

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	150MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD, Touch Panel
Ethernet	-
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc9328mx1cvm15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

Figure 1. i.MX1 Functional Block Diagram

1.1 Features

To support a wide variety of applications, the processor offers a robust array of features, including the following:

- ARM920TTM Microprocessor Core
- AHB to IP Bus Interfaces (AIPIs)
- External Interface Module (EIM)
- SDRAM Controller (SDRAMC)
- DPLL Clock and Power Control Module
- Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3)
- Two Serial Peripheral Interfaces (SPI1 and SPI2)
- Two General-Purpose 32-bit Counters/Timers
- Watchdog Timer
- Real-Time Clock/Sampling Timer (RTC)
- LCD Controller (LCDC)
- Pulse-Width Modulation (PWM) Module
- Universal Serial Bus (USB) Device
- Multimedia Card and Secure Digital (MMC/SD) Host Controller Module
- Memory Stick® Host Controller (MSHC)
- Direct Memory Access Controller (DMAC)
- Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I²S) Module
- Inter-IC (I²C) Bus Module
- Video Port

- General-Purpose I/O (GPIO) Ports
- Bootstrap Mode
- Analog Signal Processing (ASP) Module
- BluetoothTM Accelerator (BTA)
- Multimedia Accelerator (MMA)
- Power Management Features
- Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O
- 256-pin MAPBGA Package

1.2 Target Applications

The i.MX1 processor is targeted for advanced information appliances, smart phones, Web browsers, based on the popular Palm OS platform, and messaging applications such as wireless cellular products, including the AccompliTM 008 GSM/GPRS interactive communicator.

1.3 Ordering Information

Table 1 provides ordering information.

Package Type	Frequency	Temperature	Solderball Type	Order Number
256-lead MAPBGA	200 MHz	0°C to 70°C	Pb-free	MC9328MX1VM20(R2)
		-30°C to 70°C	Pb-free	MC9328MX1DVM20(R2)
	150 MHz	0°C to 70°C	Pb-free	MC9328MX1VM15(R2)
		-30°C to 70°C	Pb-free	MC9328MX1DVM15(R2)
		-40°C to 85°C	Pb-free	MC9328MX1CVM15(R2)

 Table 1. Ordering Information

1.4 Conventions

This document uses the following conventions:

- OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.
- Logic level one is a voltage that corresponds to Boolean true (1) state.
- Logic level zero is a voltage that corresponds to Boolean false (0) state.
- To set a bit or bits means to establish logic level one.
- To *clear* a bit or bits means to establish logic level zero.
- A signal is an electronic construct whose state conveys or changes in state convey information.
- A *pin* is an external physical connection. The same pin can be used to connect a number of signals.
- Asserted means that a discrete signal is in active logic state.
 - Active low signals change from logic level one to logic level zero.
 - Active high signals change from logic level zero to logic level one.

Signal Name	Function/Notes				
SDIBA [3:0]	SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.				
MA [11:10]	SDRAM address signals				
MA [9:0]	SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on SDRAM cycles.				
DQM [3:0]	SDRAM data enable				
CSD0	SDRAM Chip-select signal which is multiplexed with the $\overline{CS2}$ signal. These two signals are selectable by programming the system control register.				
CSD1	SDRAM Chip-select signal which is multiplexed with $\overline{CS3}$ signal. These two signals are selectable by programming the system control register. By default, $\overline{CSD1}$ is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins.				
RAS	SDRAM Row Address Select signal				
CAS	SDRAM Column Address Select signal				
SDWE	SDRAM Write Enable signal				
SDCKE0	SDRAM Clock Enable 0				
SDCKE1	SDRAM Clock Enable 1				
SDCLK	SDRAM Clock				
RESET_SF	Not Used				
	Clocks and Resets				
EXTAL16M	Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut down.				
XTAL16M	Crystal output				
EXTAL32K	32 kHz crystal input				
XTAL32K	32 kHz crystal output				
CLKO	Clock Out signal selected from internal clock signals.				
RESET_IN	Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules (except the reset module and the clock control module) are reset.				
RESET_OUT	Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.				
POR	Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally generated by an external RC circuit designed to detect a power-up event.				
JTAG					
TRST	Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.				
TDO	Serial Output for test instructions and data. Changes on the falling edge of TCK.				
TDI	Serial Input for test instructions and data. Sampled on the rising edge of TCK.				
ТСК	Test Clock to synchronize test logic and control register access through the JTAG port.				
TMS	Test Mode Select to sequence the JTAG test controller's state machine. Sampled on the rising edge of TCK.				

