E. Renesas Electronics America Inc - UPD70F3747GB-GAH-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3747gb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2.3 V850ES/HG3 (µPD70F3752)

○ Minimum instruction executio	n time: 31.25 ns (operating	with main clock (fxx) o	f 32 MHz)					
○ General-purpose registers:	32 bits \times 32 registers							
○ CPU features:	Signed multiplication (16 \times 16 \rightarrow 32): 1 to 2 clocks							
	Signed multiplication (32 \times 32 \rightarrow 64): 1 to 5 clocks							
	Saturated operations (overflow and underflow detection functions included)							
	32-bit shift instruction: 1 clock							
	Bit manipulation instructio	ns						
	Load/store instructions with	th long/short format						
\bigcirc Memory space:	64 MB of linear address s	pace (for programs and	d data)					
 Internal memory: 	RAM: 16 KI	В						
	Flash memory: 256 k	КB						
\bigcirc Interrupts and exceptions:	Non-maskable interrupts:	2 sources (external:	I, internal: 1)					
	Maskable interrupts:	61 sources (external:	11, internal: 50)					
	Software exceptions:	32 sources						
	Exception trap:	2 sources						
○ I/O lines:	I/O ports: 84							
\bigcirc Timer function:	16-bit interval timer M (TM	1M): 1 channe						
	16-bit timer/event counter	AA (TAA): 5 channe	s					
	16-bit timer/event counter	AB (TAB): 2 channe	s					
	Watch timer:	1 channe						
	Watchdog timer 2:	1 channe						
$^{\bigcirc}$ Serial interface:	Asynchronous serial interf	face D (UARTD):	3 channels					
	3-wire variable-length seri	al interface B (CSIB):	2 channels					
	I ² C bus:		1 channel					
\bigcirc A/D converter:	10-bit resolution: 16 chann	nels						
○ DMA controller:	4 channels (transfer targe	t: on-chip peripheral I/0	D, internal RAM)					
 DCU (debug control unit): 	JTAG interface							
\bigcirc Clock generator:	During main clock or subc	lock operation						
	7-level CPU clock (fxx, fxx,	/2, fxx/4, fxx/8, fxx/16, f	xx/32, fxт)					
	Clock-through mode/PLL	mode (×8)/SSCG mod	e selectable					
○ Low-speed internal oscillation	n clock (f℞∟): 240 kHz (TYP.))						
○ High-speed internal oscillatio	n clock (free): 8 MHz (TYP.)							
\bigcirc Power-save functions:	HALT/IDLE1/IDLE2/STOP	/subclock/sub-IDLE m	ode					
○ Package:	100-pin plastic LQFP (fine	e pitch) (14 $ imes$ 14)						

3.4 Address Space

3.4.1 CPU address space

For instruction addressing, up to a combined total of 16 MB of external memory area and internal ROM area, plus an internal RAM area, are supported in a linear address space (program space) of up to 64 MB. For operand addressing (data access), up to 4 GB of a linear address space (data space) is supported. The 4 GB address space, however, is viewed as 64 images of a 64 MB physical address space. This means that the same 64 MB physical address space is accessed regardless of the value of bits 31 to 26.

(2) Port mode register 7H, port mode register 7L (PM7H, PM7L)

71101	reset: FFH	R/W	Address: F	PM7L FFFF	F42EH, P	M7H FFFFI	F42FH			
	7	6	5	4	3	2	1	0		
PM7H	1 1	1	1	1	1	1	PM79	PM78		
	7	6	5	4	3	2	1	0		
PM7I	- PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70		
	PM7n		I/O mode control (n = 0 to 9)							
	0	Output m	ode							
	1	Input mod	le							
After	reset: FFH	R/W	Address: F	PM7L FFFF	F42EH, P	M7H FFFFI	F42FH			
	7	6	5	4	3	2	1	0		
PM7F	1	1	1	1	PM711	PM710	PM79	PM78		
	7	6	5	4	3	2	1	0		
PM/I	- PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70		
	PM7n			I/O mode	control (n	= 0 to 11)				
	0	Output m	ode							
	1	Input mod	le							
7 850ES/HG3 , After	V850ES/HJ	3 R/W	Address: F	PM7L FFFF	F42EH, P	M7H FFFF	F42FH			
	7	6	5	4	3	2	1	0		
			1				DM70	PM78		
PM7F	PM715	PM714	PM713	PM712	PM711	PM710	1 1017 3			
PM7F	PM715	PM714 6	PM713 5	PM712 4	PM711 3	2 2	1	0		
PM7F PM7I	PM715 7 PM77	PM714 6 PM76	PM713 5 PM75	PM712 4 PM74	PM711 3 PM73	2 PM72	1 PM71	0 PM70		
PM7F PM7I	H PM715 7 - PM77 PM77	PM714 6 PM76	PM713 5 PM75	PM712 4 PM74 I/O mode	PM711 3 PM73 control (n	PM710 2 PM72 = 0 to 15)	1 PM71	0 PM70		
PM7F PM7I	PM715 7 PM77 PM77 0	PM714 6 PM76	PM713 5 PM75 ode	PM712 4 PM74 I/O mode	PM711 3 PM73 control (n	2 PM72 = 0 to 15)	1 PM71	0 PM70		

