
Analog Devices Inc./Maxim Integrated - DS80C390-FCR+ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, EBI/EMI, SIO, UART/USART

Peripherals Power-Fail Reset, WDT

Number of I/O 32

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3.85V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/analog-devices/ds80c390-fcr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/ds80c390-fcr-4417957
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DS80C390 Dual CAN High-Speed Microprocessor

3 of 53

AC ELECTRICAL CHARACTERISTICS—(MULTIPLEXED ADDRESS/DATA BUS)
(Note 10, Note 11)

40MHz VARIABLE CLOCK PARAMETER SYMBOL CONDITIONS MIN MAX MIN MAX UNITS

External oscillator 0 40 0 40 Oscillator Frequency 1 / tCLCL External crystal 1 40 1 40
MHz

ALE Pulse Width tLHLL 0.375 tMCS
- 5 ns

Port 0 Instruction Address or CE0–4
Valid to ALE Low tAVLL 0.125 tMCS - 5 ns

Address Hold After ALE Low tLLAX1 0.125 tMCS - 5 ns

ALE Low to Valid Instruction In tLLIV 0.625 tMCS - 20 ns

ALE Low to PSEN Low tLLPL 0.125 tMCS - 5 ns

PSEN Pulse Width tPLPH 0.5 tMCS - 8 ns

PSEN Low to Valid Instruction In tPLIV 0.5 tMCS - 20 ns

Input Instruction Hold After PSEN tPXIX 0 0 ns

Input Instruction Float After PSEN tPXIZ 0.25 tMCS - 5 ns

Port 0 Address to Valid Instruction In tAVIV1 0.75 tMCS - 22 ns

Port 2, 4 Address to Valid Instruction
In tAVIV2 0.875 tMCS - 30 ns

PSEN Low to Address Float tPLAZ 0 0 ns

Note 11:

All parameters apply to both commercial and industrial temperature operation unless otherwise noted. The value tMCS is a function
of the machine cycle clock in terms of the processor’s input clock frequency. These relationships are described in the Stretch Value
Timing table. All signals characterized with load capacitance of 80pF except Port 0, ALE, PSEN, RD, and WR with 100pF.
Interfacing to memory devices with float times (turn off times) over 25ns can cause bus contention. This does not damage the
parts, but causes an increase in operating current. Specifications assume a 50% duty cycle for the oscillator. Port 2 and ALE timing
changes in relation to duty cycle variation. Some AC timing characteristic drawings contain references to the CLK signal. This
waveform is provided to assist in determining the relative occurrence of events and cannot be used to determine the timing of
signals relative to the external clock. AC timing is characterized and guaranteed by design but is not production tested.

DS80C390 Dual CAN High-Speed Microprocessor

6 of 53

Figure 2. Multiplexed 9-Cycle Address/Data CE0-3 MOVX Read/Write Operation

DS80C390 Dual CAN High-Speed Microprocessor

10 of 53

Figure 8. Multiplexed 3-Cycle Data Memory CE0-3 Read

Figure 9. Multiplexed 3-Cycle Data Memory CE0-3 Write

DS80C390 Dual CAN High-Speed Microprocessor

13 of 53

ELECTRICAL CHARACTERISTICS—(NONMULTIPLEXED ADDRESS/DATA BUS)
(Note 13)

40MHz VARIABLE CLOCK PARAMETER SYMBOL CONDITIONS
MIN MAX MIN MAX

UNITS

External oscillator 0 40 0 40 Oscillator Frequency 1 / tCLCL External crystal 1 40 1 40 MHz

PSEN Pulse Width tPLPH 0.5 tMCS - 8 ns

PSEN Low to Valid Instruction In tPLIV 0.5 tMCS - 20 ns

Input Instruction Hold After PSEN tPXIX 0 0 ns

Input Instruction Float After PSEN tPXIZ See MOVX
Characteristics ns

Port 1 Address, Port 4 CE to Valid
Instruction In tAVIV1 0.75 tMCS - 22 ns

Port 2, 4 Address to Valid Instruction
In tAVIV2 0.875 tMCS - 30 ns

Note 13:

All parameters apply to both commercial and industrial temperature operation unless otherwise noted. The value tMCS is a function of
the machine cycle clock in terms of the processor’s input clock frequency. These relationships are described in the Stretch Value
Timing table. All signals characterized with load capacitance of 80pF except Port 0, ALE, PSEN, RD, and WR with 100pF. Interfacing
to memory devices with float times (turn off times) over 25ns can cause bus contention. This does not damage the parts, but causes
an increase in operating current. Specifications assume a 50% duty cycle for the oscillator. Port 2 and ALE timing changes in relation
to duty cycle variation. Some AC timing characteristic drawings contain references to the CLK signal. This waveform is provided to
assist in determining the relative occurrence of events and cannot be used to determine the timing of signals relative to the external
clock.

Figure 13. Nonmultiplexed External Program Memory Read Cycle

DS80C390 Dual CAN High-Speed Microprocessor

19 of 53

Figure 20. Nonmultiplexed 3-Cycle Data Memory CE0-3 Read

Figure 21. Nonmultiplexed 3-Cycle Data Memory CE0-3 Write

DS80C390 Dual CAN High-Speed Microprocessor

20 of 53

Figure 22. Nonmultiplexed 9-Cycle Data Memory PCE0-3 Read or Write

Figure 23. Nonmultiplexed 9-Cycle Data Memory CE0-3 Read

DS80C390 Dual CAN High-Speed Microprocessor

21 of 53

Figure 24. Nonmultiplexed 9-Cycle Data Memory CE0-3 Write

tMCS TIME PERIODS

SYSTEM CLOCK SELECTION

4X/2X CD1 CD0
tMCS

1 0 0 1 tCLCL
0 0 0 2 tCLCL
X 1 0 4 tCLCL
X 1 1 1024 tCLCL

EXTERNAL CLOCK CHARACTERISTICS

PARAMETER SYMBOL MIN MAX UNITS
Clock High Time tCHCX 8 ns
Clock Low Time tCLCX 8 ns
Clock Rise Time tCLCH 4 ns
Clock Fall Time tCHCL 4 ns

