E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	150MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD, Touch Panel
Ethernet	-
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	-30°C ~ 70°C (TA)
Security Features	-
Package / Case	256-MAPBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mx1dvm15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. i.MX1 Signal Descriptions (Continued)

Signal Name	Function/Notes						
SD_CLK	MMC Output Clock						
SD_DAT [3:0]	Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 50K–69K external pull up resistor must be added.						
	Memory Stick Interface						
MS_BS	Memory Stick Bus State (Output)—Serial bus control signal						
MS_SDIO	Memory Stick Serial Data (Input/Output)						
MS_SCLKO	Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider						
MS_SCLKI	Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test purposes, not for use in application mode.						
MS_PI0	General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect						
MS_PI1	General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect						
	UARTs – IrDA/Auto-Bauding						
UART1_RXD	Receive Data						
UART1_TXD	Transmit Data						
UART1_RTS	Request to Send						
UART1_CTS	Clear to Send						
UART2_RXD	Receive Data						
UART2_TXD	Transmit Data						
UART2_RTS	Request to Send						
UART2_CTS	Clear to Send						
UART2_DSR	Data Set Ready						
UART2_RI	Ring Indicator						
UART2_DCD	Data Carrier Detect						
UART2_DTR	Data Terminal Ready						
UART3_RXD	Receive Data						
UART3_TXD	Transmit Data						
UART3_RTS	Request to Send						
UART3_CTS	Clear to Send						
UART3_DSR	Data Set Ready						
UART3_RI	Ring Indicator						
UART3_DCD	Data Carrier Detect						
UART3_DTR	Data Terminal Ready						
	Serial Audio Port – SSI (configurable to I ² S protocol)						
SSI_TXDAT	Transmit Data						
SSI_RXDAT	Receive Data						

Signals and Connections

Table 2. i.MX1 Signal Descriptions (Continued)

Signal Name	Function/Notes				
SSI_TXCLK	Transmit Serial Clock				
SSI_RXCLK	Receive Serial Clock				
SSI_TXFS	Transmit Frame Sync				
SSI_RXFS	Receive Frame Sync				
SSI2_TXDAT	TxD				
SSI2_RXDAT	RxD				
SSI2_TXCLK	Transmit Serial Clock				
SSI2_RXCLK	Receive Serial Clock				
SSI2_TXFS	Transmit Frame Sync				
SSI2_RXFS	Receive Frame Sync				
	l ² C				
I2C_SCL	I ² C Clock				
I2C_SDA	I ² C Data				
	PWM				
PWMO	PWM Output				
	ASP				
UIN	Positive U analog input (for low voltage, temperature measurement)				
UIP	Negative U analog input (for low voltage, temperature measurement)				
PX1	Positive pen-X analog input				
PY1	Positive pen-Y analog input				
PX2	Negative pen-X analog input				
PY2	Negative pen-Y analog input				
R1A	Positive resistance input (a)				
R1B	Positive resistance input (b)				
R2A	Negative resistance input (a)				
R2B	Negative resistance input (b)				
RVP	Positive reference for pen ADC				
RVM	Negative reference for pen ADC				
AVDD	Analog power supply				
AGND	Analog ground				
	BlueTooth				
BT1	I/O clock signal				
BT2	Output				
BT3	Input				

Signals and Connections

Table 2. i.MX1 Signal Descriptions (Continued)

Signal Name	Function/Notes						
BT4	Input						
BT5	Output						
BT6	Output						
BT7	Output						
BT8	Output						
BT9	Output						
BT10	Output						
BT11	Output						
BT12	Output						
BT13	Output						
BTRF VDD	Power supply from external BT RFIC						
BTRF GND	Ground from external BT RFIC						
	Test Function						
TRISTATE	Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input with a 1 k ohm resistor to ground. (TRI-STATE [®] is a registered trademark of National Semiconductor.)						
	Digital Supply Pins						
NVDD	Digital Supply for the I/O pins						
NVSS	Digital Ground for the I/O pins						
	Supply Pins – Analog Modules						
AVDD	Supply for analog blocks						
	Internal Power Supply						
QVDD	Power supply pins for silicon internal circuitry						
QVSS	Ground pins for silicon internal circuitry						

2.1 I/O Pads Power Supply and Signal Multiplexing Scheme

This section describes detailed information about both the power supply for each I/O pin and its function multiplexing scheme. The user can reference information provided in Table 6 on page 23 to configure the power supply scheme for each device in the system (memory and external peripherals). The function multiplexing information also shown in Table 6 allows the user to select the function of each pin by configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.