5.4.2 Bus size setting function

Each external memory area selected by $\overline{\text{CSn}}$ can be set by using the BSC register. However, the bus size can be set to 8 bits and 16 bits only.

The external memory area of the V850ES/HJ3 is selected by $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$.

(1) Bus size configuration register (BSC)

The BSC register can be read or written in 16-bit units. Reset sets this register to 5555H.

Caution Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BSC register are complete.

(5) TAAn I/O control register 2 (TAAnIOC2)

The TAAnIOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIAAn0 pin) and external trigger input signal (TIAAn0 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

				TAA2IO0 TAA4IO0	C2 FFFFF C2 FFFFF	5B4H, TAA 5D4H	3IOC2 FF	FFF5C4H.
	7	6	5	4	3	2	1	0
$\begin{array}{l} TAAnIOC2\\ (n=0 to 4) \end{array}$	0	0	0	0	TAAnEES1	TAAnEESC	TAAnETS1	TAAnETS
	TAAnEES1	TAAnEES0	External ev	vent count	input signa	l (TIAAn0 p	oin) valid ed	lge setting
	0	0	No edge d	letection (external ev	ent count i	nvalid)	
	0	1	Detection	of rising e	dge			
	1	0	Detection	of falling e	edge			
	1	1	Detection	of both ed	lges			
	TAAnETS1	TAAnETS0	External	trigger inp	out signal (1	IAAn0 pin) valid edge	e setting
	0	0	No edge d	letection (external trig	gger invalio	d)	
	0	1	Detection	of rising e	dge			
	1 1	0	Detection					
		0	Detection	of falling e	edge			
	1 1	1 1	Detection	of falling e	edge Iges		TAAPET	
	Cautions	1. Rewr TAAr same rewri to 0 a 2. The the even	Detection Detection ETS0 bits value ca ting was tand then s TAAnEES TAAnCTL ⁻ t cour	TAAnEE s when t an be wr mistaker set the b 1 and T 1.TAAnE nt mo	edge Iges ES1, TAA the TAAn ritten who nly perfor its again. TAAnEES(EE bit = ode (1	AnEES0, CTL0.TA/ en the T/ med, cle) bits are : 1 or w GAnCTL	TAAnET AnCE bit : AAnCE bi ar the TA e valid or then the 1.TAAnM	S1, and = 0. (The t = 1.) If AnCE bit nly when external D2 to

7.5.4 One-shot pulse output mode (TAAnMD2 to TAAnMD0 bits = 011)

In the one-shot pulse output mode, 16-bit timer/event counter AA waits for a trigger when the TAAnCTL0.TAAnCE bit is set to 1. When the valid edge of an external trigger input is detected, 16-bit timer/event counter AA starts counting, and outputs a one-shot pulse from the TOAAn1 pin.

Instead of the external trigger, a software trigger can also be generated to output the pulse. When the software trigger is used, the TOAAn0 pin outputs the active level while the 16-bit counter is counting, and the inactive level when the counter is stopped (waiting for a trigger).

Figure 7-20. Configuration in One-Shot Pulse Output Mode

(2) TABn control register 1 (TABnCTL1)