Figure 25. External Clock Drive

DS80C390 Dual CAN High-Speed Microprocessor

22 of 53

SERIAL PORT MODE 0 TIMING CHARACTERISTICS
PARAMETER SYMBOL CONDITIONS TYP UNITS

SM2 = 0:2 clocks per cycle 12 tCLCL Serial Port Clock Cycle Time tXLXL SM2 = 1:4 clocks per cycle 4 tCLCL
ns

SM2 = 0:12 clocks per cycle 10 tCLCL Output Data Setup to Clock Rising tQVXH
SM2 = 1:4 clocks per cycle 3 tCLCL

ns

M2 = 0:12 clocks per cycle 2 tCLCL Output Data Hold from Clock Rising tXHQX
SM2 = 1:4 clocks per cycle tCLCL

ns

SM2 = 0:12 clocks per cycle tCLCL Input Data Hold After Clock Rising tXHDX SM2 = 1:4 clocks per cycle 0
ns

SM2 = 0:12 clocks per cycle 11 tCLCL Clock Rising Edge to Input Data Valid tXHDV SM2 = 1:4 clocks per cycle 2 tCLCL
ns

DS80C390 Dual CAN High-Speed Microprocessor

30 of 53

Because the device runs the standard 8051 instruction set, in general, software written for existing 80C32-based
systems will work on the DS80C390. The primary exceptions are related to timing-critical issues, since the high-
performance core of the microcontroller executes instructions much faster than the original. Memory interfacing is
performed identically to the standard 80C32. The high-speed nature of the DS80C390 core slightly changes the
interface timing, and designers are advised to consult the timing diagrams in this data sheet for more information.

The DS80C390 provides the same timer/counter resources, full duplex serial port, 256 bytes of scratchpad RAM
and I/O ports as the standard 80C32. Timers default to a 12 clocks-per-machine cycle operation to keep timing
compatible with original 8051 systems, but can be programmed to run at the faster four clocks-per-machine cycle if
desired. New hardware functions are accessed using special function registers that do not overlap with standard
80C32 locations.

This data sheet provides only a summary and overview of the DS80C390. Detailed descriptions are available in the
High-Speed Microcontroller User’s Guide: DS80C390 Supplement. This data sheet assumes a familiarity with the
architecture of the standard 80C32. In addition to the basic features of that device, the DS80C390 incorporates
many new features.

PERFORMANCE OVERVIEW
The DS80C390’s higher performance comes not just from increasing the clock frequency but also from a more
efficient design. This updated core removes the dummy memory cycles that are present in a standard, 12 clocks-
per-machine cycle 8051. In the DS80C390, the same machine cycle takes 4 clocks. Thus the fastest instruction,
one machine cycle, executes three times faster for the same crystal frequency. The majority of instructions on the
DS80C390 see the full 3-to-1 speed improvement, while a few execute between 1.5 and 2.4 times faster.
Regardless of specific performance improvements, all instructions are faster than the original 8051.

Improvement of individual programs depends on the actual mix of instructions used. Speed-sensitive applications
should make the most use of instructions that are three times faster. However, the large number of 3-to-1 improved
op codes makes dramatic speed improvements likely for any arbitrary combination of instructions. These
architecture improvements and the submicron CMOS design produce a peak instruction cycle in 100ns (10 MIPS).
The dual data pointer feature also allows the user to eliminate wasted instructions when moving blocks of memory.

INSTRUCTION SET SUMMARY
All instructions perform exactly the same functions as their 8051 counterparts. Their effect on bits, flags, and other
status functions is identical. However, the timing of instructions is different, both in absolute and relative number of
clocks. The absolute timing of software loops can be calculated using a table in the High-Speed Microcontroller
User’s Guide: DS80C390 Supplement. However, counter/timers default to run at the traditional 12 clocks per
increment. In this way, timer-based events occur at the standard intervals with software executing at higher speed.
Timers optionally can run at the faster four clocks per increment to take advantage of faster processor operation.

The relative time of two DS80C390 instructions might differ from the traditional 8051. For example, in the original
architecture the “MOVX A, @DPTR” instruction and the “MOV direct, direct” instruction required the same amount
of time: two machine cycles or 24 oscillator cycles. In the DS80C390, the MOVX instruction takes as little as two
machine cycles, or eight oscillator cycles, but the “MOV direct, direct” uses three machine cycles, or 12 oscillator
cycles. While both are faster than their original counterparts, they now have different execution times. This is
because the device usually uses one instruction cycle for each instruction byte. Examine the timing of each
instruction for familiarity with the changes. Note that a machine cycle now requires just four clocks, and provides
one ALE pulse per cycle. Many instructions require only one cycle, but some require five. Refer to the High-Speed
Microcontroller User’s Guide: DS80C390 Supplement for details and individual instruction timing.

SPECIAL FUNCTION REGISTERS (SFRs)
Special function registers (SFRs) control most special features of the microcontroller, allowing the device to have
many new features but use the same instruction set as the 8051. When writing software to use a new feature, an
equate statement defines the SFR to an assembler or compiler. This is the only change needed to access the new
function. The DS80C390 duplicates the SFRs contained in the standard 80C52. Table 1 shows the register
addresses and bit locations. Many are standard 80C52 registers. The High-Speed Microcontroller User’s Guide:
DS80C390 Supplement contains a full description of all SFRs.