Table 3. MC9328MX	1 Signal Multiplexing	Scheme
-------------------	-----------------------	--------

I/O Supply	BGA	Pri	Primary All				GPIO				RESE	Dofault	
Voltage	Pin	Pin Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout		Aout	State (At/After)	Delault							
NVDD1	K8	NVDD1	Static										
NVDD1	B1	A24	0		ETMTRACESYN C	0	PA0	69K	SPI2_CLK			L	A24
NVDD1	C2	D31	I/O	69K								Pull-H	
NVDD1	C1	A23	0		ETMTRACECLK	0	PA31	69K				L	A23
NVDD1	D2	D30	I/O	69K								Pull-H	
NVDD1	D1	A22	0		ETMPIPESTAT2	0	PA30	69K				L	A22
NVDD1	D3	D29	I/O	69K								Pull-H	
NVDD1	E2	A21	0		ETMPIPESTAT1	0	PA29	69K				L	A21
NVDD1	E3	D28	I/O	69K								Pull-H	
NVDD1	E1	A20	0		ETMPIPESTAT0	0	PA28	69K				L	A20
NVDD1	F2	D27	I/O	69K								Pull-H	
NVDD1	F4	A19	0		ETMTRACEPKT3	0	PA27	69K				L	A19
NVDD1	E4	D26	I/O	69K								Pull-H	
	A1	VSS	Static										
NVDD1	H5	NVDD1	Static										
NVDD1	F1	A18	0		ETMTRACEPKT2	0	PA26	69K				L	A18
NVDD1	F3	D25	I/O	69K								Pull-H	
NVDD1	G2	A17	0		ETMTRACEPKT1	0	PA25	69K				L	A17
NVDD1	G3	D24	I/O	69K								Pull-H	
NVDD1	F5	A16	0		ETMTRACEPKT0	0	PA24	69K				L	A16
NVDD1	G4	D23	I/O	69K								Pull-H	
NVDD1	G1	A15	0									L	
NVDD1	H2	D22	I/O	69K								Pull-H	
NVDD1	H3	A14	0									L	

±

I/O Supply	BGA	Prin	Primary Alternate GPIO					GPIO				RESE	Dofoult
Voltage	Pin	Signal	Dir	Pull-up	Signal	Dir	Mux	Pull-up	Ain	Bin	Aout	State (At/After)	Default
NVDD2	R14	TDO	0									Hiz ⁵	
NVDD2	N15	TMS	I	69K								Pull-H	
NVDD2	L9	ТСК	I	69K								Pull-H	
NVDD2	N16	TDI	I	69K								Pull-H	
NVDD2	P14	I2C_SCL	0				PA16	69K				Pull-H	PA16
NVDD2	P15	I2C_SDA	I/O				PA15	69K				Pull-H	PA15
NVDD2	N13	CSI_PIXCLK	I				PA14	69K				Pull-H	PA14
NVDD2	M13	CSI_HSYNC	I				PA13	69K				Pull-H	PA13
NVDD2	M14	CSI_VSYNC	I				PA12	69K				Pull-H	PA12
NVDD2	N14	CSI_D7	I				PA11	69K				Pull-H	PA11
NVDD2	M15	CSI_D6	I				PA10	69K				Pull-H	PA10
NVDD2	M16	CSI_D5	I				PA9	69K				Pull-H	PA9
NVDD2	J10	VSS	Static										
NVDD2	M12	CSI_D4	I				PA8	69K				Pull-H	PA8
NVDD2	L16	CSI_D3	I				PA7	69K				Pull-H	PA7
NVDD2	L15	CSI_D2	I				PA6	69K				Pull-H	PA6
NVDD2	L14	CSI_D1	I				PA5	69K				Pull-H	PA5
NVDD2	L13	CSI_D0	I				PA4	69K				Pull-H	PA4
NVDD2	L12	CSI_MCLK	0				PA3	69K				Pull-H	PA3
NVDD2	L11	PWMO	0				PA2	69K				Pull-H	PA2
NVDD2	L10	TIN	I				PA1	69K			SPI2_RxD	Pull-H	PA1
NVDD2	K15	TMR2OUT	0				PD31	69K	SPI2_TxD			Pull-H	PD31
NVDD2	K16	LD15	0				PD30	69K				Pull-H	PD30
NVDD2	K14	LD14	0				PD29	69K				Pull-H	PD29
NVDD2	K13	LD13	0				PD28	69K				Pull-H	PD28

Electrical Characteristics

3 Electrical Characteristics

This section contains the electrical specifications and timing diagrams for the i.MX1 processor.