The TABnCTL1 register is an 8-bit register that controls the operation of TABn.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After re	set: 00H	R/W	Address:	TAB0CTL1 TAB2CTL1	FFFFF5 FFFFF6	41H, TAB1C 21H	TL1 FFFF	F611H,
	7	6	5	4	3	2	1	0
TABnCTL1	TABnSYE	TABnEST	TABnEEE	0	0	TABnMD2	TABnMD1	TABnMD0
	TABnSYE		Τι	ined operat	ion mode	e enable cont	trol	
	0	0 Independent operation mode (asynchronous operation mode) 1 Tuned operation mode (specification of slave operation) In this mode, timer P can operate in synchronization with a master timer.						
	1							
		Mas	ter timer	Slave	timer			
		Т	AB1	TA	32			
		For the tu Function	ned operat	ion mode, s	see 7.6 1	Timer-Tuned	l Operatio	n
		Caution	Be sure to	o set the T	ABOSYE	and TAB1S	YE bits to	0.
	TABnEST			Softwa	are trigge	r control		
	0				_			
	1	Generate • In one-s • In extern	- enerate a valid signal for external trigger input. In one-shot pulse output mode: A one-shot pulse is output with writing 1 to the TABnEST bit as the trigger. In external trigger pulse output mode: A PWM waveform is output with writing 1 to the TABnEST bit as the trigger					
	Cautions	1. The mode to thi	TABnEST or one-sis bit is ig	bit is van bit is van bit is van bit bit is van bit	alid only e outpu	y in the ex ut mode. In o"	cternal tr n any otl	igger pulse her mode, w

(1/2)

When executing pulse width measurement in the free-running timer mode, four pulse widths can be measured with one channel.

To measure a pulse width, the pulse width can be calculated by reading the value of the TABnCCRm register in synchronization with the INTTABnCCm signal, and calculating the difference between the read value and the previously read value.

Remark m = 0 to 3

Figure 10-12. PWM Output Waveform with Dead Time (2)

12.3 Registers

(1) Watchdog timer mode register 2 (WDTM2)

The WDTM2 register sets the overflow time and operation clock of watchdog timer 2.

This register can be read or written in 8-bit units. This register can be read any number of times, but it can be written only once following reset release.

Reset sets this register to 67H.

Caution Accessing the WDTM2 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

(4) A/D converter channel specification register 0 (ADA0S)

The ADAOS register specifies the pin that inputs the analog voltage to be converted into a digital signal. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

	7	6	5	4	3	2	1	0
ADA0S	0	0	0	ADA0S4	ADA0S3	ADA0S2	ADA0S1	ADA0S
ADA0S4	ADA0S3	ADA0S2	ADA0S1	ADA0S0	Select	mode	Scan	mode
0	0	0	0	0	A	110	A	10
0	0	0	0	1	A	NI1	ANIO,	ANI1
0	0	0	1	0	A	112	ANI0 t	o ANI2
0	0	0	1	1	A	113	ANI0 t	o ANI3
0	0	1	0	0	A	114	ANI0 t	o ANI4
0	0	1	0	1	A	115	ANI0 t	o ANI5
0	0	1	1	0	A	116	ANI0 t	o ANI6
0	0	1	1	1	A	117	ANI0 t	o ANI7
0	1	0	0	0	A	118	ANI0 t	o ANI8
0	1	0	0	1	A	119	ANI0 t	o ANI9
0	1	0	1	0	AN	110	ANI0 to	ANI10
0	1	0	1	1	AN	111	ANI0 to	ANI11
0	1	1	0	0	AN	112	ANI0 to	ANI12
0	1	1	0	1	AN	113	ANI0 to	ANI13
0	1	1	1	0	AN	114	ANI0 to	ANI14
0	1	1	1	1	AN	115	ANI0 to	ANI15
1	0	0	0	0	AN	116	ANI0 to	ANI16
1	0	0	0	1	AN	117	ANI0 to	ANI17
1	0	0	1	0	AN	118	ANI0 to	ANI18
1	0	0	1	1	AN	119	ANI0 to	ANI19
1	0	1	0	0	AN	120	ANI0 to	ANI20
1	0	1	0	1	AN	121	ANI0 to	ANI21
1	0	1	1	0	AN	122	ANI0 to	ANI22
1	0	1	1	1	AN	123	ANI0 to	ANI23

Note If a channel that does not have an analog input is selected, the conversion result is undefined.

Remark The number of analog input function pins (ANIn) differs from one product to another. For details, see **13.1 Overview**.

