

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	67
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3750gk-gak-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(1	2/1	3)
----	-----	----

										(1	L, 10)
Address	Function Register Name	Symbol	R/W	Mar	nipulat Bits	able	Default Value	HE3	HF3	HG3	HJ3
				1	8	16	Value				
FFFFFA55H	UARTD5 option control register 1	UD5OPT1	R/W		\checkmark		00H	-	-	-	Note
FFFFFA56H	UARTD5 receive data register	UD5RX	R		\checkmark		FFH	-	-	-	Note
FFFFFA57H	UARTD5 transmit data register	UD5TX	R/W		\checkmark		FFH	1	-	-	Note
FFFFFC00H	External interrupt falling edge specification register 0	INTF0		\checkmark	\checkmark		00H	\checkmark	\checkmark	\checkmark	\checkmark
FFFFFC02H	External interrupt falling edge specification register 1	INTF1			\checkmark		00H	-	-		\checkmark
FFFFFC06H	External interrupt falling edge specification register 3	INTF3				\checkmark	0000H	-	-		\checkmark
FFFFFC06H	External interrupt falling edge specification register 3L	INTF3L			\checkmark		00H	\checkmark			
FFFFFC07H	External interrupt falling edge specification register 3H	INTF3H			\checkmark		00H	I			\checkmark
FFFFFC08H	External interrupt falling edge specification register 4	INTF4			\checkmark		00H	-	-	-	Note
FFFFFC0CH	External interrupt falling edge specification register 6L	INTF6L			\checkmark		00H	-	-	-	
FFFFFC10H	External interrupt falling edge specification register 8	INTF8					00H	-	-	-	\checkmark
FFFFFC13H	External interrupt falling edge specification register 9H	INTF9H			\checkmark		00H	\checkmark		\checkmark	
FFFFFC20H	External interrupt rising edge specification register 0	INTR0]				00H	\checkmark		\checkmark	\checkmark
FFFFFC22H	External interrupt rising edge specification register 1	INTR1			\checkmark		00H	-	-	\checkmark	
FFFFFC26H	External interrupt rising edge specification register 3	INTR3				\checkmark	0000H	-	-	\checkmark	
FFFFFC26H	External interrupt rising edge specification register 3L	INTR3L					00H				
FFFFFC27H	External interrupt rising edge specification register 3H	INTR3H			\checkmark		00H	-	-	\checkmark	
FFFFFC28H	External interrupt rising edge specification register 4	INTR4					00H	-	_	-	Note
FFFFFC2CH	External interrupt rising edge specification register 6L	INTR6L			\checkmark		00H	-	_	-	
FFFFFC30H	External interrupt rising edge specification register 8	INTR8					00H	-	_	-	
FFFFFC33H	External interrupt rising edge specification register 9H	INTR9H			\checkmark		00H			\checkmark	
FFFFFC40H	Pull-up resistor option register 0	PU0					00H				
FFFFFC42H	Pull-up resistor option register 1	PU1					00H	-		\checkmark	
FFFFFC46H	Pull-up resistor option register 3	PU3					0000H	-		\checkmark	
FFFFFC46H	Pull-up resistor option register 3L	PU3L					00H			\checkmark	
FFFFFC47H	Pull-up resistor option register 3H	PU3H					00H	-		\checkmark	
FFFFFC48H	Pull-up resistor option register 4	PU4			\checkmark		00H			\checkmark	
FFFFFC4AH	Pull-up resistor option register 5	PU5			\checkmark		00H			\checkmark	
FFFFFC4CH	Pull-up resistor option register 6	PU6					0000H	-	-	-	
FFFFFC4CH	Pull-up resistor option register 6L	PU6L					00H	-	_	-	
FFFFFC4DH	Pull-up resistor option register 6H	PU6H					00H	-	-	-	
FFFFFC50H	Pull-up resistor option register 8	PU8					00H	-	-	-	
FFFFFC52H	Pull-up resistor option register 9	PU9					0000H			\checkmark	
FFFFFC52H	Pull-up resistor option register 9L	PU9L					00H			\checkmark	
FFFFFC53H	Pull-up resistor option register 9H	PU9H			\checkmark		00H			\checkmark	
FFFFFC73H	Port 9 function control register H	PF9H	1				00H				
FFFFFD00H	CSIB0 control register 0	CB0CTL0	1				01H	\checkmark		\checkmark	
FFFFFD01H	CSIB0 control register 1	CB0CTL1	1				00H	\checkmark		\checkmark	
FFFFFD02H	CSIB0 control register 2	CB0CTL2	1				00H	\checkmark	\checkmark	\checkmark	\checkmark
FFFFFD03H	CSIB0 status register	CB0STR	1	\checkmark			00H			\checkmark	
FFFFFD04H	CSIB0 receive data register	CB0RX	R				0000H			\checkmark	
FFFFD04H	CSIB0 receive data register L	CB0RXL	1				00H				

