trace capability allow the system
debugger to trace single bus cycles, single instructions, or changes in program flow.
These processor capabilities, along with a software debugging package, give complete
debugging flexibility.

When the processor completes a bus cycle with the HALT signal asserted, the data bus is
placed in the high-impedance state, and the bus control signals (AS, DS, and, for the
MC68020 only, ECS and OCS) are negated (not placed in the high-impedance state);
A31–A0 for the MC68020 or A23–A0 for the MC68EC020, FC2–FC0, SIZ1, SIZ0, and
R/W remain in the same state. The halt operation has no effect on bus arbitration (refer to
5.7 Bus Arbitration). When bus arbitration occurs while the MC68020/EC020 is halted,
the address and control signals (A31–A0, FC2–FC0, SIZ1, SIZ0, R/W, AS, DS, and, for
the MC68020 only, ECS and OCS) are also placed in the high-impedance state. Once bus
mastership is returned to the MC68020/EC020, if HALT is still asserted, A31–A0 for the
MC68020 or A23–A0 for the MC68EC020, FC2–FC0, SIZ1, SIZ0, and R/W are again
driven to their previous states. The MC68020/EC020 does not service interrupt requests
while it is halted (although the MC68020 may assert the IPEND signal as appropriate).

5.5.4 Double Bus Fault

When a bus error or an address error occurs during the exception processing sequence
for a previous bus error, a previous address error, or a reset exception, a double bus fault
occurs. For example, the processor attempts to stack several words containing
information about the state of the machine while processing a bus error exception. If a bus
error exception occurs during the stacking operation, the second error is considered a
double bus fault. When a double bus fault occurs, the processor halts and asserts HALT.
Only an external reset operation can restart a halted processor. However, bus arbitration
can still occur (refer to 5.7 Bus Arbitration).

A second bus error or address error that occurs after exception processing has completed
(during the execution of the exception handler routine or later) does not cause a double
bus fault. A bus cycle that is retried does not constitute a bus error or contribute to a
double bus fault. The processor continues to retry the same bus cycle as long as the
external hardware requests it.

MOTOROLA M68020 USER’S MANUAL 5-61

CLK

A31–A0

FC2–FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

DSACK1

S0 S2 S0

BERR

HALT

S4 S2

SIZ1–SIZ0

S4

D31–D0

**

**

**

*

READ
HALT

(BUS ARBITRATION
PERMITTED

WHILE THE PROCESSOR
IS HALTED)

READ

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-41. Halt Operation Timing

5-62 M68020 USER’S MANUAL MOTOROLA

5.6 BUS SYNCHRONIZATION

The MC68020/EC020 overlaps instruction execution—that is, during bus activity for one
instruction, instructions that do not use the external bus can be executed. Due to the
independent operation of the on-chip cache relative to the operation of the bus controller,
many subsequent instructions can be executed, resulting in seemingly nonsequential
instruction execution. When this is not desired and the system depends on sequential
execution following bus activity, the NOP instruction can be used. The NOP instruction
forces instruction and bus synchronization by freezing instruction execution until all
pending bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of a write
operation of control information to an external register in which the external hardware
attempts to control program execution based on the data that is written with the
conditional assertion of BERR. Since the MC68020/EC020 cannot process the bus error
until the end of the bus cycle, the external hardware has not successfully interrupted
program execution. To prevent a subsequent instruction from executing until the external
cycle completes, the NOP instruction can be inserted after the instruction causing the
write. In this case, bus error exception processing proceeds immediately after the write
and before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP instruction for this purpose is not required by most systems.

5.7 BUS ARBITRATION

The bus design of the MC68020/EC020 provides for a single bus master at any one time:
either the processor or an external device. One or more of the external devices on the bus
can have the capability of becoming bus master. Bus arbitration is the protocol by which
an external device becomes bus master; the bus controller in the MC68020/EC020
manages the bus arbitration signals so that the processor has the lowest priority.

Bus arbitration differs in the MC68020 and MC68EC020 due to the absence of BGACK in
the MC68EC020. Because of this difference, bus arbitration of the MC68020 and
MC68EC020 is discussed separately.