DS80C390 Dual CAN High-Speed Microprocessor

32 of 53

Table 1. SFR Locations (continued)
REGISTER BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 ADDRESS

C0M14C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BEh
C0M15C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BFh
SCON1 SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h
SBUF1 C1h
PMR CD1 CD0 SWB CTM 4X/2X ALEOFF — — C4h

STATUS PIP HIP LIP — SPTA1 SPRA1 SPTA0 SPRA0 C5h
MCON IDM1 IDM0 CMA — PDCE3 PDCE2 PDCE1 PDCE0 C6h

TA C7h
T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 C8h
T2MOD — — — D13T1 D13T2 —- T2OE DCEN C9h
RCAP2L CAh
RCAP2H CBh

TL2 CCh
TH2 CDh
COR IRDACK C1BPR7 C1BPR6 C0BPR7 C0BPR6 COD1 COD0 CLKOE CEh
PSW CY AC F0 RS1 RS0 OV F1 P D0h

MCNT0 LSHIFT CSE SCB MAS4 MAS3 MAS2 MAS1 MAS0 D1h
MCNT1 MST MOF — CLM — — — — D2h

MA D3h
MB D4h
MC D5h

C1RMS0 D6h
C1RMS1 D7h
WDCON SMOD_1 POR EPFI PFI WDIF WTRF EWT RWT D8h
C1TMA0 DEh
C1TMA1 DFh

ACC E0h
C1C ERIE STIE PDE SIESTA CRST AUTOB ERCS SWINT E3h
C1S BSS CECE WKS RXS TXS ER2 ER1 ER0 E4h
C1IR INTIN7 INTIN6 INTIN5 INTIN4 INTIN3 INTIN2 INTIN1 INTIN0 E5h
C1TE E6h
C1RE E7h
EIE CANBIE C0IE C1IE EWDI EX5 EX4 EX3 EX2 E8h

MXAX EAh
C1M1C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP EBh
C1M2C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP ECh
C1M3C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP EDh
C1M4C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP EEh
C1M5C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP EFh

B F0h
C1M6C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP F3h
C1M7C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP F4h
C1M8C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP F5h
C1M9C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP F6h

C1M10C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP F7h
EIP CANBIP C0IP C1IP PWDI PX5 PX4 PX3 PX2 F8h

C1M11C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP FBh
C1M12C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP FCh
C1M13C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP FDh
C1M14C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP FEh
C1M15C MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP FFh

Note: Shaded bits are timed-access protected.

DS80C390 Dual CAN High-Speed Microprocessor

34 of 53

40-BIT ACCUMULATOR
The accelerator also incorporates an automatic accumulator function, permitting the implementation of multiply-
and-accumulate and divide-and-accumulate functions without any additional delay. Each time the accelerator is
used for a multiply or divide operation, the result is transparently added to a 40-bit accumulator. This can greatly
increase speed of DSP and other high-level math operations.

The accumulator can be accessed anytime the multiply/accumulate status flag (MCNT1;D2h) is cleared. The
accumulator is initialized by performing five writes to the multiplier C register (MC;D5h), LSB first. The 40-bit
accumulator can be read by performing five reads of the multiplier C register, MSB first.

MEMORY ADDRESSING
The DS80C390 incorporates three internal memory areas:
� 256 bytes of scratchpad (or direct) RAM
� 4kB of SRAM configurable as various combinations of MOVX data memory, stack memory, and MOVC

program memory
� 512 bytes of RAM reserved for the CAN message centers.

Up to 4MB of external memory is addressed via a multiplexed or demultiplexed 20-bit address bus/8-bit data bus
and four chip-enable (active during program memory access) or four peripheral-enable (active during data memory
access) signals. Three different addressing modes are supported, as selected by the AM1, AM0 bits in the ACON
SFR.

16-Bit Address Mode
Memory is accessed by 16-bit address mode similarly to the traditional 8051. It is op-code compatible with the 8051
microprocessor and identical to the byte and cycle count of the Dallas Semiconductor High-Speed Microcontroller
family. A device operating in this mode can access up to 64kB of program and data memory. The device defaults to
this mode following any reset.

22-Bit Paged-Address Mode
The 22-bit paged-address mode retains binary-code compatibility with the 8051 instruction set, but adds one
machine cycle to the ACALL, LCALL, RET, and RETI instructions with respect to Dallas Semiconductor’s High-
Speed Microcontroller family timing. This is transparent to standard 8051 compilers. Interrupt latency is also
increased by one machine cycle. In this mode, interrupt vectors are fetched from 0000xxh.

22-Bit Contiguous Address Mode
The 22-bit contiguous addressing mode uses a full 22-bit program counter, and all modified branching instructions
automatically save and restore the entire program counter. The 22-bit branching instructions such as ACALL,
AJMP, LCALL, LJMP, MOV DPTR, RET, and RETI instructions require an assembler, compiler, and linker that
specifically supports these features. The INC DPTR is lengthened by one cycle but remains byte-count-compatible
with the standard 8051 instruction set.

Internally, the device uses a 22-bit program counter. The lowest order 22 bits are used for memory addressing,
with a special 23rd bit used to map the 4kB SRAM above the 4MB memory space in bootstrap loader applications.
Address bits 16–23 for the 22-bit addressing modes are generated through additional SFRs dependent on the type
of instruction as shown in Table 4.

Table 4. Extended Address Generation

INSTRUCTION ADDRESS BITS
23–16

ADDRESS BITS
15–8

ADDRESS BITS
7–0

MOVX instructions using DPTR DPX;93h DPH;83h DPL;82h
MOVX instructions using DPTR1 DPX1;95h DPH1;85h DPL1;84h
MOVX instructions using @Ri MXAX;EAh P2;A0h Ri
Addressing program memory in 22-bit
paged mode AP;9Ch — —

10-bit stack pointer mode — ESP;9Bh SP;81h

DS80C390 Dual CAN High-Speed Microprocessor

35 of 53

INTERNAL MOVX SRAM
The DS80C390 contains 4kB of SRAM that can be configured as user accessible MOVX memory, program
memory, or optional stack memory. The specific configuration and locations are governed by the internal data
memory configuration bits (IDM1, IDM0) in the memory control register (MCON;C6h). Note that when the SA bit
(ACON.2) is set, the first 1kB of the MOVX data memory is reserved for use by the 10-bit expanded stack. Internal
memory accesses will not generate WR, RD, or PSEN strobes.

The DS80C390 can configure its 4kB of internal SRAM as combined program and data memory. This allows the
application software to execute self-modifiable code. The technique loads the 4kB SRAM with bootstrap loader
software, and then modifies the IDM1 and IDM0 bits to map the 4kB starting at memory location 40000h. This
allows the system to run the bootstrap loader without disturbing the 4MB external memory bus, making the device
in-system reprogrammable for flash or NV RAM.

