
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	150MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD, Touch Panel
Ethernet	-
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	256-MAPBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mx1vm15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

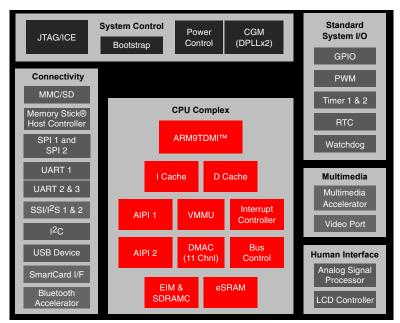


Figure 1. i.MX1 Functional Block Diagram

1.1 Features

To support a wide variety of applications, the processor offers a robust array of features, including the following:

- ARM920TTM Microprocessor Core
- AHB to IP Bus Interfaces (AIPIs)
- External Interface Module (EIM)
- SDRAM Controller (SDRAMC)
- DPLL Clock and Power Control Module
- Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3)
- Two Serial Peripheral Interfaces (SPI1 and SPI2)
- Two General-Purpose 32-bit Counters/Timers
- Watchdog Timer
- Real-Time Clock/Sampling Timer (RTC)
- LCD Controller (LCDC)
- Pulse-Width Modulation (PWM) Module
- Universal Serial Bus (USB) Device
- Multimedia Card and Secure Digital (MMC/SD) Host Controller Module
- Memory Stick® Host Controller (MSHC)
- Direct Memory Access Controller (DMAC)
- Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I²S) Module
- Inter-IC (I²C) Bus Module
- Video Port

Signals and Connections

Table 2. i.MX1 Signal Descriptions (Continued)

Signal Name	Function/Notes
SIM_TX	Transmit Data
SIM_PD	Presence Detect Schmitt trigger input
SIM_SVEN	SIM Vdd Enable
	SPI 1 and SPI 2
SPI1_MOSI	Master Out/Slave In
SPI1_MISO	Slave In/Master Out
SPI1_SS	Slave Select (Selectable polarity)
SPI1_SCLK	Serial Clock
SPI1_SPI_RDY	Serial Data Ready
SPI2_TXD	SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the <i>MC9328MX1 Reference Manual</i> for information about how to bring this signal to the assigned pin.
SPI2_RXD	SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the <i>MC9328MX1 Reference Manual</i> for information about how to bring this signal to the assigned pin.
SPI2_SS	SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the <i>MC9328MX1 Reference Manual</i> for information about how to bring this signal to the assigned pin.
SPI2_SCLK	SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the <i>MC9328MX1 Reference Manual</i> for information about how to bring this signal to the assigned pin.
	General Purpose Timers
TIN	Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers simultaneously.
TMR2OUT	Timer 2 Output
	USB Device
USBD_VMO	USB Minus Output
USBD_VPO	USB Plus Output
USBD_VM	USB Minus Input
USBD_VP	USB Plus Input
USBD_SUSPND	USB Suspend Output
USBD_RCV	USB Receive Data
USBD_ROE	USB OE
USBD_AFE	USB Analog Front End Enable
	Secure Digital Interface
SD_CMD	SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 4.7K–69K external pull up resistor must be added.

Table 2. i.MX1 Signal Descriptions (Continued)