3.1 Maximum Ratings

Table 4 provides information on maximum ratings which are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on page 23 or the DC Characteristics table.

Symbol	Rating	Minimum	Maximum	Unit
NV _{DD}	DC I/O Supply Voltage	-0.3	3.3	V
QV _{DD}	DC Internal (core = 150 MHz) Supply Voltage	-0.3	1.9	V
QV _{DD}	DC Internal (core = 200 MHz) Supply Voltage	-0.3	2.0	V
AV _{DD}	DC Analog Supply Voltage	-0.3	3.3	V
BTRFV _{DD}	DC Bluetooth Supply Voltage	-0.3	3.3	V
VESD_HBM	ESD immunity with HBM (human body model)	_	2000	V
VESD_MM	ESD immunity with MM (machine model)	_	100	V
ILatchup	Latch-up immunity	-	200	mA
Test	Storage temperature	-55	150	°C
Pmax	Power Consumption	800 ¹	1300 ²	mW

Table 4. Maxim	um Ratings
----------------	------------

¹ A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM[®] core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.

² A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at MHz, and where the whole image is running out of SDRAM. QVDD at V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.

3.2 Recommended Operating Range

Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MX1 processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.

Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins.

BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data transmit/receive accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used

Number or Symbol	Parameter	Min	Typical	Мах	Unit
Sidd ₄	Standby current (Core = 150 MHz, QVDD = 2.0V, temp = 55°C)	_	60	_	μA
V _{IH}	Input high voltage		_	Vdd+0.2	V
V _{IL}	Input low voltage		-	0.4	V
V _{OH}	Output high voltage (I _{OH} = 2.0 mA)	0.7V _{DD}	-	Vdd	V
V _{OL}	Output low voltage (I _{OL} = -2.5 mA)	-	_	0.4	V
IIL	Input low leakage current (V _{IN} = GND, no pull-up or pull-down)	-	-	±1	μA
IIH	Input high leakage current (V _{IN} = V _{DD} , no pull-up or pull-down)	-	_	±1	μΑ
Іон	Output high current ($V_{OH} = 0.8V_{DD}, V_{DD} = 1.8V$)	4.0	_	-	mA
lol	Output low current ($V_{OL} = 0.4V$, $V_{DD} = 1.8V$)	-4.0	_	-	mA
I _{OZ}	Output leakage current (V _{out} = V _{DD} , output is high impedance)	-	_	±5	μΑ
Ci	Input capacitance	-	-	5	pF
Co	Output capacitance	-	_	5	pF

Table 6. Maximum and Minimum DC Characteristics (Continued)

3.5 AC Electrical Characteristics

The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of other signals. All timing specifications are specified at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an operating supply voltage from $V_{DD\,min}$ to $V_{DD\,max}$ under an operating temperature from T_L to T_H . All timing is measured at 30 pF loading.

Table 7. Tristate Signal Timing

Pin	Parameter	Minimum	Maximum	Unit
TRISTATE	Time from TRISTATE activate until I/O becomes Hi-Z	-	20.8	ns

Table 8.	32k/16M	Oscillator	Signal	Timing
----------	---------	------------	--------	--------

Parameter	Minimum	RMS	Maximum	Unit
EXTAL32k input jitter (peak to peak)	-	5	20	ns
EXTAL32k startup time	800	_	-	ms

Functional Description and Application Information

Figure 4. Timing Relationship with RESET_IN

Ref No.	Deveneter	1.8 ±	1.8 ± 0.1 V	1.8 ± 0.1 V		0.3 V	Linit
	Farameter	Min	Мах	Min	Max	Omit	
1	Width of input POWER_ON_RESET	note ¹	-	note ¹	_	-	
2	Width of internal POWER_ON_RESET (9600 *CLK32 at 32 kHz)	300	300	300	300	ms	
3	7K to 32K-cycle stretcher for SDRAM reset	7	7	7	7	Cycles of CLK32	
4	14K to 32K-cycle stretcher for internal system reset HRESERT and output reset at pin RESET_OUT	14	14	14	14	Cycles of CLK32	
5	Width of external hard-reset RESET_IN	4	-	4	-	Cycles of CLK32	
6	4K to 32K-cycle qualifier	4	4	4	4	Cycles of CLK32	

Table 11. Reset Module Timing Parameter Table

¹ POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals. Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.