External devices that need to obtain the bus must assert the bus arbitration signals in the
sequences described in 5.7.1 MC68020 Bus Arbitration or 5.7.2 MC68EC020 Bus
Arbitration. Systems having several devices that can become bus master require
external circuitry to assign priorities to the devices, so that when two or more external
devices attempt to become bus master at the same time, the one having the highest
priority becomes bus master first.

5-64 M68020 USER’S MANUAL MOTOROLA

1) ASSERT BG

GRANT BUS ARBITRATION

TERMINATE ARBITRATION

1) NEGATE BG AND WAIT FOR BGACK TO
 BE NEGATED

RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

REQUEST THE BUS

1) ASSERT BR

REQUESTING DEVICEPROCESSOR

ACKNOWLEDGE BUS MASTERSHIP

1) EXTERNAL ARBITRATION DETERMINES
 NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE
3) NEXT BUS MASTER ASSERTS BGACK
TO BECOME NEW MASTER
4) BUS MASTER NEGATES BR

OPERATE AS BUS MASTER

RELEASE BUS MASTERSHIP

1) PERFORM DATA TRANSFERS
 (READ AND WRITE CYCLES)

1) NEGATE BGACK

Figure 5-42. MC68020 Bus Arbitration Flowchart for Single Request

The timing diagram (see Figure 5-43) shows that BR is negated at the time that BGACK is
asserted. This type of operation applies to a system consisting of the processor and one
device capable of bus mastership. In a system having a number of devices capable of bus
mastership, the BR line from each device can be wire-ORed to the processor. In such a
system, more than one bus request can be asserted simultaneously.

The timing diagram in Figure 5-43 shows that BG is negated a few clock cycles after the
transition of BGACK. However, if bus requests are still pending after the negation of BG,
the processor asserts another BG within a few clock cycles after it was negated. This
additional assertion of BG allows external arbitration circuitry to select the next bus master
before the current bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET assertion,
HALT assertion, and when the processor has halted due to a double bus fault.

MOTOROLA M68020 USER’S MANUAL 5-77

ISP
READ
STARTS

ALL CONTROL SIGNALS
NEGATED, DATA BUS IN
READ MODE, ADDRESS

BUS DRIVEN

ENTIRE BUS
THREE-
STATED

BUS STATE UNKNOWN

t ≥ 520 CLOCKS

t < 4 CLOCKS

4 CLOCKS

CLK

 +5 V

VCC

BUS
CYCLES

RESET

Figure 5-51. Initial Reset Operation Timing

Resetting the processor causes any bus cycle in progress to terminate as if
DSACK1/DSACK0 or BERR had been asserted. In addition, the processor initializes
registers appropriately for a reset exception. Exception processing for a reset operation is
described in Section 6 Exception Processing.

When a RESET instruction is executed, the processor drives the RESET signal for 512
clock cycles. In this case, the processor resets the external devices of the system, and the
internal registers of the processor are unaffected. The external devices connected to the
RESET signal are reset at the completion of the RESET instruction. An external RESET

signal that is asserted to the processor during execution of a RESET instruction must
extend beyond the reset period of the instruction by at least eight clock cycles to reset the
processor. Figure 5-52 shows the timing information for the RESET instruction.

MOTOROLA M68020 USER’S MANUAL 6-7

instruction, the vector number is 32 plus n. The stack frame saves the trap vector offset,
the PC, and the internal copy of the SR on the supervisor stack. The saved value of the
PC is the logical address of the instruction following the instruction that caused the trap.
For all instruction traps other than TRAP, a pointer to the instruction that caused the trap
is also saved. Instruction execution resumes at the address in the exception vector after
the required instruction prefetches.

6.1.5 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern in its first word that does
not correspond to the bit pattern of the first word of a valid MC68020/EC020 instruction or
a MOVEC instruction with an undefined register specification field in the first extension
word. An illegal instruction exception corresponds to vector number 4 and occurs when
the processor attempts to execute an illegal instruction.

An illegal instruction exception is also taken if a breakpoint acknowledge bus cycle (see
Section 5 Bus Operation) is terminated with the assertion of the BERR signal. This
implies that the external circuitry did not supply an instruction word to replace the BKPT
instruction word in the instruction pipe.

Instruction word patterns with bits 15–12 = 1010 are referred to as unimplemented
instructions with A-line opcodes. When the processor attempts to execute an
unimplemented instruction with an A-line opcode, an exception is generated with vector
number 10, permitting efficient emulation of unimplemented instructions.