Signal Name	Function/Notes
SD_CLK	MMC Output Clock
SD_DAT [3:0]	Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 50K–69K external pull up resistor must be added.
	Memory Stick Interface
MS_BS	Memory Stick Bus State (Output)—Serial bus control signal
MS_SDIO	Memory Stick Serial Data (Input/Output)
MS_SCLKO	Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider
MS_SCLKI	Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test purposes, not for use in application mode.
MS_PI0	General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect
MS_PI1	General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect
	UARTs – IrDA/Auto-Bauding
UART1_RXD	Receive Data
UART1_TXD	Transmit Data
UART1_RTS	Request to Send
UART1_CTS	Clear to Send
UART2_RXD	Receive Data
UART2_TXD	Transmit Data
UART2_RTS	Request to Send
UART2_CTS	Clear to Send
UART2_DSR	Data Set Ready
UART2_RI	Ring Indicator
UART2_DCD	Data Carrier Detect
UART2_DTR	Data Terminal Ready
UART3_RXD	Receive Data
UART3_TXD	Transmit Data
UART3_RTS	Request to Send
UART3_CTS	Clear to Send
UART3_DSR	Data Set Ready
UART3_RI	Ring Indicator
UART3_DCD	Data Carrier Detect
UART3_DTR	Data Terminal Ready
	Serial Audio Port – SSI (configurable to I ² S protocol)
SSI_TXDAT	Transmit Data
SSI_RXDAT	Receive Data

-	
N	

Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)

I/O Supply	BGA	Primary Alternate			GPIO				RESE				
Voltage	Pin	Signal	Dir	Pull-up	Signal	Dir	Mux	Pull-up	Ain	Bin	Aout	State (At/After)	Default
NVDD1	G5	D21	I/O	69K								Pull-H	
NVDD1	H1	A13	0									L	
NVDD1	H4	D20	I/O	69K								Pull-H	
	T1	VSS	Static										
QVDD1	H9	QVDD1	Static										
	H8	VSS	Static										
NVDD1	J5	NVDD1	Static										
NVDD1	J1	A12	0									L	
NVDD1	J4	D19	I/O	69K								Pull-H	
NVDD1	J2	A11	0									L	
NVDD1	J3	D18	I/O	69K								Pull-H	
NVDD1	K1	A10	0									L	
NVDD1	K4	D17	I/O	69K								Pull-H	
NVDD1	К3	A9	0									L	
NVDD1	K2	D16	I/O	69K								Pull-H	
NVDD1	L1	A8	0									L	
NVDD1	L4	D15	I/O	69K								Pull-H	
NVDD1	L2	A7	0									L	
NVDD1	L5	D14	I/O	69K								Pull-H	
	K6	VSS	Static										
NVDD1	K5	NVDD1	Static										
NVDD1	M4	A6	0									L	
NVDD1	L3	D13	I/O	69K								Pull-H	
NVDD1	M1	A5	0									L	
NVDD1	M2	D12	I/O	69K								Pull-H	

Signals and Connections

I/O Supply Voltage	BGA	Primary Alternate				GPIO					RESE		
	Pin	Signal	Dir	Pull-up	Signal	Dir	Mux	Pull-up	Ain	Bin	Aout	State (At/After)	Default
NVDD2	R14	TDO	0									Hiz ⁵	
NVDD2	N15	TMS	I	69K								Pull-H	
NVDD2	L9	TCK	I	69K								Pull-H	
NVDD2	N16	TDI	I	69K								Pull-H	
NVDD2	P14	I2C_SCL	0				PA16	69K				Pull-H	PA16
NVDD2	P15	I2C_SDA	I/O				PA15	69K				Pull-H	PA15
NVDD2	N13	CSI_PIXCLK	I				PA14	69K				Pull-H	PA14
NVDD2	M13	CSI_HSYNC	I				PA13	69K				Pull-H	PA13
NVDD2	M14	CSI_VSYNC	I				PA12	69K				Pull-H	PA12
NVDD2	N14	CSI_D7	I				PA11	69K				Pull-H	PA11
NVDD2	M15	CSI_D6	I				PA10	69K				Pull-H	PA10
NVDD2	M16	CSI_D5	I				PA9	69K				Pull-H	PA9
NVDD2	J10	VSS	Static										
NVDD2	M12	CSI_D4	I				PA8	69K				Pull-H	PA8
NVDD2	L16	CSI_D3	I				PA7	69K				Pull-H	PA7
NVDD2	L15	CSI_D2	I				PA6	69K				Pull-H	PA6
NVDD2	L14	CSI_D1	I				PA5	69K				Pull-H	PA5
NVDD2	L13	CSI_D0	I				PA4	69K				Pull-H	PA4
NVDD2	L12	CSI_MCLK	0				PA3	69K				Pull-H	PA3
NVDD2	L11	PWMO	0				PA2	69K				Pull-H	PA2
NVDD2	L10	TIN	I				PA1	69K			SPI2_RxD	Pull-H	PA1
NVDD2	K15	TMR2OUT	0				PD31	69K	SPI2_TxD			Pull-H	PD31
NVDD2	K16	LD15	0				PD30	69K				Pull-H	PD30
NVDD2	K14	LD14	0				PD29	69K				Pull-H	PD29
NVDD2	K13	LD13	0				PD28	69K				Pull-H	PD28