Signals and Connections

Table 2. i.MX1 Signal Descriptions (Continued)

Signal Name	Function/Notes
SSI_TXCLK	Transmit Serial Clock
SSI_RXCLK	Receive Serial Clock
SSI_TXFS	Transmit Frame Sync
SSI_RXFS	Receive Frame Sync
SSI2_TXDAT	TxD
SSI2_RXDAT	RxD
SSI2_TXCLK	Transmit Serial Clock
SSI2_RXCLK	Receive Serial Clock
SSI2_TXFS	Transmit Frame Sync
SSI2_RXFS	Receive Frame Sync
	l ² C
I2C_SCL	I ² C Clock
I2C_SDA	I ² C Data
	PWM
PWMO	PWM Output
	ASP
UIN	Positive U analog input (for low voltage, temperature measurement)
UIP	Negative U analog input (for low voltage, temperature measurement)
PX1	Positive pen-X analog input
PY1	Positive pen-Y analog input
PX2	Negative pen-X analog input
PY2	Negative pen-Y analog input
R1A	Positive resistance input (a)
R1B	Positive resistance input (b)
R2A	Negative resistance input (a)
R2B	Negative resistance input (b)
RVP	Positive reference for pen ADC
RVM	Negative reference for pen ADC
AVDD	Analog power supply
AGND	Analog ground
	BlueTooth
BT1	I/O clock signal
BT2	Output
BT3	Input

I/O Supply	BGA			Alternate	GPIO					RESE	Defeuit		
Voltage	Pin	Signal	Dir	Pull-up	Signal	Dir	Mux	Pull-up	Ain	Bin	Aout	State (At/After)	Default
NVDD2	R14	TDO	0									Hiz ⁵	
NVDD2	N15	TMS	I	69K								Pull-H	
NVDD2	L9	ТСК	I	69K								Pull-H	
NVDD2	N16	TDI	I	69K								Pull-H	
NVDD2	P14	I2C_SCL	0				PA16	69K				Pull-H	PA16
NVDD2	P15	I2C_SDA	I/O				PA15	69K				Pull-H	PA15
NVDD2	N13	CSI_PIXCLK	I				PA14	69K				Pull-H	PA14
NVDD2	M13	CSI_HSYNC	I				PA13	69K				Pull-H	PA13
NVDD2	M14	CSI_VSYNC	I				PA12	69K				Pull-H	PA12
NVDD2	N14	CSI_D7	I				PA11	69K				Pull-H	PA11
NVDD2	M15	CSI_D6	I				PA10	69K				Pull-H	PA10
NVDD2	M16	CSI_D5	I				PA9	69K				Pull-H	PA9
NVDD2	J10	VSS	Static										
NVDD2	M12	CSI_D4	I				PA8	69K				Pull-H	PA8
NVDD2	L16	CSI_D3	I				PA7	69K				Pull-H	PA7
NVDD2	L15	CSI_D2	I				PA6	69K				Pull-H	PA6
NVDD2	L14	CSI_D1	I				PA5	69K				Pull-H	PA5
NVDD2	L13	CSI_D0	I				PA4	69K				Pull-H	PA4
NVDD2	L12	CSI_MCLK	0				PA3	69K				Pull-H	PA3
NVDD2	L11	PWMO	0				PA2	69K				Pull-H	PA2
NVDD2	L10	TIN	I				PA1	69K			SPI2_RxD	Pull-H	PA1
NVDD2	K15	TMR2OUT	0				PD31	69K	SPI2_TxD			Pull-H	PD31
NVDD2	K16	LD15	0				PD30	69K				Pull-H	PD30
NVDD2	K14	LD14	0				PD29	69K				Pull-H	PD29
NVDD2	K13	LD13	0				PD28	69K				Pull-H	PD28