Note Supported only in the μ PD70F3757

(3) Port mode control register 9 (PMC9)

After re	eset: 0000H	R/W	Address:	PMC9 F PMC9L	FFFF45	2H, 52H, F	MC9⊦	I FFFFF453	Н
	15	14	13	12	11		10	9	8
PMC9 (PMC9H)	PMC915	PMC914	PMC913	0	0		0	PMC99	PMC98
	7	6	5	4	3		2	1	0
(PMC9L)	PMC97	PMC96	0	0	0		0	PMC91	PMC90
	PMC915		Spec	ification	of P915 p	oin ope	eration	mode	
	0	I/O port							
	1	INTP6 inp	ut/SCL00 I/	0					
	PMC914		Spec	ification	of P914 p	oin ope	ration	mode	
	0	I/O port							
	1	INTP5 inp	ut/SDA00 I/	0					
	PMC913		Spec	ification	of P913 p	oin ope	ration	mode	
	0	I/O port							
	1	INTP4 inp	ut/PCL outp	out					
	PMC99		Spee	cification	of P99 pi	in opei	ration I	mode	
	0	I/O port							
	1	SCKB1 I/C	D/TIAB00 in	put/TOA	B00 outp	ut			
	PMC98		Spec	cification	of P98 pi	in opei	ration i	mode	
	0	I/O port							
	1	SOB1 out	put/TIAB03	input/TO	AB03 out	tput			
	PMC97		Spec	cification	of P97 pi	in opei	ration I	mode	
	0	I/O port							
	1	SIB1 input	t/TIAA20 inp	out/TOAA	20 outpu	ut			
	PMC96		Spec	cification	of P96 pi	in opei	ration I	mode	
	0	I/O port							
	1	TIAA21 in	put/TOAA2	1 output					
	PMC91		Spee	cification	of P91 p	in ope	ration	mode	
	0	I/O port							
	1	KR7 input	/RXDD1 inp	out					
	PMC90		Spee	cification	of P90 p	in ope	ration	mode	
	0	I/O port							

(1/5)

Remarks 1. $\sqrt{:}$ Operable

- ×: Stopped
- 2. fx: Main clock oscillation frequency
 - fPLLI: PLL input clock frequency
 - fxT: Subclock frequency
 - fRL: Low-speed internal oscillation clock frequency
 - free High-speed internal oscillation clock frequency
 - fPLLO: PLL output clock frequency
 - fsscgo: SSCG output clock frequency
 - fPCL: PCL output clock frequency
 - fxx: Main clock frequency
 - fclk: Internal system clock frequency
 - fcpu: CPU clock frequency

6.4.3 Clock output function

The clock output function is used to output the internal system clock (fcLK) from the CLKOUT pin.

The internal system clock (fcLK) is selected by using the PCC.CK3 to PCC.CK0 bits.

The CLKOUT pin functions alternately as the PCM1 pin and functions as a clock output pin if so specified by the control register of port CM.

The status of the CLKOUT pin is the same as the internal system clock (f_{CLK}) in Table 6-2 and the pin can output the clock when it is in the operable status. It outputs a low level in the stopped status. However, the CLKOUT pin is in the port mode (PCM1 pin: input mode) after reset and until it is set in the output mode. Therefore, the status of the pin is Hi-Z.

Table 7-7 show the timer modes that can be used in the tuned operation mode and Table 7-8 shows the differences of timer output function between unit operation and tuned operation ($\sqrt{}$: Settable, \times : Not settable).