4.4.2.1 WAIT Read Cycle without DMA

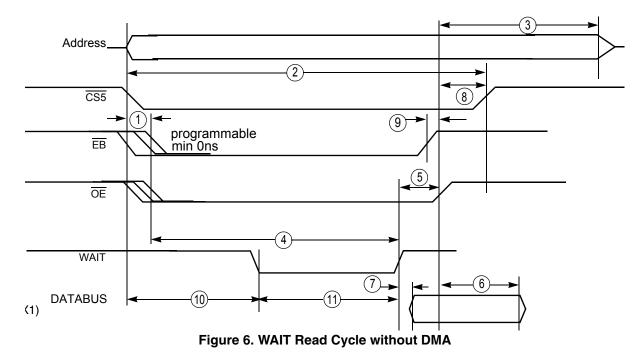
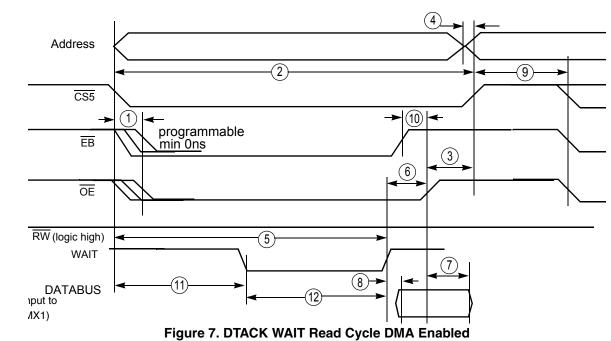


Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Number	Characteristic	3.0 ± 0	Unit	
Number	Characteristic	Minimum	Maximum	
1	$\overline{\text{OE}}$ and $\overline{\text{EB}}$ assertion time	See note 2	-	ns
2	CS5 pulse width	3Т	-	ns
3	OE negated to address inactive	56.81	-	ns
4	Wait asserted after OE asserted	_	1020T	ns
5	Wait asserted to OE negated	2T+2.2	3T+7.17	ns
6	Data hold timing after OE negated	T-1.86	-	ns
7	Data ready after wait asserted	0	Т	ns
8	OE negated to CS negated	1.5T+0.24	1.5T+0.85	ns
9	OE negated after EB negated	0.5	1.5	ns
10	Become low after CS5 asserted	0	1019T	ns
11	Wait pulse width	1T	1020T	ns

Note:


1. <u>T is the sys</u>tem clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and \overline{CS} asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.2.2 WAIT Read Cycle DMA Enabled