Instructions that have word patterns with bits 15–12 = 1111, bits 11–9 = 000, and defined
word patterns for subsequent words, are legal PMMU instructions. Instructions that have
bits 15–12 of the first words = 1111, bits 11–9 = 000, and undefined patterns in the
subsequent words, are treated as unimplemented instructions with F-line opcodes when
execution is attempted in the supervisor privilege level. When execution of the same
instruction is attempted in the user privilege level, a privilege violation exception is taken.
The exception vector number for an unimplemented instruction with an F-line opcode is
11.

The word patterns with bits 15–12 = 1111 and bits 11–9 ≠ 000 are used for coprocessor
instructions. When the processor identifies a coprocessor instruction, it runs a bus cycle
referencing CPU space type $2 (refer to Section 2 Processing States) and addressing
one of eight coprocessors (0–7, according to bits 11–9). If the addressed coprocessor is
not included in the system and the cycle terminates with the assertion of BERR, the
instruction takes an unimplemented instruction (F-line opcode) exception. The system can
emulate the functions of the coprocessor with an F-line exception handler. Refer to
Section 7 Coprocessor Interface Description for more details.

6-20 M68020 USER’S MANUAL MOTOROLA

The priority scheme is very important in determining the order in which exception handlers
execute when several exceptions occur at the same time. As a general rule, the lower the
priority of an exception, the sooner the handler routine for that exception executes. For
example, if simultaneous trap, trace, and interrupt exceptions are pending, the exception
processing for the trap occurs first, followed immediately by exception processing for the
trace, and then for the interrupt. When the processor resumes normal instruction
execution, it is in the interrupt handler, which returns to the trace handler, which returns to
the trap exception handler. This rule does not apply to the reset exception; its handler is
executed first even though it has the highest priority because the reset operation clears all
other exceptions.

6.1.12 Return from Exception

After the MC68020/EC020 has completed exception processing for all pending
exceptions, it resumes normal instruction execution at the address in the vector for the last
exception processed. Once the exception handler has completed execution, the processor
must return to the system context prior to the exception (if possible). The RTE instruction
returns from the handler to the previous system context for any exception.

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. The following paragraphs describe the processing for each of the
stack frame types; refer to 6.3 Coprocessor Considerations for a description of the
stack frame type formats.

For a normal four-word frame, the processor updates the SR and PC with the data read
from the stack, increments the stack pointer by eight, and resumes normal instruction
execution.

For the throwaway four-word frame, the processor reads the SR value from the frame,
increments the active stack pointer by eight, updates the SR with the value read from the
stack, and then begins RTE processing again, as shown in Figure 6-7. The processor
reads a new format word from the stack frame on top of the active stack (which may or
may not be the same stack used for the previous operation) and performs the proper
operations corresponding to that format. In most cases, the throwaway frame is on the
interrupt stack and when the SR value is read from the stack, the S and M bits are set. In
that case, there is a normal four-word frame or a ten-word coprocessor midinstruction
frame on the master stack. However, the second frame may be any format (even another
throwaway frame) and may reside on any of the three system stacks.

For the six-word stack frame, the processor restores the SR and PC values from the
stack, increments the active supervisor stack pointer by 12, and resumes normal
instruction execution.

7-16 M68020 USER’S MANUAL MOTOROLA

If the coprocessor requires additional information to evaluate the condition, the cpDBcc
instruction can include this information in extension words. These extension words follow
the word containing the coprocessor condition selector field in the cpDBcc instruction
format.

The last word of the instruction contains the displacement for the cpDBcc instruction. This
displacement is a twos-complement 16-bit value that is sign-extended to long-word size
when it is used in a destination address calculation.

7.2.2.3.2 Protocol. Figure 7-8 shows the protocol for the cpDBcc instructions. The
MC68020/EC020 transfers the condition selector to the coprocessor by writing the word
following the operation word to the condition CIR. The main processor then reads the
response CIR to determine its next action. The coprocessor can use a response primitive
to request any services necessary to evaluate the condition. If the coprocessor returns the
true condition indicator, the main processor executes the next instruction in the instruction
stream. If the coprocessor returns the false condition indicator, the main processor
decrements the low-order word of the register specified by bits 2–0 of the F-line operation
word. If this register contains minus one (–1) after being decremented, the main processor
executes the next instruction in the instruction stream. If the register does not contain
minus one (–1) after being decremented, the main processor branches to the destination
address to continue instruction execution.