Table 5. Internal MOVX SRAM Configuration

MEMORY
IDM1 IDM0 CMA

MOVX DATA CAN MESSAGE SHARED PROGRAM/DATA
0 0 0 00F000h–00FFFFh 00EE00h–00EFFFh —
0 0 1 00F000h–00FFFFh 401000h–4011FFh —
0 1 0 000000h–000FFFh 00EE00h–00EFFFh —
0 1 1 000000h–000FFFh 401000h–4011FFh —
1 0 0 400000h–400FFFh 00EE00h–00EFFFh —
1 0 1 400000h–400FFFh 401000h–4011FFh —
1 1 0 — 00EE00h–00EFFFh 400000h–400FFFh*
1 1 1 — 401000h–4011FFh 400000h–400FFFh*

*10-bit expanded stack is not available in shared program/data memory mode.

EXTERNAL MEMORY ADDRESSING
The enabling and mapping of the chip-enable signals is done through the Port 4 control register (P4CNT;92h) and
memory control register (MCON; 96h). Table 7 shows which chip-enable and address line signals are active on
Port 4. Following reset, the device will be configured with P4.7–P4.4 as address lines and P4.3–P4.0 configured as
CE3-0, with the first program fetch being performed from 00000h with CE0 active. The following tables illustrate
which memory ranges are controlled by each chip enable as a function of which address lines are enabled.

Table 6. External Memory Addressing Pin Assignments

ADDRESS/DATA
BUS CE3–CE0 PCE3–PCE0 ADDR 19–16 ADDR 15–8 ADDR 7–0 DATA BUS

Multiplexed P4.3–P4.0 P5.7–P5.4 P4.7–P4.4 P2 P0 P0

Demultiplexed P4.3–P4.0 P5.7–P5.4 P4.7–P4.4 P2 P1 P0

Table 7. Extended Address and Chip-Enable Generation

PORT 4 PIN FUNCTION PORT 4 PIN FUNCTION P4CNT.5–3 P4.7 P4.6 P4.5 P4.4 P4CNT.2–0 P4.3 P4.2 P4.1 P4.0
000 I/O I/O I/O I/O 000 I/O I/O I/O I/O
100 I/O I/O I/O A16 100 I/O I/O I/O CE0
101 I/O I/O A17 A16 101 I/O I/O CE1 CE0
110 I/O A18 A17 A16 110 I/O CE2 CE1 CE0

111(default) A19 A18 A17 A16 111(default) CE3 CE2 CE1 CE0

DS80C390 Dual CAN High-Speed Microprocessor

36 of 53

Table 8. Program Memory Chip-Enable Boundaries
P4CNT.5–3 CE0 CE1 CE2 CE3

000 0h–7FFFh 8000h–FFFFh 10000h–17FFFh 18000h–1FFFFh
100 0h–1FFFFh 20000h–3FFFFh 40000h–5FFFFh 60000h–7FFFFh
101 0h–3FFFFh 40000h–7FFFFh 80000h–BFFFFh C0000h–FFFFFh
110 0h–7FFFFh 80000h–FFFFFh 100000h–17FFFFh 180000h–1FFFFFh

111(default) 0–FFFFFh 100000h–1FFFFFh 200000h–2FFFFFh 300000h–3FFFFFh

The DS80C390 incorporates a feature allowing PCE and CE signals to be combined. This is useful when
incorporating modifiable code memory as part of a bootstrap loader or for in-system reprogrammability. Setting the
PDCE3–0 (MCON.3–0) bits causes the corresponding chip-enable signal to function for both MOVC and MOVX
operations. Write access to combined program and data memory blocks is controlled by the WR signal, and read
access is controlled by the PSEN signal. This feature is especially useful if the design achieves in-system
reprogrammability via external flash memory, in which a single device is accessed through both MOVC instructions
(program fetch) and MOVX write operations (updates to code memory). In this case, the internal SRAM is placed in
the program/data configuration and loaded with a small bootstrap loader program stored in the external flash
memory. The device then executes the internal bootstrap loader routine to modify/update the program memory
located in the external flash memory.

STRETCH MEMORY CYCLES
The DS80C390 allows user-application software to select the number of machine cycles it takes to execute a
MOVX instruction, allowing access to both fast and slow off-chip data memory and/or peripherals without glue
logic. High-speed systems often include memory-mapped peripherals such as LCDs or UARTs with slow access
times, so it may not be necessary or desirable to access external devices at full speed. The microprocessor can
perform a MOVX instruction in as little as two machine cycles or as many as twelve machine cycles. Accesses to
internal MOVX SRAM always use two cycles. Note that stretch cycle settings affect external MOVX memory
operations only and that there is no way to slow the accesses to program memory other than to use a slower
crystal (or external clock).

External MOVX timing is governed by the selection of 0 to 7 stretch cycles, controlled by the MD2–MD0 SFR bits in
the clock-control register (CKCON.2–0). A stretch of zero results in a 2-machine cycle MOVX instruction. A stretch
of seven results in a MOVX of 12 machine cycles. Software can dynamically change the stretch value depending
on the particular memory or peripheral being accessed. The default of one stretch cycle allows the use of
commonly available SRAMs without dramatically lengthening the memory access times.

Stretch cycle settings affect external MOVX timing in three gradations. Changing the stretch value from 0 to 1 adds
an additional clock cycle each to the data setup and hold times. When a stretch value of 4 or above is selected, the
interface timing changes dramatically to allow for very slow peripherals. First, the ALE signal is lengthened by 1
machine cycle. This increases the address setup time into the peripheral by this amount. Next, the address is held
on the bus for one additional machine cycle increasing the address hold time by this amount. The WR and RD
signals are then lengthened by a machine cycle. Finally, during a MOVX write the data is held on the bus for one
additional machine cycle, thereby increasing the data hold time by this amount. For every stretch value greater
than 4, the setup and hold times remain constant, and only the width of the read or write signal is increased. These
three gradations are reflected in the AC Electrical Characteristics, where the eight MOVX timing specifications are
represented by only three timing diagrams.

The reset default of one stretch cycle results in a three-cycle MOVX for any external access. Therefore, the default
off-chip RAM access is not at full speed. This is a convenience to existing designs that use slower RAM. When
maximum speed is desired, software should select a stretch value of zero. When using very slow RAM or
peripherals, the application software can select a larger stretch value.