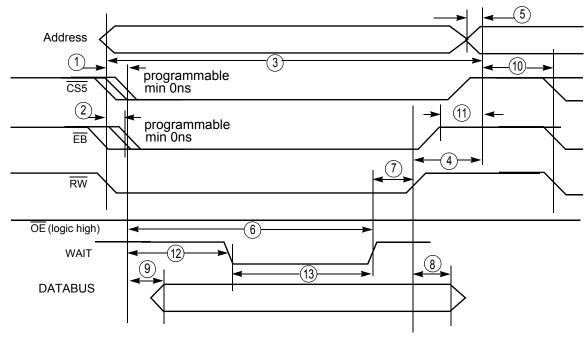
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Number	Characteristic	3.0 ± 0	Unit	
Number	Characteristic	Minimum	Maximum	
1	OE and EB assertion time	See note 2	-	ns
2	CS pulse width	3Т	-	ns
3	OE negated before CS5 is negated	1.5T+0.24	1.5T+0.85	ns
4	Address inactived before CS negated	-	0.93	ns
5	Wait asserted after $\overline{CS5}$ asserted	-	1020T	ns
6	Wait asserted to OE negated	2T+2.2	3T+7.17	ns
7	Data hold timing after OE negated	T-1.86	-	ns
8	Data ready after wait is asserted	-	Т	ns
9	CS deactive to next CS active	Т	-	ns
10	OE negate after EB negate	0.5	1.5	ns
11	Wait becomes low after CS5 asserted	0	1019T	ns

Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)

Number	Characteristic	3.0 ± 0.3 V				
	Characteristic	Minimum	Maximum	— Unit		
7	Wait asserted to RW negated	1T+2.15	2T+7.34	ns		
8	Data hold timing after RW negated	2.5T-1.18	-	ns		
9	Data ready after CS5 is asserted	_	Т	ns		
10	EB negated after CS5 is negated	1.5T+0.74	1.5T+2.35	ns		
11	Wait becomes low after CS5 asserted	0	1019T	ns		
12	Wait pulse width	1T	1020T	ns		

Note:


1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.

3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.2.4 WAIT Write Cycle DMA Enabled