The MC68020/EC020 adds the displacement to the scanPC (refer to 7.4.1 ScanPC) to
determine the address of the next instruction. The scanPC must point to the 16-bit
displacement in the instruction stream when the destination address is calculated.

7.2.2.4 TRAP ON COPROCESSOR CONDITION INSTRUCTION. The trap on
coprocessor condition instruction allows the programmer to initiate exception processing
based on conditions related to the coprocessor operation.

7.2.2.4.1 Format. Figure 7-13 shows the format of the trap on coprocessor condition
instruction, denoted by the cpTRAPcc mnemonic.

1

15

1

14

1

13

1

12 11

CpID

9

0

8

0

7

1

6 5

OPMODE

0

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

OPTIONAL WORD

CONDITION SELECTOR

1

5

1

4

1

3 2

(RESERVED)

OR LONG-WORD OPERAND

Figure 7-13. Trap on Coprocessor Condition
Instruction Format (cpTRAPcc)

The first word of the cpTRAPcc instruction, the F-line operation word contains the CpID
field in bits 11–9 and 001111 in bits 8–3 to identify the cpTRAPcc instruction. Bits 2–0 of
the cpTRAPcc F-line operation word specify the opmode, which selects the instruction
format. The instruction format can include zero, one, or two operand words.

7-50 M68020 USER’S MANUAL MOTOROLA

The value in the main processor scanPC at the time this primitive is received is saved in
the scanPC field of the postinstruction exception stack frame. The value of the PC saved
is the F-line operation word address of the coprocessor instruction during which the
primitive is received.

When the MC68020/EC020 receives the take postinstruction exception primitive, it
assumes that the coprocessor either completed or aborted the instruction with an
exception. If the exception handler does not modify the stack frame, the MC68020/EC020
returns from the exception handler to begin execution at the location specified by the
scanPC field of the stack frame. This location should be the address of the next instruction
to be executed.

The coprocessor uses this primitive to request exception processing when it completes or
aborts an instruction while the main processor is awaiting a normal response. For a
general category instruction, the response is a release; for a conditional category
instruction, it is an evaluated true/false condition indicator. Thus, the operation of the
MC68020/EC020 in response to this primitive is compatible with standard M68000 family
instruction related exception processing (for example, the divide-by-zero exception).

7.5 EXCEPTIONS

Various exception conditions related to the execution of coprocessor instructions may
occur. Whether an exception is detected by the main processor or by the coprocessor, the
main processor coordinates and performs exception processing. Servicing these
coprocessor-related exceptions is an extension of the protocol used to service standard
M68000 family exceptions. That is, when either the main processor detects an exception
or is signaled by the coprocessor that an exception condition has occurred, the main
processor proceeds with exception processing as described in Section 6 Exception
Processing.

7.5.1 Coprocessor-Detected Exceptions

Coprocessor interface exceptions that the coprocessor detects, as well as those that the
main processor detects, are usually classified as coprocessor-detected exceptions.
Coprocessor-detected exceptions can occur during M68000 coprocessor interface
operations, internal operations, or other system-related operations of the coprocessor.

Most coprocessor-detected exceptions are signaled to the main processor through the use
of one of the three take exception primitives defined for the M68000 coprocessor
interface. The main processor responds to these primitives as described in 7.4.18 Take
Preinstruction Exception Primitive, 7.4.19 Take Midinstruction Exception Primitive,
and 7.4.20 Take Postinstruction Exception Primitive. However, not all coprocessor-
detected exceptions are signaled by response primitives. Coprocessor-detected format
errors during the cpSAVE or cpRESTORE instruction are signaled to the main processor
using the invalid format word described in 7.2.3.2.3 Invalid Format Words.