If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process.

4.4 External Interface Module

The External Interface Module (EIM) handles the interface to devices external to the i.MX1 processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.

Number	Characteristic	3.0 ± (11	
Number	Characteristic	Minimum	Maximum	
1	CS5 assertion time	See note 2	-	ns
2	EB assertion time See note 2 -		-	ns
3	CS5 pulse width	3Т	-	ns
4	$\overline{\text{RW}}$ negated before $\overline{\text{CS5}}$ is negated	2.5T-0.29	2.5T+0.68	ns
5	Address inactived after CS negated	_	0.93	ns
6	Wait asserted after $\overline{CS5}$ asserted	_	1020T	ns
7	Wait asserted to \overline{RW} negated	T+2.15	2T+7.34	ns
8	Data hold timing after RW negated	24.87	-	ns
9	Data ready after $\overline{CS5}$ is asserted	-	Т	ns
10	CS deactive to next CS active	Т	-	ns
11	EB negate after CS negate	1.5T+0.74	1.5T+2.35	
12	Wait becomes low after CS5 asserted	0	1019T	ns
13	Wait pulse width	1T	1020T	ns

Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.

3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.3 EIM External Bus Timing

The External Interface Module (EIM) is the interface to devices external to the i.MX1, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.

Functional Description and Application Information

Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF

Functional Description and Application Information

Ref No.	Baramator	3.0 ± 0	Unit	
	Farameter	Minimum	Maximum	Unit
1	SPI_RDY to SS output low	2T ¹	-	ns
2	SS output low to first SCLK edge	3 • Tsclk ²	_	ns
3	Last SCLK edge to SS output high	2 • Tsclk	-	ns
4	SS output high to SPI_RDY low	0	-	ns
5	SS output pulse width	Tsclk + WAIT ³	_	ns
6	SS input low to first SCLK edge	Т	_	ns
7	SS input pulse width	т	_	ns

Table 24. Timing Parameter Table for Figure 39 through Figure 43

¹ T = CSPI system clock period (PERCLK2).

² Tsclk = Period of SCLK.

³ WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.

Figure 44. SPI SCLK Timing Diagram

Table 25. Timing Parameter Table for SPI SCLK

Ref No.	Parameter	3.0 ± 0	Unit	
	r urumeter	Minimum	Maximum	- Cilit
8	SCLK frequency	0	10	MHz
9	SCLK pulse width	100	-	ns

4.9 LCD Controller

This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD controller with various display configurations, refer to the LCD controller chapter of the *MC9328MX1 Reference Manual*.

Figure 45. SCLK to LD Timing Diagram

Ref	Parameter	1.8 ± 0.1 V		3.0 ±	0.3 V	Unit
No.	Falancici	Minimum	Maximum	Minimum	Maximum	Onit
1	CLK frequency at Data transfer Mode (PP) ¹ —10/30 cards	0	25/5	0	25/5	MHz
2	CLK frequency at Identification Mode ²	0	400	0	400	kHz
3a	Clock high time ¹ —10/30 cards	6/33	-	10/50	_	ns
3b	Clock low time ¹ —10/30 cards	15/75	-	10/50	_	ns
4a	Clock fall time ¹ —10/30 cards	-	10/50 (5.00) ³	_	10/50	ns
4b	Clock rise time ¹ —10/30 cards	-	14/67 (6.67) ³	_	10/50	ns
5a	Input hold time ³ —10/30 cards	10.3/10.3	-	9/9	_	ns
5b	Input setup time ³ —10/30 cards	10.3/10.3	-	9/9	_	ns
6a	Output hold time ³ —10/30 cards	5.7/5.7	_	5/5	_	ns
6b	Output setup time ³ —10/30 cards	5.7/5.7	_	5/5	_	ns
7	Output delay time ³	0	16	0	14	ns

Table 28. SDHC Bus Timing Parameter Table

 $^1~$ CL \leq 100 pF / 250 pF (10/30 cards)

² $C_{L}^{-} \le 250 \text{ pF}$ (21 cards)

³ C_L \leq 25 pF (1 card)

4.10.1 Command Response Timing on MMC/SD Bus

The card identification and card operation conditions timing are processed in open-drain mode. The card response to the host command starts after exactly N_{ID} clock cycles. For the card address assignment, SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and card response is NCR clock cycles as illustrated in Figure 48. The symbols for Figure 48 through Figure 52 are defined in Table 29.