Parameter	Minimum	RMS	Maximum	Unit
EXTAL16M input jitter (peak to peak) ¹	-	TBD	TBD	-
EXTAL16M startup time ¹	TBD	-	-	-

¹ The 16 MHz oscillator is not recommended for use in new designs.

4 Functional Description and Application Information

This section provides the electrical information including and timing diagrams for the individual modules of the i.MX1.

4.1 Embedded Trace Macrocell

All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor's TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:

- 32-bit data field
- 7-bit address field
- A read/write bit

The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2.

Figure 2. Trace Port Timing Diagram

Ref No.	Parameter		1.8 ± 0.1 V			Unit		
ner no.		Min	Typical	Max	Min	Typical	Max	onne
4a	Clock ¹ rise to Output Enable Valid	2.32	2.62	6.85	2.3	2.6	6.8	ns
4b	Clock ¹ rise to Output Enable Invalid	2.11	2.52	6.55	2.1	2.5	6.5	ns
4c	Clock ¹ fall to Output Enable Valid	2.38	2.69	7.04	2.3	2.6	6.8	ns
4d	Clock ¹ fall to Output Enable Invalid	2.17	2.59	6.73	2.1	2.5	6.5	ns
5a	Clock ¹ rise to Enable Bytes Valid	1.91	2.52	5.54	1.9	2.5	5.5	ns
5b	Clock ¹ rise to Enable Bytes Invalid	1.81	2.42	5.24	1.8	2.4	5.2	ns
5c	Clock ¹ fall to Enable Bytes Valid	1.97	2.59	5.69	1.9	2.5	5.5	ns
5d	Clock ¹ fall to Enable Bytes Invalid	1.76	2.48	5.38	1.7	2.4	5.2	ns
6a	Clock ¹ fall to Load Burst Address Valid	2.07	2.79	6.73	2.0	2.7	6.5	ns
6b	Clock ¹ fall to Load Burst Address Invalid	1.97	2.79	6.83	1.9	2.7	6.6	ns
6c	Clock ¹ rise to Load Burst Address Invalid	1.91	2.62	6.45	1.9	2.6	6.4	ns
7a	Clock ¹ rise to Burst Clock rise	1.61	2.62	5.64	1.6	2.6	5.6	ns
7b	Clock ¹ rise to Burst Clock fall	1.61	2.62	5.84	1.6	2.6	5.8	ns
7c	Clock ¹ fall to Burst Clock rise	1.55	2.48	5.59	1.5	2.4	5.4	ns
7d	Clock ¹ fall to Burst Clock fall	1.55	2.59	5.80	1.5	2.5	5.6	ns
8a	Read Data setup time	5.54	-	-	5.5	_	-	ns
8b	Read Data hold time	0	_	-	0	_	_	ns
9a	Clock ¹ rise to Write Data Valid	1.81	2.72	6.85	1.8	2.7	6.8	ns
9b	Clock ¹ fall to Write Data Invalid	1.45	2.48	5.69	1.4	2.4	5.5	ns
9c	Clock ¹ rise to Write Data Invalid	1.63	_	-	1.62	_	-	ns
10a	DTACK setup time	2.52	_	_	2.5	_	_	ns

Table 12. EIM Bus Timing Parameter Table (Continued)

¹ Clock refers to the system clock signal, HCLK, generated from the System DPLL

4.4.1 **DTACK** Signal Description

The $\overline{\text{DTACK}}$ signal is the external input data acknowledge signal. When using the external $\overline{\text{DTACK}}$ signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external $\overline{\text{DTACK}}$ signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement.

