E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	150MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD, Touch Panel
Ethernet	-
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	256-MAPBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mx1vm15r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

Figure 1. i.MX1 Functional Block Diagram

1.1 Features

To support a wide variety of applications, the processor offers a robust array of features, including the following:

- ARM920TTM Microprocessor Core
- AHB to IP Bus Interfaces (AIPIs)
- External Interface Module (EIM)
- SDRAM Controller (SDRAMC)
- DPLL Clock and Power Control Module
- Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3)
- Two Serial Peripheral Interfaces (SPI1 and SPI2)
- Two General-Purpose 32-bit Counters/Timers
- Watchdog Timer
- Real-Time Clock/Sampling Timer (RTC)
- LCD Controller (LCDC)
- Pulse-Width Modulation (PWM) Module
- Universal Serial Bus (USB) Device
- Multimedia Card and Secure Digital (MMC/SD) Host Controller Module
- Memory Stick® Host Controller (MSHC)
- Direct Memory Access Controller (DMAC)
- Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I²S) Module
- Inter-IC (I²C) Bus Module
- Video Port

Signal Name	Function/Notes					
SDIBA [3:0]	SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.					
MA [11:10]	SDRAM address signals					
MA [9:0]	SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on SDRAM cycles.					
DQM [3:0]	SDRAM data enable					
CSD0	SDRAM Chip-select signal which is multiplexed with the $\overline{CS2}$ signal. These two signals are selectable by programming the system control register.					
CSD1	SDRAM Chip-select signal which is multiplexed with $\overline{CS3}$ signal. These two signals are selectable by programming the system control register. By default, $\overline{CSD1}$ is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins.					
RAS	SDRAM Row Address Select signal					
CAS	SDRAM Column Address Select signal					
SDWE	SDRAM Write Enable signal					
SDCKE0	SDRAM Clock Enable 0					
SDCKE1	SDRAM Clock Enable 1					
SDCLK	SDRAM Clock					
RESET_SF	Not Used					
	Clocks and Resets					
EXTAL16M	Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut down.					
XTAL16M	Crystal output					
EXTAL32K	32 kHz crystal input					
XTAL32K	32 kHz crystal output					
CLKO	Clock Out signal selected from internal clock signals.					
RESET_IN	Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules (except the reset module and the clock control module) are reset.					
RESET_OUT	Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.					
POR	Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally generated by an external RC circuit designed to detect a power-up event.					
JTAG						
TRST	Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.					
TDO	Serial Output for test instructions and data. Changes on the falling edge of TCK.					
TDI	Serial Input for test instructions and data. Sampled on the rising edge of TCK.					
ТСК	Test Clock to synchronize test logic and control register access through the JTAG port.					
TMS	Test Mode Select to sequence the JTAG test controller's state machine. Sampled on the rising edge of TCK.					

Signals and Connections

Signal Name Function/Notes							
DMA							
DMA_REQ	DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY.						
BIG_ENDIAN	Big Endian—Input signal that determines the configuration of the external chip-select space. If it is driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven logic-low at reset, the external chip-select space will be configured to little endian. This input must not change state after power-on reset negates or during chip operation.						
	ETM						
ETMTRACESYNC	ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.						
ETMTRACECLK	ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.						
ETMPIPESTAT [2:0]	ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM mode.						
ETMTRACEPKT [7:0]	ETM packet signals which are multiplexed with $\overline{\text{ECB}}$, $\overline{\text{LBA}}$, BCLK (burst clock), PA17, A [19:16]. ETMTRACEPKT [7:0] are selected in ETM mode.						
	CMOS Sensor Interface						
CSI_D [7:0]	Sensor port data						
CSI_MCLK	Sensor port master clock						
CSI_VSYNC	Sensor port vertical sync						
CSI_HSYNC	Sensor port horizontal sync						
CSI_PIXCLK	Sensor port data latch clock						
	LCD Controller						
LD [15:0]	LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.						
FLM/VSYNC	Frame Sync or Vsync—This signal also serves as the clock signal output for the gate driver (dedicated signal SPS for Sharp panel HR-TFT).						
LP/HSYNC	Line pulse or H sync						
LSCLK	Shift clock						
ACD/OE	Alternate crystal direction/output enable.						
CONTRAST	This signal is used to control the LCD bias voltage as contrast control.						
SPL_SPR	Program horizontal scan direction (Sharp panel dedicated signal).						
PS	Control signal output for source driver (Sharp panel dedicated signal).						
CLS	Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated signal).						
REV	Signal for common electrode driving signal preparation (Sharp panel dedicated signal).						
	SIM						
SIM_CLK	SIM Clock						
SIM_RST	SIM Reset						
SIM_RX	Receive Data						