Master Timer	Slave Timer	Free-Running Timer Mode	PWM Mode	Triangular Wave PWM Mode
TAA0	TAA1	\checkmark	\checkmark	×
TAA2	TAA3	\checkmark	\checkmark	×
TAB0	TAA4	\checkmark	\checkmark	×
TAB1	TAB2		\checkmark	\checkmark

Table 7-7. Timer Modes Usable in Tuned Operation Mode

Table 7-8. Timer Output Functions

Tuned	Timer	Pin	Free-Running	g Timer Mode	PWM	Mode	Triangular Wav	ve PWM Mode
Channel			Tuning OFF	Tuning ON	Tuning OFF	Tuning ON	Tuning OFF	Tuning ON
Ch0	TAA0	TOAA00	PPG	\leftarrow	Toggle	\leftarrow	N/A	\leftarrow
	(master)	TOAA01	PPG	\leftarrow	PWM	\leftarrow	N/A	\rightarrow
	TAA1	TOAA10	PGP	\leftarrow	Toggle	PWM	N/A	\rightarrow
	(slave)	TOAA11	PPG	\leftarrow	PWM	\leftarrow	N/A	\leftarrow
Ch1	TAA2	TOAA20	PPG	\downarrow	Toggle	\leftarrow	N/A	\leftarrow
	(master)	TOAA21	PPG	\downarrow	PWM	\leftarrow	N/A	\leftarrow
	ТААЗ	TOAA30	PPG	\downarrow	Toggle	PWM	N/A	\leftarrow
	(slave)	TOAA31	PPG	\leftarrow	PWM	\leftarrow	N/A	\rightarrow
Ch2	TAB0	TOAB00	PPG	\leftarrow	Toggle	\leftarrow	Toggle	N/A
	(master)	TOAB01 to TOAB03	PPG	\leftarrow	PWM	\leftarrow	Triangular wave PWM	N/A
	TAA4	TOAA40	PPG	\leftarrow	Toggle	PWM	N/A	\leftarrow
	(slave)	TOAA41	PPG	\leftarrow	PWM	\leftarrow	N/A	\leftarrow
Ch3	TAB1	TOAB10	PPG	\leftarrow	Toggle	\leftarrow	Toggle	\leftarrow
	(master)	TOAB11 to TOAB13	PPG	\leftarrow	PWM	\leftarrow	Triangular wave PWM	\downarrow
	TAB2 (slave)	TOAB20	PPG	\downarrow	Toggle	PWM	Toggle	Triangular wave PWM
		TOAB21 to TOAB23	PPG	\leftarrow	PWM	\leftarrow	Triangular wave PWM	\rightarrow

Remark The timing of transmitting data from the compare register of the master timer to the compare register of the slave timer is as follows.

- PPG:
 - CPU write timing
- Toggle, PWM, triangular wave PWM: Timing at which timer counter and compare register match
 TOAAn0 and TOABm0

(1) Setting in free-running timer mode (compare function)

[Initial setting]

Master timer: TAA0CTL0.TAA0CE = 0 (operation disabled) Slave timer: TAA1CTL0.TAA1CE = 0 (operation disabled)

[Initial setting of master timer (TAA0)]

- TAA0CTL1.TAA0MD2 to TAA0CTL1.TAA0MD0 = 101 (setting of free-running timer mode)
- TAA0OPT0.TAA0CCS1 and TAA0OPT0.TAA0CCS0 = 00 (setting of capture/compare select bit to "compare".)
- TAA0CTL1.TAA0CKS2 to TAA0CTL1.TAA0CKS0 (setting of count clock (any))
- TAA0CCR1 and TAA0CCR0 registers are set.

[Initial setting of slave timer (TAA1)]

- TAA1CTL1.TAA1SYE = 1 (setting of timer-tuned operation)
- TAA1CTL1.TAA1MD2 to TAA1CTL1.TAA1MD0 = 101 (setting of free-running timer mode)
- TAA1OPT0.TAA1CCS1 and TAA1OPT0.TAA1CCS0 = 00 (setting of capture/compare select bit to "compare".)
- TAA1CCR0 and TAA1CCR1 registers are set.