Figure 9. WAIT Write Cycle DMA Enabled

Functional Description and Application Information

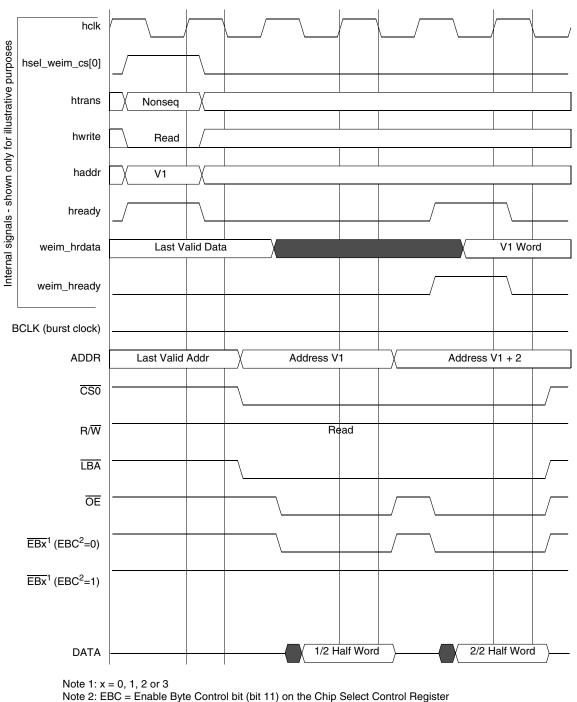
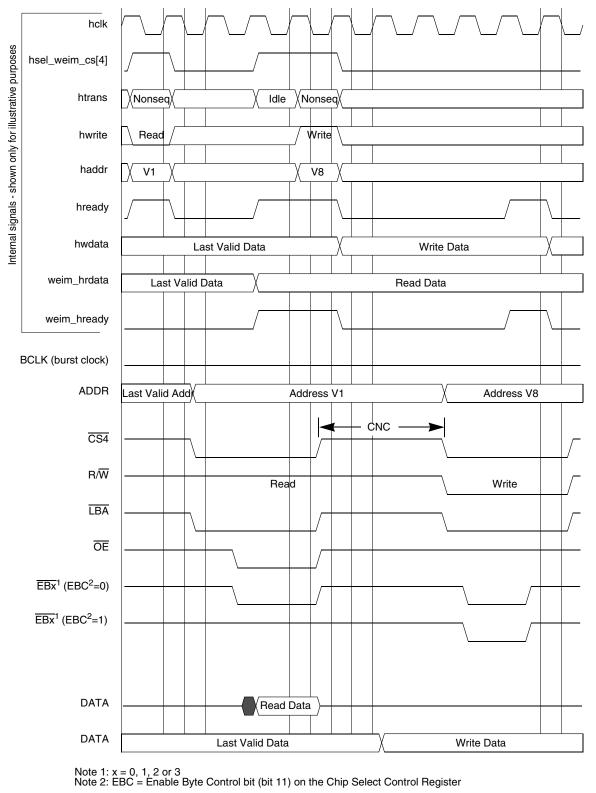
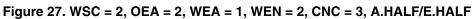
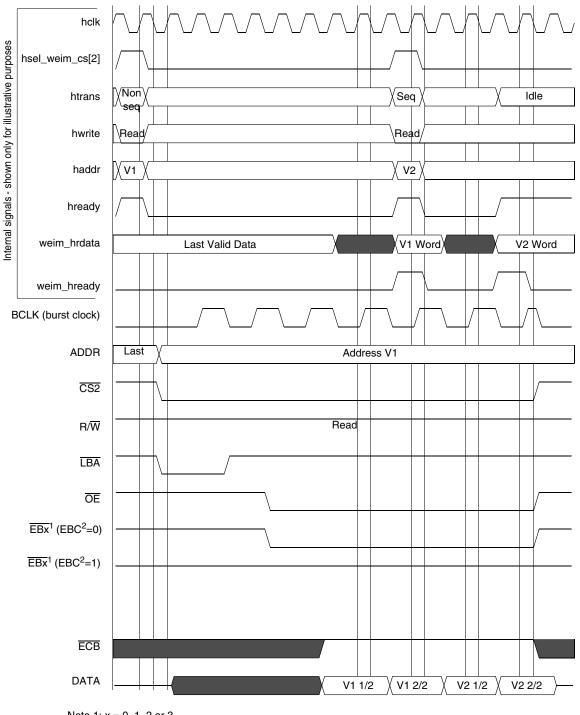
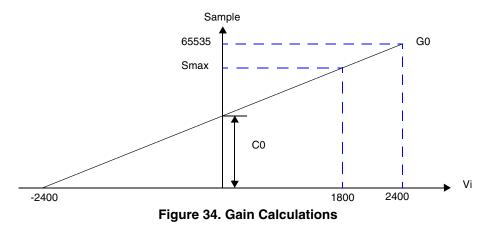




Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF



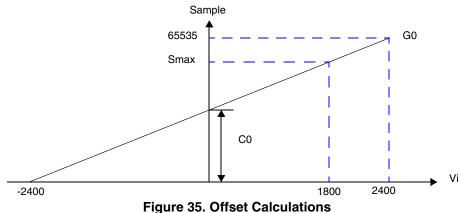
Functional Description and Application Information


Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register

4.6.2 Gain Calculations

The ideal mapping of input voltage to output digital sample is defined as follows:

In general, the mapping function is:


S = G * V + C

Where V is input, S is output, G is the slope, and C is the y-intercept.

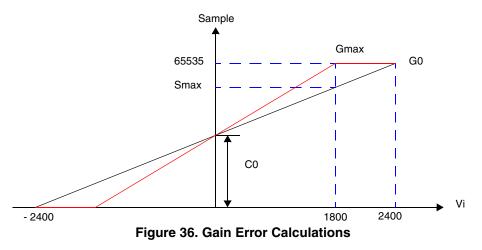
Nominal Gain $G_0 = 65535 / 4800 = 13.65 \text{mV}^{-1}$ Nominal Offset $C_0 = 65535 / 2 = 32767$

4.6.3 Offset Calculations

The ideal mapping of input voltage to output digital sample is defined as:

In general, the mapping function is:

S = G * V + C


Where V is input, S is output, G is the slope, and C is the y-intercept.