8-36 M68020 USER’S MANUAL MOTOROLA

8.2.14 Bit Field Manipulation Instructions

The bit field manipulation instructions table indicates the number of clock periods needed
for the processor to perform the specified bit field operation using the given addressing
mode. Footnotes indicate when it is necessary to add another table entry to calculate the
total effective execution time for the instruction. The total number of clock cycles is outside
the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BFTST Dn 3(0/0/0) 6(0/0/0) 7(0/1/0)

‡ BFTST Mem (< 5 Bytes) 11(1/0/0) 11(1/0/0) 12(1/1/0)

‡ BFTST Mem (5 Bytes) 15(2/0/0) 15(2/0/0) 16(2/1/0)

BFCHG Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

‡ BFCHG Mem (< 5 Bytes) 16(1/0/1) 16(1/0/1) 16(1/1/1)

‡ BFCHG Mem (5 Bytes) 24(2/0/2) 24(2/0/2) 24(2/1/2)

BFCLR Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

‡ BFCLR Mem (< 5 Bytes) 16(1/0/1) 16(1/0/1) 16(1/1/1)

‡ BFCLR Mem (5 Bytes) 24(2/0/2) 24(2/0/2) 24(2/1/2)

BFSET Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

‡ BFSET Mem (< 5 Bytes) 16(1/0/1) 16(1/0/1) 16(1/1/1)

‡ BFSET Mem (5 Bytes) 24(2/0/2) 24(2/0/2) 24(2/1/2)

BFEXTS Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

‡ BFEXTS Mem (< 5 Bytes) 13(1/0/0) 13(1/0/0) 13(1/1/0)

‡ BFEXTS Mem (5 Bytes) 18(2/0/0) 18(2/0/0) 18(2/1/0)

BFEXTU Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

‡ BFEXTU Mem (< 5 Bytes) 13(1/0/0) 13(1/0/0) 13(1/1/0)

‡ BFEXTU Mem (5 Bytes) 18(2/0/0) 18(2/0/0) 18(2/1/0)

BFINS Dn 7(0/0/0) 10(0/0/0) 10(0/1/0)

‡ BFINS Mem (< 5 Bytes) 14(1/0/1) 14(1/0/1) 15(1/1/1)

‡ BFINS Mem (5 Bytes) 20(2/0/2) 20(2/0/2) 21(2/1/2)

BFFFO Dn 15(0/0/0) 18(0/0/0) 18(0/1/0)

‡ BFFFO Mem (< 5 Bytes) 24(1/0/0) 24(1/0/0) 24(1/1/0)

‡ BFFFO Mem (5 Bytes) 32(2/0/0) 32(2/0/0) 32(2/1/0)

‡Add Calculate Immediate Address Time
NOTE: A bit field of 32 bits may span five bytes that require two operand cycles to access or may span four bytes that

require only one operand cycle to access.

MOTOROLA M68020 USERÕS MANUAL 10-3

Table 10-1. qJA vs. AirflowÑMC68020 CQFP Package

Airflow in Linear Feet/Minute

qJA 0* 200 500

Maximum
No Heatsink
With Heatsink

46
35

28
20

24
18

Typical
No Heatsink
With Heatsink

43
32

25
17

21
15

*Natural convection

Table 10-2 shows the relationship between clock speed and power dissipation for any
package type. The worst case operating conditions are used for thermal management
design, while typical values are used for reliability analysis.

Table 10-2. Power vs. Rated Frequency
(at TJ Maximum = 110°C)

Rated Frequency (MHz) PD Maximum (Watts) PD Typical (Watts)

33
25
20
16

1.4
1.2
1.0
0.9

0.84
0.72
0.60
0.54

Table 10-3 shows the relationship between board temperature rise and power dissipation
in the test environment for the CQFP package. Derate qJA based on measurements made
in the application by adding (0.8/PD) * [Tba(application) Ð Tba(table)] to the qJA values in the
table. Board temperature was measured on the top surface of the board directly under the
device.

Table 10-3. Temperature Rise of Board vs. PD
ÑMC68020 CQFP Package

PD

Natural Convection 0.6W 1.0W 1.75W

Tba (°C)ÑNo Heatsink 18 27 53

Values for thermal resistance presented in this document were derived using the
procedure described in Motorola Reliability Report 7843, ÒThermal Resistance
Measurement Method for MC68XX Microcomponent Devices,Ó and are provided for
design purposes only. Thermal measurements are complex and dependent on procedure
and setup. User-derived values for thermal resistance may differ.