The specific timing of MOVX instructions as a function of stretch settings is provided in the Electrical Specifications
section of this data sheet. As an example, Table 9 shows the read and write strobe widths corresponding to each
stretch value.

DS80C390 Dual CAN High-Speed Microprocessor

40 of 53

POWER MANAGEMENT MODE (PMM) AND SWITCHBACK
Power consumption in PMM is less than in idle mode, and approximately one quarter of that consumed in divide-
by-four mode. While PMM and Idle modes leave the power-hungry internal timers running, PMM runs all clocked
functions such as timers at the rate of crystal divided by 1024, rather than crystal divided by 4. Even though
instruction execution continues in PMM (albeit at a reduced speed), it still consumes less power than idle mode. As
a result there is little reason to use idle mode in new designs.

When enabled, the switchback feature allows serial ports and interrupts to automatically switch back from divide by
1024 (PMM) to divide-by-4 (standard speed) operation. This feature makes it very convenient to use the PMM in
real-time applications. Software can simply set the CD1 and CD0 clock control bits to the 4 clocks-per-cycle mode
to exit PMM. However, the microcontroller provides hardware alternatives for automatic Switchback to standard
speed (divide-by-4) operation.

Setting the SFR bit SWB (PMR.5) to 1 enables the switchback feature. Once it is enabled, and when PMM is
selected, two possible events can cause an automatic switchback to divide-by-4 mode. First, if an interrupt occurs
and is acknowledged, the system clock reverts from PMM to divide-by-4 mode. For example, if INT0 is enabled and
the CPU is not servicing a higher priority interrupt, then switchback occurs on INT0. However, if INT0 is not
enabled or the CPU is servicing a higher priority interrupt, then activity on INT0 does not cause switchback to
occur.

A switchback can also occur when an enabled UART detects the start bit indicating the beginning of an incoming
serial character or when the SBUF register is loaded initiating a serial transmission. Note that a serial character’s
start bit does not generate an interrupt. The interrupt occurs only on reception of a complete serial word. The
automatic switchback on detection of a start bit allows timer hardware to return to divide-by-4 operation (and the
correct baud rate) in time for a proper serial reception or transmission. So with switchback enabled and a serial port
enabled, the automatic switch to divide-by-4 operation occurs in time to receive or transmit a complete serial
character as if nothing special had happened.

STATUS
The status register (STATUS;C5h) provides information about interrupt and serial port activity to assist in
determining if it is possible to enter PMM. The microprocessor supports three levels of interrupt priority: power-fail,
high, and low. The PIP (power-fail priority interrupt status; STATUS.7), HIP (high-priority interrupt status;
STATUS.6), and LIP (low-priority interrupt status; STATUS.5) status bits, when set to logic 1, indicate the
corresponding level is in service.

Software should not rely on a lower-priority level interrupt source to remove PMM (switchback) when a higher level
is in service. Check the current priority service level before entering PMM. If the current service level locks out a
desired switchback source, then it would be advisable to wait until this condition clears before entering PMM.
Alternately, software can prevent an undesired exit from PMM by intentionally entering a low priority interrupt
service level before entering PMM. This will prevent other low priority interrupts from causing a switchback.

Entering PMM during an ongoing serial port transmission or reception can corrupt the serial port activity. To
prevent this, a hardware lockout feature ignores changes to the clock divisor bits while the serial ports are active.
Serial port activity can be monitored via the serial port activity bits located in the status register.

IDLE MODE
Setting the IDLE bit (PCON.0) invokes the idle mode. Idle leaves internal clocks, serial ports, and timers running.
Power consumption drops because memory is not being accessed and instructions are not being executed. Since
clocks are running, the idle power consumption is a function of crystal frequency. It should be approximately one-
half of the operational power at a given frequency. The CPU can exit idle mode with any interrupt or a reset.
Because PMM consumes less power than idle mode, as well as leaving timers and CPU operating, idle mode is no
longer recommended for new designs, and is included for backward software compatibility only.

DS80C390 Dual CAN High-Speed Microprocessor

43 of 53

The SCON0 register provides control for serial port 0 while its I/O buffer is SBUF0. The registers SCON1 and
SBUF1 provide the same functions for the second serial port. A full description of the use and operation of both
serial ports can be found in the High-Speed Microcontroller User’s Guide: DS80C390 Supplement.

WATCHDOG TIMER
The watchdog is a free-running, programmable timer that can set a flag, cause an interrupt, and/or reset the
microcontroller if allowed to reach a preselected timeout. It can be restarted by software.

A typical application uses the watchdog timer as a reset source to prevent software from losing control. The
watchdog timer is initialized, selecting the timeout period and enabling the reset and/or interrupt functions. After
enabling the reset function, software must then restart the timer before its expiration or the hardware will reset the
CPU. In this way, if the code execution goes awry and software does not reset the watchdog as scheduled, the
processor is put in a known good state: reset.

Software can select one of four timeout values as controlled by the WD1 and WD0 bits. Timeout values are precise
since they are a function of the crystal frequency. When the watchdog times out, it sets the watchdog timer-reset
flag (WTRF = WDCON.2), which generates a reset if enabled by the enable watchdog-timer reset (EWT =
WDCON.1) bit. Both the enable watchdog-timer reset and the reset watchdog timer control bits are protected by
timed-access circuitry. This prevents errant software from accidentally clearing or disabling the watchdog.

The watchdog interrupt is useful for systems that do not require a reset circuit. It set the WDIF (watchdog interrupt)
flag 512 clocks before setting the reset flag. Software can optionally enable this interrupt source, which is
independent of the watchdog-reset function. The interrupt is commonly used during the debug process to
determine where watchdog-reset commands must be located in the application software. The interrupt also can
serve as a convenient time base generator or can wake up the processor from power-saving modes.

The clock control (CKCON) and the watchdog control (WDCON) SFRs control the watchdog timer. CKCON.7 and
CKCON.6 (WD1 and WD0, respectively) select the watchdog timeout period. Of course, the 4X/2X (PMR.3) and
CD1:0 (PMR.7:6) system clock-control bits also affect the timeout period. Table 12 shows the timeout selection.