CBnDIR ^{№te}	Specification of transfer direction mode (MSB/LSB)
0	MSB-first transfer
1	LSB-first transfer
CBnTMS ^{Note}	Transfer mode specification
0	Single transfer mode
1	Continuous transfer mode
request If the ne 1), it is in communis not sta CBbTSF [In continue The cont communienabled If reception CBnRX Therefore operation	signal (INTCBnT) is not generated. xt transmit data is written during communication (CBnSTR.CBnTSF bit = gnored and the next communication is not started. Also, if reception-only nication is set (CBnTXE bit = 0, CBnRXE bit = 1), the next communication arted even if the receive data is read during communication (CBnSTR. F bit = 1). Jous transfer mode] tinuous transmission is enabled by writing the next transmit data during nication (CBnSTR.CBnTSF bit = 1). Writing the next transmission data is after a transmission enable interrupt (INTCBnT) occurrence. ion-only communication is set (CBnTXE bit = 0, CBnRXE bit = 1) in the pus transfer mode, the next reception is started continuously after a n complete interrupt (INTCBnR) regardless of the read operation of the register. re, read immediately the receive data from the CBnRX register. If this read n is delayed, an overrun error (CBnOVE bit = 1) occurs.

16.15 Cautions

(1) When IICF0.STCEN0 bit = 0

Immediately after l^2C00 operation is enabled, the bus communication status (IICF0.IICBSY0 bit = 1) is recognized regardless of the actual bus status. To execute master communication in the status where a stop condition has not been detected, generate a stop condition and then release the bus before starting the master communication.

Use the following sequence for generating a stop condition.

<1> Set the IICCL0 register. <2> Set the IICC0.IICE0 bit. <3> Set the IICC0.SPT0 bit.

(2) When IICF0.STCEN0 bit = 1

Immediately after l^2C00 operation is enabled, the bus released status (IICBSY0 bit = 0) is recognized regardless of the actual bus status. To generate the first start condition (IICC0.STT0 bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.

- (3) Determine the operation clock frequency by the IICCL0, IICX0, and OCKS0 registers before enabling the operation (IICC0.IICE0 bit = 1). To change the operation clock frequency, clear the IICC0.IICE0 bit to 0 once.
- (4) After the IICC0.STT0 and IICC0.SPT0 bits have been set to 1, they must not be re-set without being cleared to 0 first.
- (5) If transmission has been reserved, set the IICC0.SPIE0 bit to 1 so that an interrupt request is generated by the detection of a stop condition. After an interrupt request has been generated, the wait state will be released by writing communication data to I²C00, then transferring will begin. If an interrupt is not generated by the detection of a stop condition, transmission will halt in the wait state because an interrupt request was not generated. However, it is not necessary to set the SPIE0 bit to 1 for the software to detect the IICS0.MSTS0 bit.

18.2.2 Restore

(1) From NMI pin input

Execution is restored from the NMI servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- <1> Loads the restored PC and PSW from FEPC and FEPSW, respectively, because the PSW.EP bit is 0 and the PSW.NP bit is 1.
- <2> Transfers control back to the address of the restored PC and PSW.

Figure 18-3 illustrates how the RETI instruction is processed.

Figure 18-3. RETI Instruction Processing

20.5 IDLE2 Mode

20.5.1 Setting and operation status

The IDLE2 mode is set by setting the PSMR.PSM1 and PSMR.PSM0 bits to 10 and setting the PSC.STP bit to 1 in the normal operation mode.

In the IDLE2 mode, the clock oscillator continues operation but clock supply to the CPU, PLL, flash memory, and other on-chip peripheral functions stops.

As a result, program execution stops and the contents of the internal RAM before the IDLE2 mode was set are retained. The CPU, PLL, and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock or an external clock continue operating.

Table 20-8 shows the operating status in the IDLE2 mode.

The IDLE2 mode can reduce the power consumption more than the IDLE1 mode because it stops the operations of the on-chip peripheral functions, PLL, and flash memory. However, because the PLL and flash memory are stopped, a setup time for the PLL and flash memory is required when IDLE2 mode is released.

Cautions 1. Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE2 mode.

2. If the IDLE2 mode is set while an unmasked interrupt request signal is being held pending, the IDLE2 mode is released immediately by the pending interrupt request.

20.5.2 Releasing IDLE2 mode

The IDLE2 mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP14 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the IDLE2 mode, or reset signal (reset by RESET pin input, WDT2RES signal, power-on clear circuit (POC), low-voltage detector (LVI), or clock monitor (CLM)). The PLL returns to the operating status it was in before the IDLE2 mode was set.

After the IDLE2 mode has been released, the normal operation mode is restored.

(1) Releasing IDLE2 mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The IDLE2 mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request signal. If the IDLE2 mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is processed as follows.