4.4.2 DTACK Signal Timing

Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units of measure for this figure are found in the associated tables.

4.4.2.1 WAIT Read Cycle without DMA

Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Number	Charaotoriotia	3.0 ± 0	Unit	
	Characteristic	Minimum	Maximum	
1	OE and EB assertion time	See note 2	-	ns
2	CS5 pulse width	3Т	-	ns
3	OE negated to address inactive	56.81	-	ns
4	Wait asserted after \overline{OE} asserted	-	1020T	ns
5	Wait asserted to \overline{OE} negated	2T+2.2	3T+7.17	ns
6	Data hold timing after \overline{OE} negated	T-1.86	-	ns
7	Data ready after wait asserted	0	Т	ns
8	OE negated to CS negated	1.5T+0.24	1.5T+0.85	ns
9	OE negated after EB negated	0.5	1.5	ns
10	Become low after CS5 asserted	0	1019T	ns
11	Wait pulse width	1T	1020T	ns

Note:

1. <u>T is the sys</u>tem clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and \overline{CS} asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)

Number	Characteristic	3.0 ± 0.3 V				
	Characteristic	Minimum	Maximum	Onit		
7	Wait asserted to RW negated	1T+2.15	2T+7.34	ns		
8	Data hold timing after RW negated	2.5T-1.18	-	ns		
9	Data ready after $\overline{CS5}$ is asserted	-	Т	ns		
10	\overline{EB} negated after $\overline{CS5}$ is negated	1.5T+0.74	1.5T+2.35	ns		
11	Wait becomes low after $\overline{CS5}$ asserted	0	1019T	ns		
12	Wait pulse width	1T	1020T	ns		

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.

3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.2.4 WAIT Write Cycle DMA Enabled

Figure 9. WAIT Write Cycle DMA Enabled

Number	Characteristic	3.0 ± (L lucit	
Number	Characteristic	Minimum	Maximum	
1	CS5 assertion time	See note 2	-	ns
2	EB assertion time	See note 2	-	ns
3	CS5 pulse width	3Т	-	ns
4	$\overline{\text{RW}}$ negated before $\overline{\text{CS5}}$ is negated	2.5T-0.29	2.5T+0.68	ns
5	Address inactived after CS negated	_	0.93	ns
6	Wait asserted after $\overline{CS5}$ asserted	_	1020T	ns
7	Wait asserted to \overline{RW} negated	T+2.15	2T+7.34	ns
8	Data hold timing after RW negated	24.87	-	ns
9	Data ready after $\overline{CS5}$ is asserted	-	Т	ns
10	CS deactive to next CS active	Т	-	ns
11	EB negate after CS negate	1.5T+0.74	1.5T+2.35	
12	Wait becomes low after CS5 asserted	0	1019T	ns
13	Wait pulse width	1T	1020T	ns

Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.

3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.3 EIM External Bus Timing

The External Interface Module (EIM) is the interface to devices external to the i.MX1, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.

Table 26. LCDC SCLK Timing Parameter Table

Figure 46. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing

Table 27	. 4/8/16	Bit/Pixel	TFT	Color	Mode	Panel	Timing
----------	----------	------------------	-----	-------	------	-------	--------

Symbol	Description	Minimum	Corresponding Register Value	Unit
T1	End of OE to beginning of VSYN	T5+T6 +T7+T9	(VWAIT1·T2)+T5+T6+T7+T9	Ts
T2	HSYN period	XMAX+5	XMAX+T5+T6+T7+T9+T10	Ts
Т3	VSYN pulse width	T2	VWIDTH-(T2)	Ts
T4	End of VSYN to beginning of OE	2	VWAIT2·(T2)	Ts
T5	HSYN pulse width	1	HWIDTH+1	Ts
Т6	End of HSYN to beginning to T9	1	HWAIT2+1	Ts
T7	End of OE to beginning of HSYN	1	HWAIT1+1	Ts