Table 12. Watchdog Timeout Values

WATCHDOG INTERRUPT TIMEOUT WATCHDOG RESET TIMEOUT
4X/2X CD1:0

WD1:0 = 00 WD1:0 = 01 WD1:0 = 10 WD1:0 = 11 WD1:0 = 00 WD1:0 = 01 WD1:0 = 10 WD1:0 = 11
1 00 215 218 221 224 215+512 218+512 221+512 224+512
0 00 216 219 222 225 216+512 219+512 222+512 225+512
x 01 217 220 223 226 217+512 220+512 223+512 226+512
x 10 217 220 223 226 217+512 220+512 223+512 226+512
x 11 225 228 231 234 225+512 228+512 231+512 234+512

Table 12 demonstrates that for a 33MHz crystal frequency, the watchdog timer can produce timeout periods from
3.97ms (217 x 1/33MHz) to over 2 seconds (2.034 = 226 x 1/33MHz) with the default setting of CD1:0 (=10). This
wide variation in timeout periods allows very flexible system implementation.

In a typical initialization, the user selects one of the possible counter values to determine the timeout. Once the
counter chain has completed a full count, hardware sets the interrupt flag (WDIF = WDCON.3). Regardless of
whether the software makes use of this flag, there are then 512 clocks left until the reset flag (WTRF = WDCON.2)
is set. Software can enable (1) or disable (0) the reset using the enable watchdog-timer-reset (EWT = WDCON.1)
bit.

DS80C390 Dual CAN High-Speed Microprocessor

45 of 53

Table 13. Interrupt Summary
NAME DESCRIPTION VECTOR NATURAL

PRIORITY FLAG BIT ENABLE BIT PRIORITY
CONTROL BIT

PFI Power-Fail Interrupt 33h 0 PFI (WDCON.4) EPFI (WDCON.5) N/A
INT0 External Interrupt 0 03h 1 IE0 (TCON.1)** EX0 (IE.0) PX0 (IP.0)
TF0 Timer 0 0Bh 2 TF0 (TCON.5)* ET0 (IE.1) PT0 (IP.1)
INT1 External Interrupt 1 13h 3 IE1 (TCON.3)** EX1 (IE.2) PX1 (IP.2)
TF1 Timer 1 1Bh 4 TF1 (TCON.7)* ET1 (IE.3) PT1 (IP.3)

SCON0 TI0 or RI0 from Serial Port 0 23h 5 RI_0 (SCON0.0);
TI_0 (SCON0.1) ES0 (IE.4) PS0 (IP.4)

TF2 Timer 2 2Bh 6 TF2 (T2CON.7) ET2 (IE.5) PT2 (IP.7)

SCON1 TI1 or RI1 from Serial Port 1 3Bh 7 RI_1 (SCON1.0);
TI_1 (SCON1.1) ES1 (IE.6) PS1 (IP.6)

INT2 External Interrupt 2 43h 8 IE2 (EXIF.4) EX2 (EIE.0) PX2 (EIP.0)
INT3 External Interrupt 3 4Bh 9 IE3 (EXIF.5) EX3 (EIE.1) PX3 (EIP.1)
INT4 External Interrupt 4 53h 10 IE4 (EXIF.6) EX4 (EIE.2) PX4 (EIP.2)
INT5 External Interrupt 5 5Bh 11 IE5 (EXIF.7) EX5 (EIE.3) PX5 (EIP.3)
C0I CAN0 Interrupt 6Bh 12 various C0IE (EIE.6) C0IP (EIP.6)
C1I CAN1 Interrupt 73h 13 various C1IE (EIE.5) C1IP (EIP.5)

WDTI Watchdog Timer 63h 14 WDIF (WDCON.3) EWDI (EIE.4) PWDI (EIP.4)
CANBUS CAN0/1 Bus Activity 7Bh 15 various CANBIE (EIE.7) CANBIP (EIP.7)

Unless marked, all flags must be cleared by the application software.
*Cleared automatically by hardware when the service routine is entered.
**If edge-triggered, flag is cleared automatically by hardware when the service routine is entered. If level-triggered, flag follows the state of the

interrupt pin.

CONTROLLER AREA NETWORK (CAN) MODULE
The DS80C390 incorporates two CAN controllers that are fully compliant with the CAN 2.0B specification. CAN is a
highly robust, high-performance communication protocol for serial communications. Popular in a wide range of
applications including automotive, medical, heating, ventilation, and industrial control, the CAN architecture allows
for the construction of sophisticated networks with a minimum of external hardware.

The CAN controllers support the use of 11-bit standard or 29-bit extended acceptance identifiers for up to 15
messages, with the standard 8-byte data field, in each message. Fourteen of the 15 message centers are
programmable in either transmit or receive modes, with the 15th designated as a FIFO-buffered, receive-only
message center to help prevent data overruns. All message centers support two separate 8-bit media masks and
media arbitration fields for incoming message verification. This feature supports the use of higher-level protocols,
which make use of the first and/or second byte of data as a part of the acceptance layer for storing incoming
messages. Each message center can also be programmed independently to test incoming data with or without the
use of the global masks.

Global controls and status registers in each CAN unit allow the microcontroller to evaluate error messages,
generate interrupts, locate and validate new data, establish the CAN bus timing, establish identification mask bits,
and verify the source of individual messages. Each message center is individually equipped with the necessary
status and control bits to establish direction, identification mode (standard or extended), data field size, data status,
automatic remote frame request and acknowledgment, and perform masked or non-masked identification
acceptance testing.