MC9328MX1 Technical Data, Rev. 7

Table 3. MC9328MX	1 Signal Multiplexing	Scheme
-------------------	-----------------------	--------

I/O Supply	BGA	Pri	Primary Alternate GPIO				GPIO				RESE	Dofault	
Voltage	Voltage Pin Signal		Dir	Pull-up	Signal	Dir	Mux	Pull-up	Ain	Bin	Aout	State (At/After)	Delault
NVDD1	K8	NVDD1	Static										
NVDD1	B1	A24	0		ETMTRACESYN C	0	PA0	69K	SPI2_CLK			L	A24
NVDD1	C2	D31	I/O	69K								Pull-H	
NVDD1	C1	A23	0		ETMTRACECLK	0	PA31	69K				L	A23
NVDD1	D2	D30	I/O	69K								Pull-H	
NVDD1	D1	A22	0		ETMPIPESTAT2	0	PA30	69K				L	A22
NVDD1	D3	D29	I/O	69K								Pull-H	
NVDD1	E2	A21	0		ETMPIPESTAT1	0	PA29	69K				L	A21
NVDD1	E3	D28	I/O	69K								Pull-H	
NVDD1	E1	A20	0		ETMPIPESTAT0	0	PA28	69K				L	A20
NVDD1	F2	D27	I/O	69K								Pull-H	
NVDD1	F4	A19	0		ETMTRACEPKT3	0	PA27	69K				L	A19
NVDD1	E4	D26	I/O	69K								Pull-H	
	A1	VSS	Static										
NVDD1	H5	NVDD1	Static										
NVDD1	F1	A18	0		ETMTRACEPKT2	0	PA26	69K				L	A18
NVDD1	F3	D25	I/O	69K								Pull-H	
NVDD1	G2	A17	0		ETMTRACEPKT1	0	PA25	69K				L	A17
NVDD1	G3	D24	I/O	69K								Pull-H	
NVDD1	F5	A16	0		ETMTRACEPKT0	0	PA24	69K				L	A16
NVDD1	G4	D23	I/O	69K								Pull-H	
NVDD1	G1	A15	0									L	
NVDD1	H2	D22	I/O	69K								Pull-H	
NVDD1	H3	A14	0									L	

±

Ref No	Parameter		1.8 ± 0.1 V		3.0 ± 0.3 V			Unit
ner no.		Min	Typical	Max	Min	Typical	Max	Jint
4a	Clock ¹ rise to Output Enable Valid	2.32	2.62	6.85	2.3	2.6	6.8	ns
4b	Clock ¹ rise to Output Enable Invalid	2.11	2.52	6.55	2.1	2.5	6.5	ns
4c	Clock ¹ fall to Output Enable Valid	2.38	2.69	7.04	2.3	2.6	6.8	ns
4d	Clock ¹ fall to Output Enable Invalid	2.17	2.59	6.73	2.1	2.5	6.5	ns
5a	Clock ¹ rise to Enable Bytes Valid	1.91	2.52	5.54	1.9	2.5	5.5	ns
5b	Clock ¹ rise to Enable Bytes Invalid	1.81	2.42	5.24	1.8	2.4	5.2	ns
5c	Clock ¹ fall to Enable Bytes Valid	1.97	2.59	5.69	1.9	2.5	5.5	ns
5d	Clock ¹ fall to Enable Bytes Invalid	1.76	2.48	5.38	1.7	2.4	5.2	ns
6a	Clock ¹ fall to Load Burst Address Valid	2.07	2.79	6.73	2.0	2.7	6.5	ns
6b	Clock ¹ fall to Load Burst Address Invalid	1.97	2.79	6.83	1.9	2.7	6.6	ns
6c	Clock ¹ rise to Load Burst Address Invalid	1.91	2.62	6.45	1.9	2.6	6.4	ns
7a	Clock ¹ rise to Burst Clock rise	1.61	2.62	5.64	1.6	2.6	5.6	ns
7b	Clock ¹ rise to Burst Clock fall	1.61	2.62	5.84	1.6	2.6	5.8	ns
7c	Clock ¹ fall to Burst Clock rise	1.55	2.48	5.59	1.5	2.4	5.4	ns
7d	Clock ¹ fall to Burst Clock fall	1.55	2.59	5.80	1.5	2.5	5.6	ns
8a	Read Data setup time	5.54	-	-	5.5	_	-	ns
8b	Read Data hold time	0	_	-	0	_	_	ns
9a	Clock ¹ rise to Write Data Valid	1.81	2.72	6.85	1.8	2.7	6.8	ns
9b	Clock ¹ fall to Write Data Invalid	1.45	2.48	5.69	1.4	2.4	5.5	ns
9c	Clock ¹ rise to Write Data Invalid	1.63	_	-	1.62	_	-	ns
10a	DTACK setup time	2.52	_	_	2.5	_	_	ns