- Cautions 1. The interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE2 mode is not released.
 - If digital noise elimination is selected for the INTP3 pin by using the NFC register and if the sampling clock is selected from fxx/64, fxx/128, fxx/256, fxx/512, and fxx/1024, the IDLE2 mode cannot be released by the interrupt request signal. The IDLE2 mode can be released by selecting the subclock (fxτ) as the sampling clock or by selecting analog noise elimination. For details, see 18.6.2 (8) Noise elimination control register (NFC).
- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the IDLE2 mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the IDLE2 mode is released and that interrupt request signal is acknowledged.

Figure 26-19. Rewriting Entire Memory Area: When Swapping Blocks 0 to 15 for Blocks 16 to 31 (Boot Swap)

(2) Interrupt support

Instructions cannot be fetched from the flash memory during self-programming. Consequently, a user handler written to the flash memory cannot be used even if an interrupt has occurred.

Therefore, in the V850ES/Hx3, to use an interrupt during self-programming, processing transits to the specific address^{Note} in the internal RAM. Allocate the branch instruction that transits processing to the user interrupt servicing at the specific address^{Note} in the internal RAM.

Note NMI interrupt: Start address of internal RAM

Maskable interrupt: Start address of internal RAM + 4 addresses

	7	6	5	4	3	2	1	<0>		
OCDM	0	0	0	0	0	0	0	OCDM0		
	000040			0.						
	0 Selects normal operation mode (in which a pin that functions alternately									
		as on-chip debug function pin is used as a port/peripheral function pin) and disconnects the on-chip pull-down resistor of the P05/INTP2/DRST pin.								
	1 When DRST pin is low: Normal operation mode (in which a pin that functions alternately as an on-chip debug function pin is used as a port/peripheral function pin) When DRST pin is high: On-chip debug mode (in which a pin that functions alternately as an on-chip debug mode (in which a pin that functions alternately as an on-chip debug function pin is used as an on-chip debug mode pin)							ely as an n pin) as an pin)		
fter reset by alue of the OC s 1. When port pi	the WDT2 CDM regis using the ns after e	2RES sig ter is reta DRST, I xternal re	nal, clock nined. DDI, DDO eset, any	DOH. monitor(, DCK, ar of the foll	CLM), or d DMS p owing ac	low-volta ins not a tions mu	ge detec as on-cl ıst be ta	tor (LVI), f hip debug ken.		
After reset by value of the OC ons 1. When port pi • Inpu • Set t <1> 0 <2> I	the WDT2 CDM regis using the ns after e t a low lev he OCDM Clear the Fix the PC	2RES sig 2RES sig ter is reta 2 DRST, I xternal re vel to the 10 bit. In 0CDM0 I 05/INTP2/	PO5/INTF this case, bit to 0.	DCK, ar of the foll 2/DRST j take the	CLM), or od DMS p owing ac bin. following vel until •	low-volta bins not a ctions mu g actions <1> is co	ge detec as on-ch ist be ta mpleted	tor (LVI), f nip debug ken.		
After reset by value of the OC tions 1. When port pi • Inpur • Set t <1> 0 <2> 1 2. The DF OCDM	the WDT2 CDM regis using the ns after e t a low lev he OCDM Clear the Fix the PC RST pin h 0 flag is c	2RES sig 2RES sig ter is reta 2 DRST, I xternal re vel to the 10 bit. In 0CDM0 I 05/INTP2/ as an on leared to	PO5/INTF this case bit to 0. DRST pin o.	DCK, ar of the foll 22/DRST take the to low le	CLM), or d DMS p owing ac bin. following vel until d sistor. T	low-volta ins not a tions mu g actions <1> is co his resis	ge detec as on-cl ust be ta mpleted	tor (LVI), f hip debug ken.		

30.8 Basic Operation

(1) Reset timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.3 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsl	<47>		250		ns

Reset

(2) Interrupt timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.7 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
NMI high-level width	twnih	<48>	Analog noise elimination	250		ns
NMI low-level width	twnil	<49>	Analog noise elimination	250		ns
INTPn ^{Note 1} high-level width	twiтн	<50>	Analog noise elimination $(n = 0 \text{ to } 7)$	250		ns
			Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level width	twi⊤∟	<51>	Analog noise elimination $(n = 0 \text{ to } 7)$	250		ns
			Digital noise elimination (n = 3)	Note 2		ns

- **Notes 1.** The same value as the INTP0/P03 pin applies in the case of the ADTRG pin. The same value as the INTP2/P05 pin applies in the case of the DRST pin.
 - 2T_{samp} + 20 or 3T_{samp} + 20 T_{samp}: Sampling clock for noise elimination

Reset/interrupt

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Taby Centrum Entrance S (7th floor) 18322 Taby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0706