Nominal Gain $G_0 = 65535 / 4800 = 13.65 \text{mV}^{-1}$ Nominal Offset $C_0 = 65535 / 2 = 32767$

4.6.4 Gain Error Calculations

Gain error calculations are made using the information in this section.

Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the maximum gain allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit range, 65535.

Maximum Offset G_{max},

G_{max}

Gain Error G_{r.}

G_r

= (65535 - 32767) / 1800= 18.20 = (G_{max} - G₀) / G₀ * 100% = (18.20 - 13.65) / 13.65 * 100%

 $= (65535 - C_0) / 1800$

= 33%

4.7 Bluetooth Accelerator

CAUTION

On-chip accelerator hardware is not supported by software. An external Bluetooth chip interfaced to a UART is recommended.

The Bluetooth Accelerator (BTA) radio interface supports the Wireless RF Transceiver, MC13180 using an SPI interface. This section provides the data bus timing diagrams and SPI interface timing diagrams shown in Figure 37 and Figure 38, and the associated parameters shown in Table 22 and Table 23.

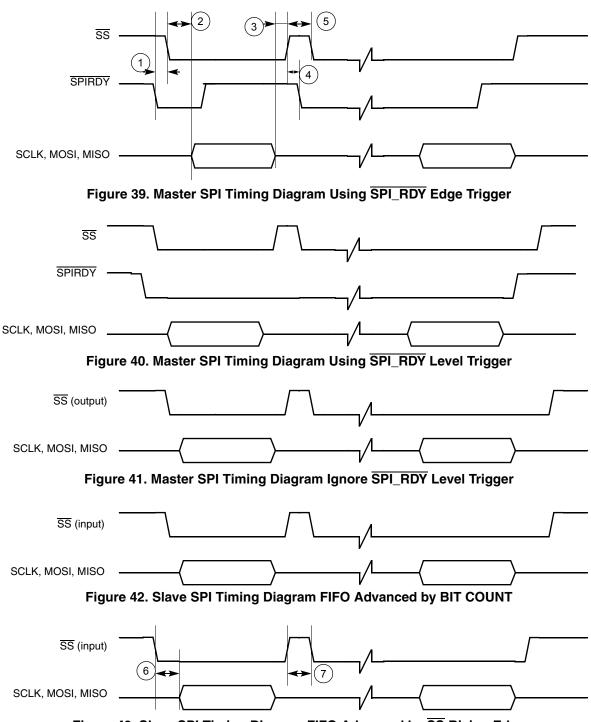


Figure 43. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge

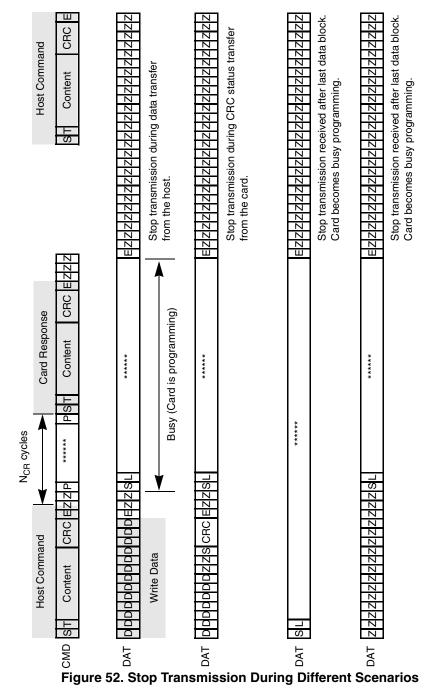
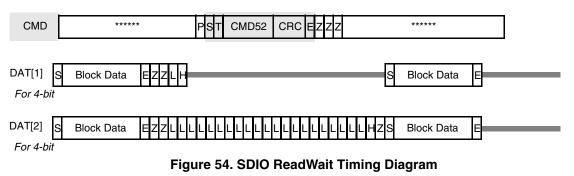



Table 30. Timing Values for Figure 48 through Figure 52

Parameter	Symbol	Minimum	Maximum	Unit				
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)								
Command response cycle	NCR	2 64		Clock cycles				
Identification response cycle	NID	5	5	Clock cycles				
Access time delay cycle	NAC	2	TAAC + NSAC	Clock cycles				

4.11 Memory Stick Host Controller

The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS, MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in either four-state or two-state access mode.