Table 12. EIM Bus Timing Parameter Table (Continued)

¹ Clock refers to the system clock signal, HCLK, generated from the System DPLL

4.4.1 **DTACK** Signal Description

The $\overline{\text{DTACK}}$ signal is the external input data acknowledge signal. When using the external $\overline{\text{DTACK}}$ signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external $\overline{\text{DTACK}}$ signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement.

4.4.2 DTACK Signal Timing

Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units of measure for this figure are found in the associated tables.

Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)

Number	Characteristic	3.0 ± 0.3 V		
		Minimum	Maximum	Omt
12	Wait pulse width	1T	1020T	ns
Mater	•			•

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and CS asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.

4.4.2.3 WAIT Write Cycle without DMA

Figure 8. WAIT Write Cycle without DMA

Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Number	Charactoristic	$3.0 \pm 0.3 V$			
Number	Unaracteristic	Minimum	Maximum	Onic	
1	CS5 assertion time	See note 2	-	ns	
2	EB assertion time	See note 2	-	ns	
3	CS5 pulse width	3Т	-	ns	
4	$\overline{\text{RW}}$ negated before $\overline{\text{CS5}}$ is negated	2.5T-0.29	2.5T+0.68	ns	
5	RW negated to Address inactive	67.28	-	ns	
6	Wait asserted after $\overline{CS5}$ asserted	_	1020T	ns	

Number	Characteristic	3.0 ± (11	
Number		Minimum	Maximum	
1	CS5 assertion time	See note 2	-	ns
2	EB assertion time	See note 2	-	ns
3	CS5 pulse width	3Т	-	ns
4	$\overline{\text{RW}}$ negated before $\overline{\text{CS5}}$ is negated	2.5T-0.29	2.5T+0.68	ns
5	Address inactived after CS negated	_	0.93	ns
6	Wait asserted after $\overline{CS5}$ asserted	_	1020T	ns
7	Wait asserted to \overline{RW} negated	T+2.15	2T+7.34	ns
8	Data hold timing after RW negated	24.87	-	ns
9	Data ready after $\overline{CS5}$ is asserted	-	Т	ns
10	CS deactive to next CS active	Т	-	ns
11	EB negate after CS negate	1.5T+0.74	1.5T+2.35	
12	Wait becomes low after CS5 asserted	0	1019T	ns
13	Wait pulse width	1T	1020T	ns

Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.

3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.3 EIM External Bus Timing

The External Interface Module (EIM) is the interface to devices external to the i.MX1, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.

Vp max	1800 mV	ip max	+7 μA		
Vp min	GND	ip min	1.5 µA		
Vn	GND	in 1.5 μA			
Sample fi	requency	12 MHz			
Sample r	ate	1.2 KHz			
Input freq	luency	100 Hz			
Input rang	ge	0–1800 mV			
Note: Ru1 = Ru2 = 200K					

Table 19. Per	I ADC Test	Conditions
---------------	------------	------------

Table 20. Pen ADC Absolute Rating

ip max	+9.5 µA
ip min	-2.5 µA
in max	+9.5 μA
in min	-2.5 µA

4.6 ASP Touch Panel Controller

The following sections contain the electrical specifications of the ASP touch panel controller. The value of parameters and their corresponding measuring conditions are mentioned as well.

4.6.1 Electrical Specifications

Test conditions: Temperature = 25° C, QVDD = 1800mV.