Functional Description and Application Information

Figure 55. MSHC Signal Timing Diagram

Ref	Parameter	3.0 ±	Unit	
No.	i arameter		Maximum	Onit
1	MS_SCLKI frequency	_	25	MHz
2	MS_SCLKI high pulse width	20	_	ns
3	MS_SCLKI low pulse width	20	_	ns
4	MS_SCLKI rise time	-	3	ns
5	MS_SCLKI fall time	-	3	ns
6	MS_SCLKO frequency ¹	-	25	MHz
7	MS_SCLKO high pulse width ¹	20	_	ns
8	MS_SCLKO low pulse width ¹	15	_	ns
9	MS_SCLKO rise time ¹	-	5	ns
10	MS_SCLKO fall time ¹	_	5	ns
11	MS_BS delay time ¹	-	3	ns

Table 31.	MSHC	Signal	Timina	Parameter	Table
		eignai		i aramotor	IUNIO

Figure 59. SDRAM Refresh Timing Diagram

Table 35. SDRAM Refresh	Timing Parameter Table
-------------------------	------------------------

Dof No.	Doromotor	1.8 ± 0.1 V		3.0 ± 0.3 V		Unit
nei No.	Falameter	Minimum	Maximum	Minimum	Maximum	Onic
1	SDRAM clock high-level width	2.67	-	4	-	ns
2	SDRAM clock low-level width	6	-	4	-	ns
3	SDRAM clock cycle time	11.4	-	10	-	ns
4	Address setup time	3.42	-	3	-	ns
5	Address hold time	2.28	-	2	-	ns
6	Precharge cycle period	t _{RP} 1	-	t _{RP1}	-	ns
7	Auto precharge command period	t _{RC1}	-	t _{RC1}	-	ns

¹ t_{RP} and t_{RC} = SDRAM clock cycle time. These settings can be found in the *MC9328MX1 reference manual*.

Functional Description and Application Information

4.14 USB Device Port

Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up.

Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer.

Bof No.	Parameter	1.8 ±	0.1 V	3.0 ± 0.3 V		Unit
nei No.	Farameter	Minimum	Maximum	Minimum	Maximum	Omt
1	Hold time (repeated) START condition	182	-	160	-	ns
2	Data hold time	0	171	0	150	ns
3	Data setup time	11.4	-	10	-	ns
4	HIGH period of the SCL clock	80	_	120	-	ns
5	LOW period of the SCL clock	480	-	320	-	ns
6	Setup time for STOP condition	182.4	-	160	-	ns

Table 38. I²C Bus Timing Parameter Table

4.16 Synchronous Serial Interface

The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 65 through Figure 67.

Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.

Figure 64. SSI Transmitter Internal Clock Timing Diagram

Def No	Barometor	1.8 ±	1.8 ± 0.1 V		3.0 ± 0.3 V	
Ref NO.	Parameter	Minimum	Maximum	Minimum	Maximum	Unit
18	STCK high to STFS (bl) high ³	-	92.8	0	81.4	ns
19	SRCK high to SRFS (bl) high ³	-	92.8	0	81.4	ns
20	STCK high to STFS (bl) low ³	-	92.8	0	81.4	ns
21	SRCK high to SRFS (bl) low ³	-	92.8	0	81.4	ns
22	STCK high to STFS (wI) high ³	-	92.8	0	81.4	ns
23	SRCK high to SRFS (wl) high ³	-	92.8	0	81.4	ns
24	STCK high to STFS (wI) low ³	-	92.8	0	81.4	ns
25	SRCK high to SRFS (wl) low ³	-	92.8	0	81.4	ns
26	STCK high to STXD valid from high impedance	18.01	28.16	15.8	24.7	ns
27a	STCK high to STXD high	8.98	18.13	7.0	15.9	ns
27b	STCK high to STXD low	9.12	18.24	8.0	16.0	ns
28	STCK high to STXD high impedance	18.47	28.5	16.2	25.0	ns
29	SRXD setup time before SRCK low	1.14	-	1.0	-	ns
30	SRXD hole time after SRCK low	0	_	0	_	ns
	Synchronous Internal Clock Opera	ation (Port C	Primary Fund	ction ²)		
31	SRXD setup before STCK falling	15.4	_	13.5	_	ns
32	SRXD hold after STCK falling	0	_	0	_	ns
	Synchronous External Clock Oper	ation (Port C	Primary Fun	ction ²)	1	
33	SRXD setup before STCK falling	1.14	_	1.0	_	ns
34	SRXD hold after STCK falling	0	-	0	-	ns