The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1, BS2, and BS3 states are regarded as one packet length and one communication transfer is always completed within one packet length (in four-state access mode).

The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0 and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.

Falling-edge latch data

max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time)

4.17.2 Non-Gated Clock Mode

Figure 70 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the CSI is programmed to received data on the positive edge. Figure 71 shows the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative edge. The parameters for the timing diagrams are listed in Table 43.

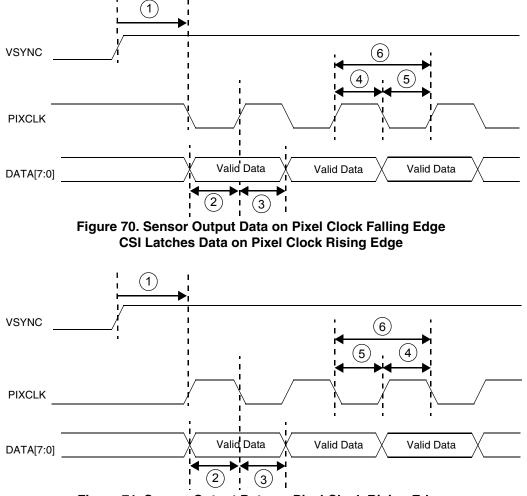


Figure 71. Sensor Output Data on Pixel Clock Rising Edge CSI Latches Data on Pixel Clock Falling Edge

Ref No.	Parameter	Min	Мах	Unit
1	csi_vsync to csi_pixclk	180	-	ns
2	csi_d setup time	1	_	ns

96

5 Pin-Out and Package Information

Table 44 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal Multiplexing Table 3 on page 11.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	NVSS	SD_DAT3	SD_CLK	NVSS	USBD_ AFE	NVDD4	NVSS	UART1_ RTS	UART1_ RXD	NVDD3	BT5	BT3	QVDD4	RVP	UIP	N.C.	Α
в	A24	SD_DAT1	SD_CMD	SIM_TX	USBD_ ROE	USBD_VP	SSI_RXCLK	SSI_TXCLK	SPI1_ SCLK	BT11	BT7	BT1	QVSS	RVM	UIN	N.C.	в
с	A23	D31	SD_DAT0	SIM_PD	USBD_ RCV	UART2_ CTS	UART2_ RXD	SSI_ RXFS	UART1_ TXD	BTRFGND	BT8	BTRFVDD	N.C.	AVDD2 ¹	VSS	R1B	с
D	A22	D30	D29	SIM_SVEN	USBD_ SUSPND	USBD_ VPO	USBD_ VMO	SSI_RXDAT	SPI1_ SPI_RDY	BT13	BT6	N.C.	N.C.	N.C.	R1A	R2B	D
Е	A20	A21	D28	D26	SD_DAT2	USBD_VM	UART2_ RTS	SSI_TXDAT	SPI1_SS	BT12	BT4	N.C.	N.C.	PY2	PX2	R2A	Е
F	A18	D27	D25	A19	A16	SIM_RST	UART2_ TXD	SSI_TXFS	SPI1_ MISO	BT10	BT2	REV	PY1	PX1	LSCLK	SPL_SPR	F
G	A15	A17	D24	D23	D21	SIM_RX	SIM_CLK	UART1_ CTS	SPI1_ MOSI	BT9	CLS	CONTRAST	ACD/OE	LP/ HSYNC	FLM/ VSYNC	LD1	G
н	A13	D22	A14	D20	NVDD1	NVDD1	NVSS	QVSS	QVDD1	PS	LD0	LD2	LD4	LD5	LD9	LD3	н
J	A12	A11	D18	D19	NVDD1	NVDD1	NVSS	NVDD1	NVSS	NVSS	LD6	LD7	LD8	LD11	QVDD3	QVSS	J
к	A10	D16	A9	D17	NVDD1	NVSS	NVSS	NVDD1	NVDD2	NVDD2	LD10	LD12	LD13	LD14	TMR2OUT	LD15	к
L	A8	A7	D13	D15	D14	NVDD1	NVSS	CAS	ТСК	TIN	PWMO	CSI_MCLK	CSI_D0	CSI_D1	CSI_D2	CSI_D3	L
м	A5	D12	D11	A6	SDCLK	NVSS	RW	MA10	RAS	RESET_IN	BIG_ ENDIAN	CSI_D4	CSI_ HSYNC	CSI_VSYNC	CSI_D6	CSI_D5	м
N	A4	EB1	D10	D7	A0	D4	PA17	D1	DQM1	RESET_SF ²	RESET_ OUT	BOOT2	CSI_ PIXCLK	CSI_D7	TMS	TDI	N
Ρ	A3	D9	EB0	CS3	D6	ECB	D2	D3	DQM3	SDCKE1	BOOT3	BOOT0	TRST	I2C_SCL	I2C_SDA	XTAL32K	Р
R	EB2	EB3	A1	CS4	D8	D5	LBA	BCLK ³	D0	DQM0	SDCKE0	POR	BOOT1	TDO	QVDD2	EXTAL32K	R
т	NVSS	A2	ŌĒ	CS5	CS2	CS1	CS0	MA11	DQM2	SDWE	CLKO	AVDD1	TRISTATE	EXTAL16M	XTAL16M	QVSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Table 44. i.MX1 256 MAPBGA Pin Assignments