DS80C390 Dual CAN High-Speed Microprocessor

46 of 53

COMMUNICATING WITH THE CAN MODULE
The microcontroller interface to the CAN modules is divided into two groups of registers. All the global CAN status
and control bits as well as the individual message center control/status registers are located in the SFR map. The
remaining registers associated with the message centers (data identification, identification/arbitration masks,
format, and data) are located in MOVX data space. The CMA bit (MCON.5) allows the message centers to be
mapped to either 00EE00h–00EEFFh (CMA = 0) or 401000h–4011FFh (CMA = 1), reducing the possibility of a
memory conflict with application software. Note that setting the CMA bit employs a special 23rd address bit that is
only used for addressing CAN MOVX memory. The DS80C390’s internal architecture requires that the device be in
one of the two 22-bit addressing modes when the CMA bit is set to correctly use the 23rd bit and access the CAN
MOVX memory. A special lockout feature prevents the accidental software corruption of the control, status, and
mask registers while a CAN operation is in progress. Each CAN processor uses 15 message centers. Each
message center is composed of four specific areas, including the following:

1) Four arbitration registers (C0MxAR0–3 and C1MxAR0–3) that store either the 11-bit or 29-bit arbitration value.
These registers are located in the MOVX memory map.

2) A format register (C0MxF and C1MxF) that informs the CAN processor as to the direction (transmit or receive),
the number of data bytes in the message, the identification format (standard or extended), and the optional use
of the identification mask or media mask during message evaluation. This register is located in the MOVX
memory map.

3) Eight data bytes for storage of 0 to 8 bytes of data (C0MxD0–7 and C1MxD0–7), which are located in the
MOVX memory map.

4) Message control registers (C0MxC and C1MxC), which are located in the SFR memory for fast access.

Each of the message centers is identical with the exception of message center 15. Message center 15 has been
designed as a receive-only center, and is also buffered through the use of a two-message FIFO to help prevent
message loss in a message-overrun situation. The receipt of a third message before either of the first two are read
will overwrite the second message, leaving the first message undisturbed.

Modification of the CAN registers located in MOVX memory is protected through the SWINT bits, with one bit
protecting each respective CAN module. Consult the description of this bit in the High-Speed Microcontroller User’s
Guide: DS80C390 Supplement for more information. Each CAN module contains a block of control/status/mask
registers, 14 functionally identical message centers, plus a 15th message center that is receive-only and
incorporates a buffered FIFO. The following tables describe the organization of the message centers located in
MOVX space.

DS80C390 Dual CAN High-Speed Microprocessor

48 of 53

MOVX MESSAGE CENTERS FOR CAN 1
CAN 1 CONTROL/STATUS/MASK REGISTERS

REGISTER 7 6 5 4 3 2 1 0 MOVX DATA
ADDRESS1

C1MID0 MID07 MID06 MID05 MID04 MID03 MID02 MID01 MID00 xxxx00h
C1MA0 M0AA7 M0AA6 M0AA5 M0AA4 M0AA3 M0AA2 M0AA1 M0AA0 xxxx01h
C1MID1 MID17 MID16 MID15 MID14 MID13 MID12 MID11 MID10 xxxx02h
C1MA1 M1AA7 M1AA6 M1AA5 M1AA4 M1AA3 M1AA2 M1AA1 M1AA0 xxxx03h
C1BT0 SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 xxxx04h
C1BT1 SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10 xxxx05h

C1SGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx06h
C1SGM1 ID20 ID19 ID18 0 0 0 0 0 xxxx07h
C1EGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx08h
C1EGM1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx09h
C1EGM2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Ah
C1EGM3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Bh
C1M15M0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx0Ch
C1M15M1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx0Dh
C1M15M2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Eh
C1M15M3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Fh

CAN 1 MESSAGE CENTER 1
 Reserved xxxx10h–11h

C1M1AR0 CAN 1 MESSAGE 1 ARBITRATION REGISTER 0 xxxx12h
C1M1AR1 CAN 1 MESSAGE 1 ARBITRATION REGISTER 1 xxxx13h
C1M1AR2 CAN 1 MESSAGE 1 ARBITRATION REGISTER 2 xxxx14h
C1M1AR3 CAN 1 MESSAGE 1 ARBITRATION REGISTER 3 WTOE xxxx15h

C1M1F DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EX/ST MEME MDME xxxx16h
C1M1D0–7 CAN 1 MESSAGE 1 DATA BYTES 0–7 xxxx17h–1Eh

 Reserved xxxx1Fh
CAN 1 MESSAGE CENTERS 2–14

 MESSAGE CENTER 2 REGISTERS (similar to Message Center 1) xxxx20h–2Fh
 MESSAGE CENTER 3 REGISTERS (similar to Message Center 1) xxxx30h–3Fh
 MESSAGE CENTER 4 REGISTERS (similar to Message Center 1) xxxx40h–4Fh
 MESSAGE CENTER 5 REGISTERS (similar to Message Center 1) xxxx50h–5Fh
 MESSAGE CENTER 6 REGISTERS (similar to Message Center 1) xxxx60h–6Fh
 MESSAGE CENTER 7 REGISTERS (similar to Message Center 1) xxxx70h–7Fh
 MESSAGE CENTER 8 REGISTERS (similar to Message Center 1) xxxx80h–8Fh
 MESSAGE CENTER 9 REGISTERS (similar to Message Center 1) xxxx90h–9Fh
 MESSAGE CENTER 10 REGISTERS (similar to Message Center 1) xxxxA0h–AFh
 MESSAGE CENTER 11 REGISTERS (similar to Message Center 1) xxxxB0h–BFh
 MESSAGE CENTER 12 REGISTERS (similar to Message Center 1) xxxxC0h–CFh
 MESSAGE CENTER 13 REGISTERS (similar to Message Center 1) xxxxD0h–DFh
 MESSAGE CENTER 14 REGISTERS (similar to Message Center 1) xxxxE0h–EFh

CAN 1 MESSAGE CENTER 15
— Reserved xxxxF0h–F1h

C1M15AR0 CAN 1 MESSAGE 15 ARBITRATION REGISTER 0 xxxxF2h
C1M15AR1 CAN 1 MESSAGE 15 ARBITRATION REGISTER 1 xxxxF3h
C1M15AR2 CAN 1 MESSAGE 15 ARBITRATION REGISTER 2 xxxxF4h
C1M15AR3 CAN 1 MESSAGE 15 ARBITRATION REGISTER 3 WTOE xxxxF5h

C1M15F DTBYC3 DTBYC2 DTBYC1 DTBYC0 0 EX/ST MEME MDME xxxxF6h
C1M15D0–
C1M15D7 CAN 1 MESSAGE 15 DATA BYTE 0–7 xxxxF7h–FEh

 Reserved xxxxFFh
1The first two bytes of the CAN 1 MOVX memory address are dependent on the setting of the CMA bit (MCON.5) CMA = 0, xxxx = 00EF; CMA
= 1, xxxx = 4011.