Table 21. AS	P Touch	Panel	Controller	Electrical	Spec
--------------	---------	-------	------------	------------	------

Parameter	Minimum	Typical	Maximum	Unit
Offset	-	32768	_	-
Offset Error	-	-	8199	_
Gain	-	13.65	-	mV ⁻¹
Gain Error	-	_	33%	_
DNL	8	9	_	Bits
INL	-	0	_	Bits
Accuracy (without missing code)	8	9	_	Bits
Operating Voltage Range (Pen)	-	_	QVDD	mV
Operating Voltage Range (U)	Negative QVDD	_	QVDD	mV
On-resistance of switches SW[8:1]	-	10	_	Ohm

Note that QVDD should be 1800mV.

4.6.2 Gain Calculations

The ideal mapping of input voltage to output digital sample is defined as follows:

In general, the mapping function is:

S = G * V + C

Where V is input, S is output, G is the slope, and C is the y-intercept.

Nominal Gain $G_0 = 65535 / 4800 = 13.65 \text{mV}^{-1}$ Nominal Offset $C_0 = 65535 / 2 = 32767$

4.6.3 Offset Calculations

The ideal mapping of input voltage to output digital sample is defined as:

In general, the mapping function is:

S = G * V + C

Where V is input, S is output, G is the slope, and C is the y-intercept.

Nominal Gain $G_0 = 65535 / 4800 = 13.65 \text{mV}^{-1}$ Nominal Offset $C_0 = 65535 / 2 = 32767$

4.6.4 Gain Error Calculations

Gain error calculations are made using the information in this section.

Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the maximum gain allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit range, 65535.

Maximum Offset G_{max},

G_{max}

Gain Error G_{r.}

G_r

= (65535 - 32767) / 1800= 18.20 = (G_{max} - G₀) / G₀ * 100% = (18.20 - 13.65) / 13.65 * 100%

 $= (65535 - C_0) / 1800$

= 33%

4.7 Bluetooth Accelerator

CAUTION

On-chip accelerator hardware is not supported by software. An external Bluetooth chip interfaced to a UART is recommended.

The Bluetooth Accelerator (BTA) radio interface supports the Wireless RF Transceiver, MC13180 using an SPI interface. This section provides the data bus timing diagrams and SPI interface timing diagrams shown in Figure 37 and Figure 38, and the associated parameters shown in Table 22 and Table 23.

Functional Description and Application Information

After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 49, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the responding card. The other two diagrams show the separating periods N_{RC} and N_{CC} .

Figure 50 shows basic read operation timing. In a read operation, the sequence starts with a single block read command (which specifies the start address in the argument field). The response is sent on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay N_{AC} , beginning from the last bit of the read command. If the system is in multiple block read mode, the card sends a continuous flow of data blocks with distance N_{AC} until the card sees a stop transmission command. The data stops two clock cycles after the end bit of the stop command.

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
		Minimum	Maximum	Minimum	Maximum	onit
3b	Clock rise time ¹	-	6.67	_	5/10	ns
4a	Output delay time ¹	5.7	-	5	-	ns
4b	Output setup time ¹	5.7	_	5	_	ns

 Table 32. PWM Output Timing Parameter Table (Continued)

¹ C_L of PWMO = 30 pF

4.13 SDRAM Controller

This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller.

Ref	Parameter	1.8 ± 0.1 V		3.0 ± 0.3 V		Unit
No.	Farameter	Minimum	Maximum	Minimum	Maximum	Unit
1	SDRAM clock high-level width	2.67	_	4	-	ns
2	SDRAM clock low-level width	6	_	4	-	ns
3	SDRAM clock cycle time	11.4	_	10	-	ns
3S	CS, RAS, CAS, WE, DQM setup time	3.42	_	3	-	ns
ЗH	CS, RAS, CAS, WE, DQM hold time	2.28	_	2	-	ns
4S	Address setup time	3.42	_	3	-	ns
4H	Address hold time	2.28	-	2	-	ns
5	SDRAM access time (CL = 3)	-	6.84	_	6	ns
5	SDRAM access time (CL = 2)	-	6.84	_	6	ns
5	SDRAM access time (CL = 1)	-	22	-	22	ns
6	Data out hold time	2.85	-	2.5	-	ns
7	Data out high-impedance time (CL = 3)	-	6.84	-	6	ns
7	Data out high-impedance time (CL = 2)	-	6.84	-	6	ns
7	Data out high-impedance time (CL = 1)	-	22	-	22	ns
8	Active to read/write command period (RC = 1)	t _{RCD} 1	-	t _{RCD1}	-	ns

Table 33. SDRAM Read	Timing Paramet	er Table
----------------------	----------------	----------

¹ t_{RCD} = SDRAM clock cycle time. This settings can be found in the *MC9328MX1 reference manual*.