Table 39. SSI (Port C Primary Function) Timing Parameter Table (Continued)

¹ All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

² There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.

³ bl = bit length; wl = word length.

Figure 69. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge

Ref No.	Parameter	Min	Мах	Unit
1	csi_vsync to csi_hsync	180	_	ns
2	csi_hsync to csi_pixclk	1	_	ns
3	csi_d setup time	1	_	ns
4	csi_d hold time	1	_	ns
5	csi_pixclk high time	10.42	_	ns
6	csi_pixclk low time	10.42	_	ns
7	csi_pixclk frequency	0	48	MHz

Table 42. Gated Clock Mode Timing Parameters

The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to:

Rising-edge latch data

max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time)

In most of case, duty cycle is 50 / 50, therefore

max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time)

For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.

positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns

Ref No.	Parameter	Min	Мах	Unit
3	csi_d hold time	1	-	ns
4	csi_pixclk high time	10.42	-	ns
5	csi_pixclk low time	10.42	-	ns
6	csi_pixclk frequency	0	48	MHz

Table 43. Non-Gated Clock Mode Parameters (Continued)

The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to:

max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time)

In most of case, duty cycle is 50 / 50, therefore:

max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time)

For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.

positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns

Falling-edge latch data

max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time)

Product Documentation

6 Product Documentation

6.1 Revision History

Table 45 provides revision history for this release. This history includes technical content revisions only and not stylistic or grammatical changes.

Location	Revision
Table 1 on page 3 Signal Names and Descriptions	 Added the DMA_REQ signal to table. Corrected signal name from USBD_OE to USBD_ROE Corrected signal names From: C10 BTRFGN, To: BTRFGND From: G6 SIM_RST, To: SIM_RX From: G7 UART2_TXD, To: SIM_CLK
Table 3 on page 11 Signal Multiplex Table i.MX1	 Added Signal Multiplex table from Reference Manual with the following changes: Changed I/O Supply Voltage, PB31–14, from NVDD3 to NVDD4 Corrected footnotes 1–5. Changed AVDD2 references to QVDD, except for C14. Added footnote regarding ESD. Changed occurrence of SD_SCLK to SD_CLK. Removed 69K pull-up resistor from EB1, EB2, and added to D9
Table 10 on page 26	Changed first and second parameters descriptions: From: Reference Clock freq range, To: DPLL input clock freq range From: Double clock freq range, To: DPLL output freq range
Table 3 on page 11	Added Signal Multiplex table.

Table 45. i.MX1 Data Sheet Revision History Rev. 7

6.2 Reference Documents

The following documents are required for a complete description of the MC9328MX1 and are necessary to design properly with the device. Especially for those not familiar with the ARM920T processor or previous i.MX processor products, the following documents are helpful when used in conjunction with this document.

ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)

ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)

ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)

EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)

MC9328MX1 Product Brief (order number MC9328MX1P)

MC9328MX1 Reference Manual (order number MC9328MX1RM)

The Freescale manuals are available on the Freescale Semiconductors Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.