DS80C390 Dual CAN High-Speed Microprocessor

49 of 53

CAN INTERRUPTS
The DS80C390 supports three interrupts associated with the CAN controllers. One interrupt is dedicated to each
CAN controller, providing receive/transmit acknowledgments from each of its 15 message centers. The remaining
interrupt, the CAN bus activity interrupt, is used to detect CAN bus activity on the C0RX or C1RX pins.

The message center interrupts are enabled/disabled by individual ETI (transmit) and ERI (receive) enable bits in
the corresponding message control register (located in SFR memory) for each message center. All the message
center interrupts of each CAN module are ORed together into their respective CAN interrupt. The successful
transmission or receipt of a message sets the INTRQ bit in the corresponding message control register (located in
SFR memory). This bit can only be cleared through software. In addition, the global interrupt-enable bit (IE.7) and
the specific CAN interrupt-enable bit, EIE.6 (CAN0) or EIE.5 (CAN1), must be correctly set to acknowledge a
message center interrupt.

Interrupt assertion of error and status conditions associated with the CAN modules is controlled by the ERIE and
STIE bits located in the CAN control registers, C0C and C1C.

ARBITRATION AND MASKING
After a CAN module has ascertained that an incoming message is bit-error-free, the identification field of that
message is then compared against one or more arbitration values to determine if they will be loaded into a
message center. Each enabled message center (see the MSRDY bit in the CAN Message Control Register) is
tested in order from 1 to 15. The first message center to successfully pass the test receives the incoming message
and ends the testing. Using masking registers allows the use of more complex identification schemes, as tests can
be made based on bit patterns rather than an exact match between all bits in the identification field and arbitration
values. Each CAN processor also incorporates a set of five masks to allow messages with different IDs to be
grouped and successfully loaded into a message center. Note that some of these masks are optional as per the
bits shown in the Arbitration/Masking Feature Summary table (Table 14).

There are several possible arbitration tests, varying according to which message center is involved. If all the
enabled tests succeed, the message is loaded into the respective message center. The most basic test, performed
on all messages, compares either 11 (CAN 2.0A) or 29 (CAN 2.0B) bits of the identification field to the appropriate
arbitration register, based on the EX/ST bit in the CAN 0/1 format register. The MEME bit (C0MxF.1 or C1MxF.1)
controls whether the arbitration and ID registers are compared directly or through a mask register. A special set of
arbitration registers dedicated to message center 15 allows added flexibility in filtering this location.

If desired, further arbitration can be performed by comparing the first two bytes of the data field in each message
against two 8-bit media arbitration register bytes. The MDME bit in the CAN message center format registers
(C0MxF.0 or C1MxF.0) either disables (MDME = 0) arbitration, or enables (MDME = 1) arbitration using the media
ID mask registers 0–1.

If the 11-bit or 29-bit arbitration and the optional media-byte arbitration are successful, the message is loaded into
the respective message center. The format register also allows the microcontroller to program each message
center to function in a receive or transmit mode through the T/R bit, and to use from 0 to 8 data bytes within the
data field of a message. Note that message center 15 can only be used in a receive mode. To avoid a priority
inversion, the DS80C390 CAN processors are configured to reload the transmit buffer with the message of the
highest priority (lowest message center number) whenever an arbitration is lost or an error condition occurs.

DS80C390 Dual CAN High-Speed Microprocessor

53 of 53

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products , 120 San Gabrie l Dr ive , Sunnyvale , CA 94086 408-737-7600

© 2005 Maxim Integrated Products \
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corp.

REVISION HISTORY
REVISION DESCRIPTION

062299 Initial preliminary release.

090799
Clarifies that unused/unimplemented bits in the CAN MOVX SRAM read 0.
Corrected the tMCS time period table.
Corrected multiplexed 2-cycle date memory CEO-3 read figure to show RD and WR inactive.

110199

Corrected P5.2 and P5.3 pin descriptions.
Corrected description of sequence to activate the crystal frequency multiplier.
Corrected references to PQFP to read LQFP.
Added RSTOL timing information.

032904

Official release (removed “preliminary” status).
Abs max soldering temp now references JEDEC standard.
AC and DC specifications updated to reflect final characterization data.
Clarified DC characteristics Note 6 concerning port 4 and 5.
Removed Figure 1. Typical ICC vs. Frequency.
Added tLLAX3 specification (identical to tLLAX2).
Clarified that tRLAZ is held weak latch until overdriven by external memory.
Removed tPXIZ, tPHAV, tPHWL, and tPHRL from nonmultiplexed address/data bus table.
Corrected PSEN trace in Figure 10 to not show assertion during MOVX write.
Corrected Table 3 to show unnecessary steps during 16/16 divide.
Supplied approximate oscillator-fail detection frequency.
Removed text references to Stop mode current.
Corrected location of PT2 in Table 14.

022305

In Absolute Maximum Ratings section (page 2):
Removed “A” from IPC/JEDEC J-STD-020A specification to support lead-free devices.

In DC Electrical Characteristics table (page 2):
Changed VPFW MIN to 4.10V from 4.20V
Changed VPFW MAX to 4.60V from 4.55V
Changed VRST MIN to 3.85V from 3.95V
Changed VRST MAX to 4.35V from 4.3V
Changed VIH2 MIN reference to 0.7 x VCC from 0.7 x VDD
Added Note 10

In AC Electrical Characteristics table (page 3):
Added note to (now) Note 11 that AC timing is characterized and guaranteed by design but
is not production tested.

060805 Added lead-free part numbers to Ordering Information table.

110905

Added new paragraph to page 33 stating “Software must ensure that the input value for the
normalize operation is not zero or the function will not complete. Compilers such as the one from
Keil Software have updated their libraries and compensate for this condition.”

Table 3: clarified text under “Normalize” function. Changed “Configure MCNTO register as
required.” to “Load MCNT0 with 00h.”