	Card Active		Host Active
Symbol	Definition	Symbol	Definition
Z	High impedance state	S	Start bit (0)
D	Data bits	Т	Transmitter bit (Host = 1, Card = 0)
*	Repetition	Р	One-cycle pull-up (1)
CRC	Cyclic redundancy check bits (7 bits)	E	End bit (1)

Functional Description and Application Information

The stop transmission command may occur when the card is in different states. Figure 52 shows the different scenarios on the bus.

Functional Description and Application Information

Figure 55. MSHC Signal Timing Diagram

Ref	Parameter	3.0 ± 0.3 V		Unit
No.	Falantelei	Minimum	Maximum	onit
1	MS_SCLKI frequency	_	25	MHz
2	MS_SCLKI high pulse width	20	_	ns
3	MS_SCLKI low pulse width	20	_	ns
4	MS_SCLKI rise time	-	3	ns
5	MS_SCLKI fall time	-	3	ns
6	MS_SCLKO frequency ¹	-	25	MHz
7	MS_SCLKO high pulse width ¹	20	_	ns
8	MS_SCLKO low pulse width ¹	15	_	ns
9	MS_SCLKO rise time ¹	-	5	ns
10	MS_SCLKO fall time ¹	_	5	ns
11	MS_BS delay time ¹	_	3	ns

Table 31.	MSHC	Signal	Timina	Parameter	Table
		eignai		i aramotor	IUNIO

Ref No.	Parameter		3.0 ± 0.3 V		
			Maximum	•	
12	MS_SDIO output delay time ^{1,2}	_	3	ns	
13	MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0) ³	18	_	ns	
14	MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0) ³	0	_	ns	
15	MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1) ⁴	23	_	ns	
16	MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1) ⁴	0	_	ns	

¹ Loading capacitor condition is less than or equal to 30pF.

² An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin, because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin direction changes.

³ If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.

⁴ If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.

4.12 Pulse-Width Modulator

The PWM can be programmed to select one of two clock signals as its source frequency. The selected clock signal is passed through a divider and a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in Figure 56 and the parameters are listed in Table 32.

Figure 56. PWM Output Timing Diagram

Ref No.	Parameter	1.8 ± 0.1 V		3.0 ± 0.3 V		Unit
		Minimum	Maximum	Minimum	Maximum	Unit
1	System CLK frequency ¹	0	87	0	100	MHz
2a	Clock high time ¹	3.3	_	5/10	-	ns
2b	Clock low time ¹	7.5	_	5/10	-	ns
3a	Clock fall time ¹	_	5	-	5/10	ns

Table 32. PWM Output Timing Parameter Table

Functional Description and Application Information

4.14 USB Device Port

Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up.

Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer.

Bof No	Parameter	1.8 ± 0.1 V		$3.0 \pm 0.3 \text{ V}$		Unit
nei No.	Farameter	Minimum	Maximum	Minimum	Maximum	onit
1	Hold time (repeated) START condition	182	-	160	-	ns
2	Data hold time	0	171	0	150	ns
3	Data setup time	11.4	-	10	-	ns
4	HIGH period of the SCL clock	80	-	120	-	ns
5	LOW period of the SCL clock	480	-	320	-	ns
6	Setup time for STOP condition	182.4	-	160	-	ns

Table 38. I²C Bus Timing Parameter Table

4.16 Synchronous Serial Interface

The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 65 through Figure 67.

Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.

Figure 64. SSI Transmitter Internal Clock Timing Diagram

Functional Description and Application Information

Note: SRXD Input in Synchronous mode only

Figure 66. SSI Transmitter External Clock Timing Diagram

Figure 69. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge

Ref No.	Parameter	Min	Мах	Unit
1	csi_vsync to csi_hsync	180	_	ns
2	csi_hsync to csi_pixclk	1	_	ns
3	csi_d setup time	1	_	ns
4	csi_d hold time	1	_	ns
5	csi_pixclk high time	10.42	_	ns
6	csi_pixclk low time	10.42	_	ns
7	csi_pixclk frequency	0	48	MHz

Table 42. Gated Clock Mode Timing Parameters

The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to:

Rising-edge latch data

max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time)

In most of case, duty cycle is 50 / 50, therefore

max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time)

For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.

positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns