
Analog Devices Inc./Maxim Integrated - DS80C390-FNR+ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, EBI/EMI, SIO, UART/USART

Peripherals Power-Fail Reset, WDT

Number of I/O 32

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3.85V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/analog-devices/ds80c390-fnr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/ds80c390-fnr-4378713
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DS80C390 Dual CAN High-Speed Microprocessor

3 of 53

AC ELECTRICAL CHARACTERISTICS—(MULTIPLEXED ADDRESS/DATA BUS)
(Note 10, Note 11)

40MHz VARIABLE CLOCK PARAMETER SYMBOL CONDITIONS MIN MAX MIN MAX UNITS

External oscillator 0 40 0 40 Oscillator Frequency 1 / tCLCL External crystal 1 40 1 40
MHz

ALE Pulse Width tLHLL 0.375 tMCS
- 5 ns

Port 0 Instruction Address or CE0–4
Valid to ALE Low tAVLL 0.125 tMCS - 5 ns

Address Hold After ALE Low tLLAX1 0.125 tMCS - 5 ns

ALE Low to Valid Instruction In tLLIV 0.625 tMCS - 20 ns

ALE Low to PSEN Low tLLPL 0.125 tMCS - 5 ns

PSEN Pulse Width tPLPH 0.5 tMCS - 8 ns

PSEN Low to Valid Instruction In tPLIV 0.5 tMCS - 20 ns

Input Instruction Hold After PSEN tPXIX 0 0 ns

Input Instruction Float After PSEN tPXIZ 0.25 tMCS - 5 ns

Port 0 Address to Valid Instruction In tAVIV1 0.75 tMCS - 22 ns

Port 2, 4 Address to Valid Instruction
In tAVIV2 0.875 tMCS - 30 ns

PSEN Low to Address Float tPLAZ 0 0 ns

Note 11:

All parameters apply to both commercial and industrial temperature operation unless otherwise noted. The value tMCS is a function
of the machine cycle clock in terms of the processor’s input clock frequency. These relationships are described in the Stretch Value
Timing table. All signals characterized with load capacitance of 80pF except Port 0, ALE, PSEN, RD, and WR with 100pF.
Interfacing to memory devices with float times (turn off times) over 25ns can cause bus contention. This does not damage the
parts, but causes an increase in operating current. Specifications assume a 50% duty cycle for the oscillator. Port 2 and ALE timing
changes in relation to duty cycle variation. Some AC timing characteristic drawings contain references to the CLK signal. This
waveform is provided to assist in determining the relative occurrence of events and cannot be used to determine the timing of
signals relative to the external clock. AC timing is characterized and guaranteed by design but is not production tested.

DS80C390 Dual CAN High-Speed Microprocessor

7 of 53

Figure 3. Multiplexed 9-Cycle Address/Data PCE0-3 MOVX Read/Write Operation

DS80C390 Dual CAN High-Speed Microprocessor

9 of 53

Figure 6. Multiplexed 2-Cycle Data Memory CE0-3 Write

Figure 7. Multiplexed 3-Cycle Data Memory PCE0-3 Read or Write

DS80C390 Dual CAN High-Speed Microprocessor

11 of 53

Figure 10. Multiplexed 9-Cycle Data Memory PEC0-3 Read or Write

Figure 11. Multiplexed 9-Cycle Data Memory CE0-3 Read

DS80C390 Dual CAN High-Speed Microprocessor

14 of 53

MOVX CHARACTERISTICS (NONMULTIPLEXED ADDRESS/DATA BUS)

PARAMETER SYMBOL MIN MAX UNITS
STRETCH
VALUES

CST (MD2:0)
0.5 tMCS - 6 CST = 0

RD Pulse Width tRLRH CST x tMCS - 6 ns
1 ≤ CST ≤ 7

0.5 tMCS - 6 CST = 0
WR Pulse Width tWLWH CST x tMCS - 6 ns

1 ≤ CST ≤ 7
 0.5 tMCS - 20 CST = 0

RD Low to Valid Data In tRLDV CST x tMCS - 25 ns
1 ≤ CST ≤ 7

Data Hold After Read tRHDX 0 ns
 0.125 tMCS - 5 CST = 0
 0.375tMCS - 5 1 ≤ CST ≤ 3 Data Float After Read tRHDZ
 1.375 tMCS - 5

ns
4 ≤ CST ≤ 7

 0.75 tMCS - 26 CST = 0
 (4CST + 0.5) x tMCS - 30 1 ≤ CST ≤ 3 Port 1 Address, Port 4 CE, Port 5

PCE to Valid Data In tAVDV1
 (4CST + 2.5) x tMCS - 30

ns
4 ≤ CST ≤ 7

 0.75 tMCS - 30 CST = 0
 (4CST + 0.625) x tMCS - 30 1 ≤ CST ≤ 3 Port 2, 4 Address to Valid Data In tAVDV2
 (4CST + 2.625) x tMCS - 30

ns
4 ≤ CST ≤ 7

0.25 tMCS - 11 CST = 0
0.5 tMCS - 11 1 ≤ CST ≤ 3 Port 0 Address, Port 4 CE, Port 5

PCE to RD or WR Low tAVWL1
2.5 tMCS - 11

ns
4 ≤ CST ≤ 7

0.375 tMCS - 11 CST = 0
0.625tMCS - 11 1 ≤ CST ≤ 3 Port 2, 4 Address to RD or WR Low tAVWL2
2.625 tMCS - 11

ns
4 ≤ CST ≤ 7

Data Valid to WR Transition tQVWX -8 ns
0.25 tMCS - 8 CST = 0
0.5tMCS - 10 1 ≤ CST ≤ 3 Data Hold After WR High tWHQX
1.5 tMCS - 10

ns
4 ≤ CST ≤ 7

-5 10 CST = 0
0.25 tMCS - 7 0.25 tMCS + 10 1 ≤ CST ≤ 3 RD or WR High to ALE, Port 4 CE or

Port 5 PCE High tWHLH
1.25 tMCS - 7 1.25 tMCS + 10

ns
4 ≤ CST ≤ 7

DS80C390 Dual CAN High-Speed Microprocessor

21 of 53

Figure 24. Nonmultiplexed 9-Cycle Data Memory CE0-3 Write

tMCS TIME PERIODS

SYSTEM CLOCK SELECTION

4X/2X CD1 CD0
tMCS

1 0 0 1 tCLCL
0 0 0 2 tCLCL
X 1 0 4 tCLCL
X 1 1 1024 tCLCL

EXTERNAL CLOCK CHARACTERISTICS

PARAMETER SYMBOL MIN MAX UNITS
Clock High Time tCHCX 8 ns
Clock Low Time tCLCX 8 ns
Clock Rise Time tCLCH 4 ns
Clock Fall Time tCHCL 4 ns

Figure 25. External Clock Drive

DS80C390 Dual CAN High-Speed Microprocessor

28 of 53

Figure 28. Block Diagram

DS80C390

DS80C390 Dual CAN High-Speed Microprocessor

33 of 53

ON-CHIP ARITHMETIC ACCELERATOR
An on-chip math accelerator allows the microcontroller to perform 32-bit and 16-bit multiplication, division, shifting,
and normalization using dedicated hardware. Math operations are performed by sequentially loading three special
registers. The mathematical operation is determined by the sequence in which three dedicated SFRs (MA, MB, and
MC) are accessed, eliminating the need for a special step to choose the operation. The normalize function
facilitates the conversion of 4-byte unsigned binary integers into floating point format. Table 2 shows the operations
supported by the math accelerator and their time of execution.

Table 2. Arithmetic Accelerator Execution Times

OPERATION RESULT EXECUTION TIME
(tCLCL)

32-Bit/16-Bit Divide 32-Bit Quotient, 16-Bit Remainder 36
16-Bit/16-Bit Divide 16-Bit Quotient, 16-Bit Remainder 24

16-Bit/16-Bit Multiply 32-Bit Product 24
32-Bit Shift Left/Right 32-Bit Result 36

32-Bit Normalize 32-Bit Mantissa, 5-Bit Exponent 36

Table 3 demonstrates the procedure to perform mathematical operations using the hardware math accelerator. The
MA and MB registers must be loaded and read in the order shown for proper operation, although accesses to any
other registers can be performed between access to the MA or MB registers. An access to the MA, MB, or MC
registers out of sequence corrupts the operation, requiring the software to clear the MST bit to restart the math
accelerator state machine. Consult the description of the MCNT0 SFR for details of how the shift and normalize
functions operate.

Software must ensure that the input value for the normalize operation is not zero or the function will not complete.
Compilers such as the one from Keil Software have updated their libraries and compensate for this condition.

Table 3. Arithmetic Accelerator Sequencing

DIVIDE (32/16 OR 16/16) MULTIPLY (16 X 16)
Load MA with dividend LSB.
Load MA with dividend LSB + 1.*
Load MA with dividend LSB + 2.*
Load MA with dividend MSB.
Load MB with divisor LSB.
Load MB with divisor MSB.
Poll the MST bit until cleared. (9 machine cycles).
Read MA to retrieve the quotient MSB.
Read MA to retrieve the quotient LSB + 2.**
Read MA to retrieve the quotient LSB + 1.**
Read MA to retrieve the quotient LSB.
Read MB to retrieve the remainder MSB.
Read MB to retrieve the remainder LSB.

Load MB with multiplier LSB.
Load MB with multiplier MSB.
Load MA with multiplicand LSB.
Load MA with multiplicand MSB.
Poll the MST bit until cleared. (6 machine cycles).
Read MA for product MSB.
Read MA for product LSB + 2.
Read MA for product LSB + 1.
Read MA for product LSB.

SHIFT RIGHT/LEFT NORMALIZE
Load MA with data LSB.
Load MA with data LSB + 1.
Load MA with data LSB + 2.
Load MA with data MSB.
Configure MCNT0 register as required
Poll the MST bit until cleared. (9 machine cycles)
Read MA for result MSB.
Read MA for result LSB + 2.
Read MA for result LSB + 1.
Read MA for result LSB.

Load MA with data LSB.
Load MA with data LSB + 1.
Load MA with data LSB + 2.
Load MA with data MSB.***
Load MCNT0 with 00h.
Poll the MST bit until cleared. (9 machine cycles)
Read MA for mantissa MSB.
Read MA for mantissa LSB + 2.
Read MA for mantissa LSB + 1.
Read MA for mantissa LSB.
Read MCNT0.4–MCNT0.0 for exponent.

*Not performed for 16-bit numerator.
**Not performed for 16/16 divide.
***Value to be normalized must be nonzero.

DS80C390 Dual CAN High-Speed Microprocessor

34 of 53

40-BIT ACCUMULATOR
The accelerator also incorporates an automatic accumulator function, permitting the implementation of multiply-
and-accumulate and divide-and-accumulate functions without any additional delay. Each time the accelerator is
used for a multiply or divide operation, the result is transparently added to a 40-bit accumulator. This can greatly
increase speed of DSP and other high-level math operations.

The accumulator can be accessed anytime the multiply/accumulate status flag (MCNT1;D2h) is cleared. The
accumulator is initialized by performing five writes to the multiplier C register (MC;D5h), LSB first. The 40-bit
accumulator can be read by performing five reads of the multiplier C register, MSB first.

MEMORY ADDRESSING
The DS80C390 incorporates three internal memory areas:
� 256 bytes of scratchpad (or direct) RAM
� 4kB of SRAM configurable as various combinations of MOVX data memory, stack memory, and MOVC

program memory
� 512 bytes of RAM reserved for the CAN message centers.

Up to 4MB of external memory is addressed via a multiplexed or demultiplexed 20-bit address bus/8-bit data bus
and four chip-enable (active during program memory access) or four peripheral-enable (active during data memory
access) signals. Three different addressing modes are supported, as selected by the AM1, AM0 bits in the ACON
SFR.

16-Bit Address Mode
Memory is accessed by 16-bit address mode similarly to the traditional 8051. It is op-code compatible with the 8051
microprocessor and identical to the byte and cycle count of the Dallas Semiconductor High-Speed Microcontroller
family. A device operating in this mode can access up to 64kB of program and data memory. The device defaults to
this mode following any reset.

22-Bit Paged-Address Mode
The 22-bit paged-address mode retains binary-code compatibility with the 8051 instruction set, but adds one
machine cycle to the ACALL, LCALL, RET, and RETI instructions with respect to Dallas Semiconductor’s High-
Speed Microcontroller family timing. This is transparent to standard 8051 compilers. Interrupt latency is also
increased by one machine cycle. In this mode, interrupt vectors are fetched from 0000xxh.

22-Bit Contiguous Address Mode
The 22-bit contiguous addressing mode uses a full 22-bit program counter, and all modified branching instructions
automatically save and restore the entire program counter. The 22-bit branching instructions such as ACALL,
AJMP, LCALL, LJMP, MOV DPTR, RET, and RETI instructions require an assembler, compiler, and linker that
specifically supports these features. The INC DPTR is lengthened by one cycle but remains byte-count-compatible
with the standard 8051 instruction set.

Internally, the device uses a 22-bit program counter. The lowest order 22 bits are used for memory addressing,
with a special 23rd bit used to map the 4kB SRAM above the 4MB memory space in bootstrap loader applications.
Address bits 16–23 for the 22-bit addressing modes are generated through additional SFRs dependent on the type
of instruction as shown in Table 4.

Table 4. Extended Address Generation

INSTRUCTION ADDRESS BITS
23–16

ADDRESS BITS
15–8

ADDRESS BITS
7–0

MOVX instructions using DPTR DPX;93h DPH;83h DPL;82h
MOVX instructions using DPTR1 DPX1;95h DPH1;85h DPL1;84h
MOVX instructions using @Ri MXAX;EAh P2;A0h Ri
Addressing program memory in 22-bit
paged mode AP;9Ch — —

10-bit stack pointer mode — ESP;9Bh SP;81h

DS80C390 Dual CAN High-Speed Microprocessor

35 of 53

INTERNAL MOVX SRAM
The DS80C390 contains 4kB of SRAM that can be configured as user accessible MOVX memory, program
memory, or optional stack memory. The specific configuration and locations are governed by the internal data
memory configuration bits (IDM1, IDM0) in the memory control register (MCON;C6h). Note that when the SA bit
(ACON.2) is set, the first 1kB of the MOVX data memory is reserved for use by the 10-bit expanded stack. Internal
memory accesses will not generate WR, RD, or PSEN strobes.

The DS80C390 can configure its 4kB of internal SRAM as combined program and data memory. This allows the
application software to execute self-modifiable code. The technique loads the 4kB SRAM with bootstrap loader
software, and then modifies the IDM1 and IDM0 bits to map the 4kB starting at memory location 40000h. This
allows the system to run the bootstrap loader without disturbing the 4MB external memory bus, making the device
in-system reprogrammable for flash or NV RAM.

Table 5. Internal MOVX SRAM Configuration

MEMORY
IDM1 IDM0 CMA

MOVX DATA CAN MESSAGE SHARED PROGRAM/DATA
0 0 0 00F000h–00FFFFh 00EE00h–00EFFFh —
0 0 1 00F000h–00FFFFh 401000h–4011FFh —
0 1 0 000000h–000FFFh 00EE00h–00EFFFh —
0 1 1 000000h–000FFFh 401000h–4011FFh —
1 0 0 400000h–400FFFh 00EE00h–00EFFFh —
1 0 1 400000h–400FFFh 401000h–4011FFh —
1 1 0 — 00EE00h–00EFFFh 400000h–400FFFh*
1 1 1 — 401000h–4011FFh 400000h–400FFFh*

*10-bit expanded stack is not available in shared program/data memory mode.

EXTERNAL MEMORY ADDRESSING
The enabling and mapping of the chip-enable signals is done through the Port 4 control register (P4CNT;92h) and
memory control register (MCON; 96h). Table 7 shows which chip-enable and address line signals are active on
Port 4. Following reset, the device will be configured with P4.7–P4.4 as address lines and P4.3–P4.0 configured as
CE3-0, with the first program fetch being performed from 00000h with CE0 active. The following tables illustrate
which memory ranges are controlled by each chip enable as a function of which address lines are enabled.

Table 6. External Memory Addressing Pin Assignments

ADDRESS/DATA
BUS CE3–CE0 PCE3–PCE0 ADDR 19–16 ADDR 15–8 ADDR 7–0 DATA BUS

Multiplexed P4.3–P4.0 P5.7–P5.4 P4.7–P4.4 P2 P0 P0

Demultiplexed P4.3–P4.0 P5.7–P5.4 P4.7–P4.4 P2 P1 P0

Table 7. Extended Address and Chip-Enable Generation

PORT 4 PIN FUNCTION PORT 4 PIN FUNCTION P4CNT.5–3 P4.7 P4.6 P4.5 P4.4 P4CNT.2–0 P4.3 P4.2 P4.1 P4.0
000 I/O I/O I/O I/O 000 I/O I/O I/O I/O
100 I/O I/O I/O A16 100 I/O I/O I/O CE0
101 I/O I/O A17 A16 101 I/O I/O CE1 CE0
110 I/O A18 A17 A16 110 I/O CE2 CE1 CE0

111(default) A19 A18 A17 A16 111(default) CE3 CE2 CE1 CE0

DS80C390 Dual CAN High-Speed Microprocessor

37 of 53

Table 9. Data Memory Cycle Stretch Values
RD, WR PULSE WIDTH (IN OSCILLATOR CLOCKS)

MD2 MD1 MD0
STRETCH

CYCLE
COUNT

MOVX
MACHINE
CYCLES

tMCS
(4X/2X = 1

CD1:0 = 00)

tMCS
(4X/2X = 0

CD1:0 = 00)

tMCS
(4X/2X = X

CD1:0 = 10)

tMCS
(4X/2X = X

CD1:0 = 11)
0 0 0 0* 2 0.5 tCLCL 1 tCLCL 2 tCLCL 2048 tCLCL
0 0 1 1** 3 tCLCL 2 tCLCL 4 tCLCL 4096 tCLCL
0 1 0 2 4 2 tCLCL 4 tCLCL 8 tCLCL 8192 tCLCL
0 1 1 3 5 3 tCLCL 6 tCLCL 12 tCLCL 12,288 tCLCL
1 0 0 4 9 4 tCLCL 8 tCLCL 16 tCLCL 16,384 tCLCL
1 0 1 5 10 5 tCLCL 10 tCLCL 20 tCLCL 20,480 tCLCL
1 1 0 6 11 6 tCLCL 12 tCLCL 24 tCLCL 24,576 tCLCL
1 1 1 7 12 7 tCLCL 14 tCLCL 28 tCLCL 28,672 tCLCL

*All internal MOVX operations execute at the 0 Stretch setting.
**Default stretch setting for external MOVX operations following reset.

EXTENDED STACK POINTER
The DS80C390 supports both the traditional 8-bit and an extended 10-bit stack pointer that improves the
performance of large programs written in high-level languages such as C. Enable the 10-bit stack pointer feature by
setting the stack address mode bit, SA (ACON.2). The bit is cleared following a reset, forcing the device to use an
8-bit stack located in the scratchpad RAM area. When the SA bit is set, the device will address up to 1kB of stack
memory in the first 1kB of the internal MOVX memory. The 10-bit stack pointer address is generated by
concatenating the lower two bits of the extended stack pointer (ESP;9Bh) and the traditional 8051 stack pointer
(SP;81h). The 10-bit stack pointer cannot be enabled when the 4kB of SRAM is mapped as both program and data
memory.

ENHANCED DUAL DATA POINTERS
The DS80C390 contains two data pointers, DPTR0 and DPTR1, designed to improve performance in applications
that require high data throughput. Incorporating a second data pointer allows the software to greatly speed up block
data (MOVX) moves by using one data pointer as a source register and the other as the destination register.

DPTR0 is located at the same address as the original 8051 data pointer, allowing the DS80C390 to execute
standard 8051 code with no modifications. The second data pointer, DPTR1, is split between the DPH1 and DPL1
SFRs, similar to the DPTR0 configuration. The active data pointer is selected with the data pointer select bit SEL
(DPS.0). Any instructions that reference the DPTR (i.e., MOVX A, @DPTR), will select DPTR0 if SEL = 0, and
DPTR1 if SEL = 1. Because the bits adjacent to SEL are not implemented, the state of SEL (and thus the active
data pointer) can be quickly toggled by the INC DPS instruction without disturbing other bits in the DPS register.

Unlike the standard 8051, the DS80C390 has the ability to decrement as well as increment the data pointers
without additional instructions. When the INC DPTR instruction is executed, the active DPTR increments or
decrements according to the ID1, ID0 (DPS.7-6), and SEL (DPS.0) bits as shown. The inactive DPTR is not
affected.

Table 10. Data Pointer Auto Increment/
Decrement Configuration

ID1 ID0 SEL INC DPTR RESULT
X 0 0 Increment DPTR0
X 1 0 Decrement DPTR0
0 X 1 Increment DPTR1
1 X 1 Decrement DPTR1

Another useful feature of the device is its ability to automatically switch the active data pointer after a DPTR-based
instruction is executed. This feature can greatly reduce the software overhead associated with data memory block
moves, which toggle between the source and destination registers. When the toggle-select bit (TSL;DPS.5) is set
to 1, the SEL bit (DPS.0) is automatically toggled every time one of the following DPTR-related instructions is
executed.

DS80C390 Dual CAN High-Speed Microprocessor

38 of 53

INC DPTR
MOV DPTR, #data16
MOVC A, @A+DPTR
MOVX A, @DPTR
MOVX @DPTR, A

As a brief example, if TSL is set to 1, then both data pointers can be updated with two INC DPTR instructions.
Assume that SEL = 0, making DPTR the active data pointer. The first INC DPTR increments DPTR and toggles
SEL to 1. The second instruction increments DPTR1 and toggles SEL back to 0.

INC DPTR
INC DPTR

CLOCK CONTROL AND POWER MANAGEMENT
The DS80C390 includes a number of unique features that allow flexibility in selecting system clock sources and
operating frequencies. To support the use of inexpensive crystals while allowing full speed operation, a clock
multiplier is included in the processor’s clock circuit. Also, in addition to the standard 80C32 idle and power-down
(Stop) modes, the DS80C390 provides a new power management mode. This mode allows the processor to
continue instruction execution, yet at a very low speed to significantly reduce power consumption (below even idle
mode). The DS80C390 also features several enhancements to stop mode that make this extremely low-power
mode more useful. Each of these features is discussed in detail below.

System Clock Control
As mentioned previously, the microcontroller contains special clock-control circuitry that simultaneously provides
maximum timing flexibility and maximum availability and economy in crystal selection. The logical operation of the
system clock-divide control function is shown in Figure 29. A 3:1 multiplexer, controlled by CD1, CD0 (PMR.7-6),
selects one of three sources for the internal system clock:

� Crystal oscillator or external clock source
� (Crystal oscillator or external clock source) divided by 256
� (Crystal oscillator or external clock source) frequency multiplied by 2 or 4 times

Figure 29. System Clock Control Diagram

The system clock-control circuitry generates two clock signals that are used by the microcontroller. The internal
system clock provides the time base for timers and internal peripherals. The system clock is run through a divide-
by-4 circuit to generate the machine cycle clock that provides the time base for CPU operations. All instructions
execute in one to five machine cycles. It is important to note the distinction between these two clock signals, as
they are sometimes confused, creating errors in timing calculations.

Setting CD1, CD0 to 0 enables the frequency multiplier, either doubling or quadrupling the frequency of the crystal
oscillator or external clock source. The 4X/2X bit controls the multiplying factor, selecting twice or four times the
frequency when set to 0 or 1, respectively. Enabling the frequency multiplier results in apparent instruction
execution speeds of 2 or 1 clocks. Regardless of the configuration of the frequency multiplier, the system clock of

DS80C390 Dual CAN High-Speed Microprocessor

39 of 53

the microcontroller can never be operated faster than 40MHz. This means that the maximum crystal oscillator or
external clock source is 10MHz when using the 4X setting, and 20MHz when using the 2X setting.

The primary advantage of the clock multiplier is that it allows the microcontroller to use slower crystals to achieve
the same performance level. This reduces EMI and cost, as slower crystals are generally more available and thus
less expensive.

Table 11. System Clock Configuration

CD1 CD0 4X/2X FUNCTION CLOCKS PER
MACHINE CYCLE

MAX EXTERNAL
FREQUENCY

(MHz)
0 0 0 Frequency Multiplier (2X) 2 20
0 0 1 Frequency Multiplier (4X) 1 10
0 1 N/A Reserved — —
1 0 N/A Divide-by-4 (Default) 4 40
1 1 N/A Power Management Mode 1024 40

The system clock and machine cycle rate changes one machine cycle after the instruction changing the control
bits. Note that the change affects all aspects of system operation, including timers and baud rates. The use of the
switchback feature, described later, can eliminate many of the problems associated with the PMM.

Changing the System Clock/Machine Cycle Clock Frequency
The microcontroller incorporates a special locking sequence to ensure “glitch-free” switching of the internal clock
signals. All changes to the CD1, CD0 bits must pass through the 10 (divide-by-4) state. For example, to change
from 00 (frequency multiplier) to 11 (PMM), the software must change the bits in the following sequence: 00 ≥ 10 ≥
11. Attempts to switch between invalid states will fail, leaving the CD1, CD0 bits unchanged.

The following sequence must be followed when switching to the frequency multiplier as the internal time source.
This sequence can only be performed when the device is in divide-by-4 operation. The steps must be followed in
this order, although it is possible to have other instructions between them. Any deviation from this order will cause
the CD1, CD0 bits to remain unchanged. Switching from frequency multiplier to non-multiplier mode requires no
steps other than the changing of the CD1, CD0 bits.

1) Ensure that the CD1, CD0 bits are set to 10, and the RGMD (EXIF.2) bit = 0.
2) Clear the CTM (Crystal Multiplier Enable) bit.
3) Set the 4X/2X bit to the appropriate state.
4) Set the CTM (crystal multiplier enable) bit.
5) Poll the CKRDY bit (EXIF.4), waiting until it is set to 1. This will take approximately 65,536 cycles of the

external crystal or clock source.
6) Set CD1, CD0 to 00. The frequency multiplier is engaged on the machine cycle following the write to these bits.

OSCILLATOR-FAIL DETECT
The microprocessor contains a safety mechanism called an on-chip oscillator-fail-detect circuit. When enabled, this
circuit causes the processor to be held in reset if the oscillator frequency falls below 40kHz. In operation, this circuit
complements the watchdog timer. Normally, the watchdog timer is initialized so that it times out and causes a
processor reset in the event that the processor loses control. In the event of a crystal or external oscillator failure,
however, the watchdog timer does not function and there is the potential for the processor to fail in an uncontrolled
state. The use of the oscillator-fail-detect circuit forces the processor to a known state (i.e., reset) even if the
oscillator stops.

The oscillator-fail-detect circuitry is enabled when software sets the enable bit OFDE (PCON.4) to 1. Please note
that software must use a timed-access procedure (described later) to write this bit. The OFDF (PCON.5) bit also
sets to 1 when the circuitry detects an oscillator failure, and the processor is forced into a reset state. This bit can
only be cleared to 0 by a power-fail reset or by software. The oscillator-fail-detect circuitry is not activated when the
oscillator is stopped due to the processor entering stop mode.

DS80C390 Dual CAN High-Speed Microprocessor

41 of 53

STOP MODE
Setting the STOP bit of the power control register (PCON.1) invokes stop mode. Stop mode is the lowest power
state (besides power off) since it turns off all internal clocking. All processor operation ceases at the end of the
instruction that sets the STOP bit. The CPU can exit stop mode via an external interrupt, if enabled, or a reset
condition. Internally generated interrupts (timer, serial port, watchdog) cannot cause an exit from stop mode
because internal clocks are not active in stop mode.

BANDGAP SELECT
The DS80C390 provides two enhancements to stop mode. As described below, the device provides a band-gap
reference to determine power-fail interrupt and reset thresholds. The bandgap select bit, BGS (RCON.0), controls
the bandgap reference. Setting BGS to 1 keeps the bandgap reference enabled during stop mode. The default or
reset condition of the bit is logic 0, which disables the bandgap during stop mode. This bit has no control of the
reference during full power, PMM, or idle modes.

With the bandgap reference enabled, the power-fail reset and interrupt are valid means for leaving stop mode. This
allows software to detect and compensate for a power-supply sag or brownout, even when in stop mode. In stop
mode with the bandgap enabled, ICC is higher compared to with the bandgap disabled. If a user does not require a
power-fail reset or interrupt while in stop mode, the bandgap can remain disabled. Only the most power-sensitive
applications should disable the bandgap reference in stop mode, as this results in an uncontrolled power-down
condition.

RING OSCILLATOR
The second enhancement to Stop mode reduces power consumption and allows the device to restart instantly
when exiting stop mode. The ring oscillator is an internal clock that can optionally provide the clock source to the
microcontroller when exiting stop mode in response to an interrupt.

During stop mode the crystal oscillator is halted to maximize power savings. Typically, 4ms to 10ms is required for
an external crystal to begin oscillating again once the device receives the exit stimulus. The ring oscillator, by
contrast, is a free-running digital oscillator that has no startup delay. Setting the ring oscillator select bit, RGSL
(EXIF.1), enables the ring oscillator feature. If enabled, the microcontroller uses the ring oscillator as the clock
source to exit stop mode, resuming operation in less than 100ns. After 65,536 oscillations of the external clock
source (not the ring oscillator), the device clears the ring-oscillator-mode bit, RGMD (EXIF.2), to indicate that the
device has switched from the ring oscillator to the external clock source.

The ring oscillator runs at approximately 10MHz but varies over temperature and voltage. As a result, no serial
communication or precision timing should be attempted while running from the ring oscillator since the operating
frequency is not precise. The default state exits stop mode without using the ring oscillator.

DS80C390 Dual CAN High-Speed Microprocessor

42 of 53

TIMED-ACCESS PROTECTION
Selected SFR bits are critical to operation, making it desirable to protect them against an accidental write
operation. The timed-access procedure prevents an errant processor from accidentally altering bits that would
seriously affect processor operation. The timed-access procedure requires that the write of a protected bit be
immediately preceded by the following two instructions:

 MOV 0C7h, #0AAh
 MOV 0C7h, #55h

Writing an AAh followed by a 55h to the timed-access register (location C7h) opens a three-cycle window that
allows software to modify one of the protected bits. If the instruction that seeks to modify the protected bit is not
immediately preceded by these instructions, the write is ignored. The protected bits are:

WDCON.6 POR Power-On Reset Flag
WDCON.3 WDIF Watchdog Interrupt Flag
WDCON.1 EWT Watchdog Reset Enable
WDCON.0 RWT Reset Watchdog Timer
RCON.0 BGS Bandgap Select
ACON.2 SA Stack Address Mode
ACON.1–0 AM1–AM0 Address Mode Select bits
MCON.7–6 IDM1–IDM0 Internal Memory Configuration and Location bits
MCON.5 CMA CAN Data Memory Assignment
MCON.3–0 PDCE3–PDCE.0 Program/Data Chip Enables
C0C.3 CRST CAN 0 Reset
C1C.3 CRST CAN 1 Reset
P4CNT.6 SBCAN Single Bus CAN
P4CNT.5–0 Port 4 Pin Configuration Control Bits
P5CNT.2–0 P5.7–P5.5 Configuration Control Bits
COR.7 IRDACK IRDA Clock Output Enable
COR.6–5 C1BPR7–C1BPR6 CAN 1 Baud Rate Prescale Bits
COR.4–3 C0BPR7–C0BPR6 CAN 0 Baud Rate Prescale Bits
COR.2–1 COD1–COD0 CAN Clock Output Divide Bit 1 and Bit 0
COR.0 CLKOE CAN Clock Output Enable

EMI REDUCTION
One of the major contributors to radiated noise in an 8051-based system is the toggling of ALE. The microcontroller
allows software to disable ALE when not used by setting the ALEOFF (PMR.2) bit to 1. When ALEOFF = 1, ALE
automatically toggles during an off-chip MOVX. However, ALE remains static when performing on-chip memory
access. The default state of ALEOFF is 0 so ALE normally toggles at a frequency of XTAL/4.

PERIPHERAL OVERVIEW
The DS80C390 provides several of the most commonly needed peripheral functions in microcomputer-based
systems. New functions include a second serial port, power-fail reset, power-fail interrupt flag, and a programmable
watchdog timer. In addition, the microcontroller contains two CAN modules for industrial communication
applications. Each of these peripherals is described in the following paragraphs. More details are available in the
High-Speed Microcontroller User’s Guide and the DS80C390 Supplement.

SERIAL PORTS
The microcontroller provides a serial port (UART) that is identical to the 80C52. In addition it includes a second
hardware serial port that is a full duplicate of the standard one. This second port optionally uses pins P1.2 (RXD1)
and P1.3 (TXD1). It has duplicate control functions included in new SFR locations. The second serial port can
alternately be mapped to P5.2 and P5.3 to allow use of both serial ports in nonmultiplexed mode.

Both ports can operate simultaneously but can be at different baud rates or even in different modes. The second
serial port has similar control registers (SCON1, SBUF1) to the original. The new serial port can only use Timer 1
for baud-rate generation.

DS80C390 Dual CAN High-Speed Microprocessor

45 of 53

Table 13. Interrupt Summary
NAME DESCRIPTION VECTOR NATURAL

PRIORITY FLAG BIT ENABLE BIT PRIORITY
CONTROL BIT

PFI Power-Fail Interrupt 33h 0 PFI (WDCON.4) EPFI (WDCON.5) N/A
INT0 External Interrupt 0 03h 1 IE0 (TCON.1)** EX0 (IE.0) PX0 (IP.0)
TF0 Timer 0 0Bh 2 TF0 (TCON.5)* ET0 (IE.1) PT0 (IP.1)
INT1 External Interrupt 1 13h 3 IE1 (TCON.3)** EX1 (IE.2) PX1 (IP.2)
TF1 Timer 1 1Bh 4 TF1 (TCON.7)* ET1 (IE.3) PT1 (IP.3)

SCON0 TI0 or RI0 from Serial Port 0 23h 5 RI_0 (SCON0.0);
TI_0 (SCON0.1) ES0 (IE.4) PS0 (IP.4)

TF2 Timer 2 2Bh 6 TF2 (T2CON.7) ET2 (IE.5) PT2 (IP.7)

SCON1 TI1 or RI1 from Serial Port 1 3Bh 7 RI_1 (SCON1.0);
TI_1 (SCON1.1) ES1 (IE.6) PS1 (IP.6)

INT2 External Interrupt 2 43h 8 IE2 (EXIF.4) EX2 (EIE.0) PX2 (EIP.0)
INT3 External Interrupt 3 4Bh 9 IE3 (EXIF.5) EX3 (EIE.1) PX3 (EIP.1)
INT4 External Interrupt 4 53h 10 IE4 (EXIF.6) EX4 (EIE.2) PX4 (EIP.2)
INT5 External Interrupt 5 5Bh 11 IE5 (EXIF.7) EX5 (EIE.3) PX5 (EIP.3)
C0I CAN0 Interrupt 6Bh 12 various C0IE (EIE.6) C0IP (EIP.6)
C1I CAN1 Interrupt 73h 13 various C1IE (EIE.5) C1IP (EIP.5)

WDTI Watchdog Timer 63h 14 WDIF (WDCON.3) EWDI (EIE.4) PWDI (EIP.4)
CANBUS CAN0/1 Bus Activity 7Bh 15 various CANBIE (EIE.7) CANBIP (EIP.7)

Unless marked, all flags must be cleared by the application software.
*Cleared automatically by hardware when the service routine is entered.
**If edge-triggered, flag is cleared automatically by hardware when the service routine is entered. If level-triggered, flag follows the state of the

interrupt pin.

CONTROLLER AREA NETWORK (CAN) MODULE
The DS80C390 incorporates two CAN controllers that are fully compliant with the CAN 2.0B specification. CAN is a
highly robust, high-performance communication protocol for serial communications. Popular in a wide range of
applications including automotive, medical, heating, ventilation, and industrial control, the CAN architecture allows
for the construction of sophisticated networks with a minimum of external hardware.

The CAN controllers support the use of 11-bit standard or 29-bit extended acceptance identifiers for up to 15
messages, with the standard 8-byte data field, in each message. Fourteen of the 15 message centers are
programmable in either transmit or receive modes, with the 15th designated as a FIFO-buffered, receive-only
message center to help prevent data overruns. All message centers support two separate 8-bit media masks and
media arbitration fields for incoming message verification. This feature supports the use of higher-level protocols,
which make use of the first and/or second byte of data as a part of the acceptance layer for storing incoming
messages. Each message center can also be programmed independently to test incoming data with or without the
use of the global masks.

Global controls and status registers in each CAN unit allow the microcontroller to evaluate error messages,
generate interrupts, locate and validate new data, establish the CAN bus timing, establish identification mask bits,
and verify the source of individual messages. Each message center is individually equipped with the necessary
status and control bits to establish direction, identification mode (standard or extended), data field size, data status,
automatic remote frame request and acknowledgment, and perform masked or non-masked identification
acceptance testing.

DS80C390 Dual CAN High-Speed Microprocessor

46 of 53

COMMUNICATING WITH THE CAN MODULE
The microcontroller interface to the CAN modules is divided into two groups of registers. All the global CAN status
and control bits as well as the individual message center control/status registers are located in the SFR map. The
remaining registers associated with the message centers (data identification, identification/arbitration masks,
format, and data) are located in MOVX data space. The CMA bit (MCON.5) allows the message centers to be
mapped to either 00EE00h–00EEFFh (CMA = 0) or 401000h–4011FFh (CMA = 1), reducing the possibility of a
memory conflict with application software. Note that setting the CMA bit employs a special 23rd address bit that is
only used for addressing CAN MOVX memory. The DS80C390’s internal architecture requires that the device be in
one of the two 22-bit addressing modes when the CMA bit is set to correctly use the 23rd bit and access the CAN
MOVX memory. A special lockout feature prevents the accidental software corruption of the control, status, and
mask registers while a CAN operation is in progress. Each CAN processor uses 15 message centers. Each
message center is composed of four specific areas, including the following:

1) Four arbitration registers (C0MxAR0–3 and C1MxAR0–3) that store either the 11-bit or 29-bit arbitration value.
These registers are located in the MOVX memory map.

2) A format register (C0MxF and C1MxF) that informs the CAN processor as to the direction (transmit or receive),
the number of data bytes in the message, the identification format (standard or extended), and the optional use
of the identification mask or media mask during message evaluation. This register is located in the MOVX
memory map.

3) Eight data bytes for storage of 0 to 8 bytes of data (C0MxD0–7 and C1MxD0–7), which are located in the
MOVX memory map.

4) Message control registers (C0MxC and C1MxC), which are located in the SFR memory for fast access.

Each of the message centers is identical with the exception of message center 15. Message center 15 has been
designed as a receive-only center, and is also buffered through the use of a two-message FIFO to help prevent
message loss in a message-overrun situation. The receipt of a third message before either of the first two are read
will overwrite the second message, leaving the first message undisturbed.

Modification of the CAN registers located in MOVX memory is protected through the SWINT bits, with one bit
protecting each respective CAN module. Consult the description of this bit in the High-Speed Microcontroller User’s
Guide: DS80C390 Supplement for more information. Each CAN module contains a block of control/status/mask
registers, 14 functionally identical message centers, plus a 15th message center that is receive-only and
incorporates a buffered FIFO. The following tables describe the organization of the message centers located in
MOVX space.

DS80C390 Dual CAN High-Speed Microprocessor

47 of 53

MOVX MESSAGE CENTERS FOR CAN 0
CAN 0 CONTROL/STATUS/MASK REGISTERS

REGISTER 7 6 5 4 3 2 1 0 MOVX DATA
ADDRESS1

C0MID0 MID07 MID06 MID05 MID04 MID03 MID02 MID01 MID00 xxxx00h
C0MA0 M0AA7 M0AA6 M0AA5 M0AA4 M0AA3 M0AA2 M0AA1 M0AA0 xxxx01h
C0MID1 MID17 MID16 MID15 MID14 MID13 MID12 MID11 MID10 xxxx02h
C0MA1 M1AA7 M1AA6 M1AA5 M1AA4 M1AA3 M1AA2 M1AA1 M1AA0 xxxx03h
C0BT0 SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 xxxx04h
C0BT1 SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10 xxxx05h

C0SGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx06h
C0SGM1 ID20 ID19 ID18 0 0 0 0 0 xxxx07h
C0EGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx08h
C0EGM1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx09h
C0EGM2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Ah
C0EGM3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Bh
C0M15M0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx0Ch
C0M15M1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx0Dh
C0M15M2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Eh
C0M15M3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Fh

CAN 0 MESSAGE CENTER 1
 Reserved xxxx10h–11h

C0M1AR0 CAN 0 MESSAGE 1 ARBITRATION REGISTER 0 xxxx12h
C0M1AR1 CAN 0 MESSAGE 1 ARBITRATION REGISTER 1 xxxx13h
C0M1AR2 CAN 0 MESSAGE 1 ARBITRATION REGISTER 2 xxxx14h
C0M1AR3 CAN 0 MESSAGE 1 ARBITRATION REGISTER 3 WTOE xxxx15h

C0M1F DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EX/ST MEME MDME xxxx16h
C0M1D0–7 CAN 0 MESSAGE 1 DATA BYTES 0–7 xxxx17h–1Eh

 Reserved xxxx1Fh
CAN 0 MESSAGE CENTERS 2–14

 MESSAGE CENTER 2 REGISTERS (similar to Message Center 1) xxxx20h–2Fh
 MESSAGE CENTER 3 REGISTERS (similar to Message Center 1) xxxx30h–3Fh
 MESSAGE CENTER 4 REGISTERS (similar to Message Center 1) xxxx40h–4Fh
 MESSAGE CENTER 5 REGISTERS (similar to Message Center 1) xxxx50h–5Fh
 MESSAGE CENTER 6 REGISTERS (similar to Message Center 1) xxxx60h–6Fh
 MESSAGE CENTER 7 REGISTERS (similar to Message Center 1) xxxx70h–7Fh
 MESSAGE CENTER 8 REGISTERS (similar to Message Center 1) xxxx80h–8Fh
 MESSAGE CENTER 9 REGISTERS (similar to Message Center 1) xxxx90h–9Fh
 MESSAGE CENTER 10 REGISTERS (similar to Message Center 1) xxxxA0h–AFh
 MESSAGE CENTER 11 REGISTERS (similar to Message Center 1) xxxxB0h–BFh
 MESSAGE CENTER 12 REGISTERS (similar to Message Center 1) xxxxC0h–CFh
 MESSAGE CENTER 13 REGISTERS (similar to Message Center 1) xxxxD0h–DFh
 MESSAGE CENTER 14 REGISTERS (similar to Message Center 1) xxxxE0h–EFh

CAN 0 MESSAGE CENTER 15
— Reserved xxxxF0h–F1h

C0M15AR0 CAN 0 MESSAGE 15 ARBITRATION REGISTER 0 xxxxF2h
C0M15AR1 CAN 0 MESSAGE 15 ARBITRATION REGISTER 1 xxxxF3h
C0M15AR2 CAN 0 MESSAGE 15 ARBITRATION REGISTER 2 xxxxF4h
C0M15AR3 CAN 0 MESSAGE 15 ARBITRATION REGISTER 3 WTOE xxxxF5h

C0M15F DTBYC3 DTBYC2 DTBYC1 DTBYC0 0 EX/ST MEME MDME xxxxF6h
C0M15D0–
C0M15D7 CAN 0 MESSAGE 15 DATA BYTE 0–7 xxxxF7h–FEh

 Reserved xxxxFFh
1The first two bytes of the CAN 0 MOVX memory address are dependent on the setting of the CMA bit (MCON.5) CMA = 0, xxxx = 00EE;
CMA = 1, xxxx = 4010.

DS80C390 Dual CAN High-Speed Microprocessor

48 of 53

MOVX MESSAGE CENTERS FOR CAN 1
CAN 1 CONTROL/STATUS/MASK REGISTERS

REGISTER 7 6 5 4 3 2 1 0 MOVX DATA
ADDRESS1

C1MID0 MID07 MID06 MID05 MID04 MID03 MID02 MID01 MID00 xxxx00h
C1MA0 M0AA7 M0AA6 M0AA5 M0AA4 M0AA3 M0AA2 M0AA1 M0AA0 xxxx01h
C1MID1 MID17 MID16 MID15 MID14 MID13 MID12 MID11 MID10 xxxx02h
C1MA1 M1AA7 M1AA6 M1AA5 M1AA4 M1AA3 M1AA2 M1AA1 M1AA0 xxxx03h
C1BT0 SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 xxxx04h
C1BT1 SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10 xxxx05h

C1SGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx06h
C1SGM1 ID20 ID19 ID18 0 0 0 0 0 xxxx07h
C1EGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx08h
C1EGM1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx09h
C1EGM2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Ah
C1EGM3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Bh
C1M15M0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx0Ch
C1M15M1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx0Dh
C1M15M2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Eh
C1M15M3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Fh