Figure 58. SDRAM Write Cycle Timing Diagram

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ± 0.3 V		Unit
		Minimum	Maximum	Minimum	Maximum	onin
1	SDRAM clock high-level width	2.67	-	4	-	ns
2	SDRAM clock low-level width	6	-	4	-	ns
3	SDRAM clock cycle time	11.4	_	10	_	ns
4	Address setup time	3.42	-	3	-	ns
5	Address hold time	2.28	-	2	-	ns
6	Precharge cycle period ¹	t _{RP} ²	-	t _{RP2}	-	ns
7	Active to read/write command delay	t _{RCD2}	-	t _{RCD2}	-	ns
8	Data setup time	4.0	-	2	-	ns
9	Data hold time	2.28	_	2	_	ns

Table 34. SDRAM Write Timing Parameter Table

¹ Precharge cycle timing is included in the write timing diagram.

² t_{RP} and t_{RCD} = SDRAM clock cycle time. These settings can be found in the *MC9328MX1 reference manual*.

Functional Description and Application Information

4.14 USB Device Port

Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up.

Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer.

Ref	Boromotor	1.8 ±	: 0.1 V	3.0 ± 0.3 V		11
No.	Parameter	Minimum	Maximum	Minimum	Maximum	Unit
Internal Clock Operation ¹ (Port B Alternate Function ²)						
1	STCK/SRCK clock period ¹	95	-	83.3	-	ns
2	STCK high to STFS (bl) high ³	1.7	4.8	1.5	4.2	ns
3	SRCK high to SRFS (bl) high ³	-0.1	1.0	-0.1	1.0	ns
4	STCK high to STFS (bl) low ³	3.08	5.24	2.7	4.6	ns
5	SRCK high to SRFS (bl) low ³	1.25	2.28	1.1	2.0	ns
6	STCK high to STFS (wl) high ³	1.71	4.79	1.5	4.2	ns
7	SRCK high to SRFS (wl) high ³	-0.1	1.0	-0.1	1.0	ns
8	STCK high to STFS (wl) low ³	3.08	5.24	2.7	4.6	ns
9	SRCK high to SRFS (wl) low ³	1.25	2.28	1.1	2.0	ns
10	STCK high to STXD valid from high impedance	14.93	16.19	13.1	14.2	ns
11a	STCK high to STXD high	1.25	3.42	1.1	3.0	ns
11b	STCK high to STXD low	2.51	3.99	2.2	3.5	ns
12	STCK high to STXD high impedance	12.43	14.59	10.9	12.8	ns
13	SRXD setup time before SRCK low	20	-	17.5	-	ns
14	SRXD hold time after SRCK low	0	-	0	-	ns
	External Clock Operat	ion (Port B Alt	ernate Functio	on²)		
15	STCK/SRCK clock period ¹	92.8	-	81.4	-	ns
16	STCK/SRCK clock high period	27.1	-	40.7	-	ns
17	STCK/SRCK clock low period	61.1	-	40.7	-	ns
18	STCK high to STFS (bl) high ³	-	92.8	0	81.4	ns
19	SRCK high to SRFS (bl) high ³	-	92.8	0	81.4	ns
20	STCK high to STFS (bl) low ³	-	92.8	0	81.4	ns
21	SRCK high to SRFS (bl) low ³	-	92.8	0	81.4	ns
22	STCK high to STFS (wl) high ³	-	92.8	0	81.4	ns
23	SRCK high to SRFS (wl) high ³	-	92.8	0	81.4	ns
24	STCK high to STFS (wl) low ³	-	92.8	0	81.4	ns
25	SRCK high to SRFS (wI) low ³	-	92.8	0	81.4	ns
26	STCK high to STXD valid from high impedance	18.9	29.07	16.6	25.5	ns
27a	STCK high to STXD high	9.23	20.75	8.1	18.2	ns
27b	STCK high to STXD low	10.60	21.32	9.3	18.7	ns

Table 40. SSI (Port B Alternate Function) Timing Parameter Table