¹ ASP signals are clamped by AVDD2 to prevent ESD (Electrostatic Discharge) damage. AVDD2 must be greater than QVDD to keep diodes reversed-biased.

 $^{2}\;$ This signal is not used and should be floated in an actual application.

³ burst clock

Product Documentation

6 **Product Documentation**

6.1 Revision History

Table 45 provides revision history for this release. This history includes technical content revisions only and not stylistic or grammatical changes.

Location	Revision							
Table 1 on page 3 Signal Names and Descriptions	 Added the DMA_REQ signal to table. Corrected signal name from USBD_OE to USBD_ROE Corrected signal names From: C10 BTRFGN, To: BTRFGND From: G6 SIM_RST, To: SIM_RX From: G7 UART2_TXD, To: SIM_CLK 							
Table 3 on page 11 Signal Multiplex Table i.MX1	 Added Signal Multiplex table from Reference Manual with the following changes: Changed I/O Supply Voltage, PB31–14, from NVDD3 to NVDD4 Corrected footnotes 1–5. Changed AVDD2 references to QVDD, except for C14. Added footnote regarding ESD. Changed occurrence of SD_SCLK to SD_CLK. Removed 69K pull-up resistor from EB1, EB2, and added to D9 							
Table 10 on page 26	Changed first and second parameters descriptions: From: Reference Clock freq range, To: DPLL input clock freq range From: Double clock freq range, To: DPLL output freq range							
Table 3 on page 11	Added Signal Multiplex table.							

Table 45. i.MX1 Data Sheet Revision History Rev. 7

6.2 Reference Documents

The following documents are required for a complete description of the MC9328MX1 and are necessary to design properly with the device. Especially for those not familiar with the ARM920T processor or previous i.MX processor products, the following documents are helpful when used in conjunction with this document.

ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)

ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)

ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)

EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)

MC9328MX1 Product Brief (order number MC9328MX1P)

MC9328MX1 Reference Manual (order number MC9328MX1RM)

The Freescale manuals are available on the Freescale Semiconductors Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9328MX1 Rev. 7 12/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