CAN 1 MESSAGE CENTER 1
 Reserved xxxx10h–11h

C1M1AR0 CAN 1 MESSAGE 1 ARBITRATION REGISTER 0 xxxx12h
C1M1AR1 CAN 1 MESSAGE 1 ARBITRATION REGISTER 1 xxxx13h
C1M1AR2 CAN 1 MESSAGE 1 ARBITRATION REGISTER 2 xxxx14h
C1M1AR3 CAN 1 MESSAGE 1 ARBITRATION REGISTER 3 WTOE xxxx15h

C1M1F DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EX/ST MEME MDME xxxx16h
C1M1D0–7 CAN 1 MESSAGE 1 DATA BYTES 0–7 xxxx17h–1Eh

 Reserved xxxx1Fh
CAN 1 MESSAGE CENTERS 2–14

 MESSAGE CENTER 2 REGISTERS (similar to Message Center 1) xxxx20h–2Fh
 MESSAGE CENTER 3 REGISTERS (similar to Message Center 1) xxxx30h–3Fh
 MESSAGE CENTER 4 REGISTERS (similar to Message Center 1) xxxx40h–4Fh
 MESSAGE CENTER 5 REGISTERS (similar to Message Center 1) xxxx50h–5Fh
 MESSAGE CENTER 6 REGISTERS (similar to Message Center 1) xxxx60h–6Fh
 MESSAGE CENTER 7 REGISTERS (similar to Message Center 1) xxxx70h–7Fh
 MESSAGE CENTER 8 REGISTERS (similar to Message Center 1) xxxx80h–8Fh
 MESSAGE CENTER 9 REGISTERS (similar to Message Center 1) xxxx90h–9Fh
 MESSAGE CENTER 10 REGISTERS (similar to Message Center 1) xxxxA0h–AFh
 MESSAGE CENTER 11 REGISTERS (similar to Message Center 1) xxxxB0h–BFh
 MESSAGE CENTER 12 REGISTERS (similar to Message Center 1) xxxxC0h–CFh
 MESSAGE CENTER 13 REGISTERS (similar to Message Center 1) xxxxD0h–DFh
 MESSAGE CENTER 14 REGISTERS (similar to Message Center 1) xxxxE0h–EFh

CAN 1 MESSAGE CENTER 15
— Reserved xxxxF0h–F1h

C1M15AR0 CAN 1 MESSAGE 15 ARBITRATION REGISTER 0 xxxxF2h
C1M15AR1 CAN 1 MESSAGE 15 ARBITRATION REGISTER 1 xxxxF3h
C1M15AR2 CAN 1 MESSAGE 15 ARBITRATION REGISTER 2 xxxxF4h
C1M15AR3 CAN 1 MESSAGE 15 ARBITRATION REGISTER 3 WTOE xxxxF5h

C1M15F DTBYC3 DTBYC2 DTBYC1 DTBYC0 0 EX/ST MEME MDME xxxxF6h
C1M15D0–
C1M15D7 CAN 1 MESSAGE 15 DATA BYTE 0–7 xxxxF7h–FEh

 Reserved xxxxFFh
1The first two bytes of the CAN 1 MOVX memory address are dependent on the setting of the CMA bit (MCON.5) CMA = 0, xxxx = 00EF; CMA
= 1, xxxx = 4011.

DS80C390 Dual CAN High-Speed Microprocessor

49 of 53

CAN INTERRUPTS
The DS80C390 supports three interrupts associated with the CAN controllers. One interrupt is dedicated to each
CAN controller, providing receive/transmit acknowledgments from each of its 15 message centers. The remaining
interrupt, the CAN bus activity interrupt, is used to detect CAN bus activity on the C0RX or C1RX pins.

The message center interrupts are enabled/disabled by individual ETI (transmit) and ERI (receive) enable bits in
the corresponding message control register (located in SFR memory) for each message center. All the message
center interrupts of each CAN module are ORed together into their respective CAN interrupt. The successful
transmission or receipt of a message sets the INTRQ bit in the corresponding message control register (located in
SFR memory). This bit can only be cleared through software. In addition, the global interrupt-enable bit (IE.7) and
the specific CAN interrupt-enable bit, EIE.6 (CAN0) or EIE.5 (CAN1), must be correctly set to acknowledge a
message center interrupt.

Interrupt assertion of error and status conditions associated with the CAN modules is controlled by the ERIE and
STIE bits located in the CAN control registers, C0C and C1C.

ARBITRATION AND MASKING
After a CAN module has ascertained that an incoming message is bit-error-free, the identification field of that
message is then compared against one or more arbitration values to determine if they will be loaded into a
message center. Each enabled message center (see the MSRDY bit in the CAN Message Control Register) is
tested in order from 1 to 15. The first message center to successfully pass the test receives the incoming message
and ends the testing. Using masking registers allows the use of more complex identification schemes, as tests can
be made based on bit patterns rather than an exact match between all bits in the identification field and arbitration
values. Each CAN processor also incorporates a set of five masks to allow messages with different IDs to be
grouped and successfully loaded into a message center. Note that some of these masks are optional as per the
bits shown in the Arbitration/Masking Feature Summary table (Table 14).

There are several possible arbitration tests, varying according to which message center is involved. If all the
enabled tests succeed, the message is loaded into the respective message center. The most basic test, performed
on all messages, compares either 11 (CAN 2.0A) or 29 (CAN 2.0B) bits of the identification field to the appropriate
arbitration register, based on the EX/ST bit in the CAN 0/1 format register. The MEME bit (C0MxF.1 or C1MxF.1)
controls whether the arbitration and ID registers are compared directly or through a mask register. A special set of
arbitration registers dedicated to message center 15 allows added flexibility in filtering this location.

If desired, further arbitration can be performed by comparing the first two bytes of the data field in each message
against two 8-bit media arbitration register bytes. The MDME bit in the CAN message center format registers
(C0MxF.0 or C1MxF.0) either disables (MDME = 0) arbitration, or enables (MDME = 1) arbitration using the media
ID mask registers 0–1.

If the 11-bit or 29-bit arbitration and the optional media-byte arbitration are successful, the message is loaded into
the respective message center. The format register also allows the microcontroller to program each message
center to function in a receive or transmit mode through the T/R bit, and to use from 0 to 8 data bytes within the
data field of a message. Note that message center 15 can only be used in a receive mode. To avoid a priority
inversion, the DS80C390 CAN processors are configured to reload the transmit buffer with the message of the
highest priority (lowest message center number) whenever an arbitration is lost or an error condition occurs.