Remark Initial setting of the master timer and slave timer may be performed in any order.

[Starting counting]

- <1> Set TAA0CTL0.TAA0CE of the master timer to 1.
- <2> Start counting.
- <3> Changing the setting of the register during operation
 - The compare register can be rewritten (anytime write).

[End condition]

• Set TAA0CTL0.TAA0CE of the master timer to 0.

(2) Operation timing in external event count mode

Cautions 1. In the external event count mode, do not set the TABnCCR0 register to 0000H.

2. In the external event count mode, use of the timer output is disabled. If performing timer output using external event count input, set the interval timer mode, and select the operation enabled by the external event count input for the count clock (TABnCTL1.TABnMD2 to TABnCTL1.TABnMD0 bits = 000, TABnCTL1.TABnEEE bit = 1).

(a) Operation if TABnCCR0 register is set to FFFFH

If the TABnCCR0 register is set to FFFFH, the 16-bit counter counts to FFFFH each time the valid edge of the external event count signal has been detected. The 16-bit counter is cleared to 0000H in synchronization with the next count-up timing, and the INTTABnCC0 signal is generated. At this time, the TABnOPT0.TABnOVF bit is not set.

8.6 Timer-Tuned Operation Function

Timer AA and timer AB have a timer-tuned operation function. The timers that can be synchronized are listed in Table 8-9.

Table 8-9. Tuned Operation Function of Timers

Master Timer	Slave Timer
TAA0	TAA1
TAA2	ТААЗ
TAB0	TAA4
TAB1	TAB2

For details of the timer-tuned operation function, see 7.6 Timer-Tuned Operation Function.

10.2 Configuration

The motor control function consists of the following hardware.

Item	Configuration
Timer register	Dead-time counters 1 to 3
Compare register	TAB0 dead-time compare register (TAB0DTC register)
Control registers	TAB0 option register 0 (TAB0OPT0) TAB0 option register 1 (TAB0OPT1) TAB0 option register 2 (TAB0OPT2) TAB0 I/O control register 3 (TAB0IOC3) High-impedance output control registers 0, 1 (HZA0CTL0, HZA0CTL1)

- 6-phase PWM output can be produced with dead time by using the output of TAB0 (TOAB01, TOAB02, TOAB03)
- The output level of the 6-phase PWM output can be set individually.
- The 16-bit timer/counter of TAB0 counts up/down triangular waves. When the timer/counter underflows and when a cycle match occurs, an interrupt is generated. Interrupt generation, however, can be suppressed up to 31 times.
- TAA4 can execute counting at the same time as TAB0 (timer tuning operation function). TAA4 can be set in four ways as it can generate two types of A/D trigger sources (INTTAA4CC0 and INTTAA4CC1), and two types of interrupts: on underflow interrupt (INTTAB0OV) and cycle match interrupt (INTTAB0CC0).

Figure 10-26. Basic Operation in Batch Mode

(b) Rewriting TAB0CCR0 register

When rewriting the TAB0CCR0 register in the intermittent batch mode, the output waveform differs depending on where the occurrence of the crest or valley interrupt is specified by the interrupt culling setting. The following figure illustrates the change of the output waveform when interrupts are culled.

Figure 13-6. Timing Example of One-Shot Scan Mode Operation (ADA0S Register = 03H)

After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR3 (IMR3HNote) 1 1 1 1 7 6 5 4 IMR3L 1 1 WTMK WTIM After reset: FFFFH R/W Address: IMR After reset: FFFFH R/W Address: IMR IMR2 (IMR2HNote) DMAMK0 1 1 1 7 6 5 4 IMR IMR2 (IMR2HNote) DMAMK0 1 1 1 7 6 5 4 IMR IMR IMR2 (IMR2HNote) DMAMK0 1 1 1 1 7 6 5 4 IMR IMR2 IMR2L UD1SMK UD0TMK UD0RN After reset: FFFFH R/W Address: IMR IMR 15 14 13 12 IMR4 IMR4 IMR4 IMA 13 12 IMR IMR4 IMA IMA	3 FFFFF106 3L FFFFF10 11 1 3 K KRMK 2 FFFFF104 2L FFFF104 11 1 3 1K UD0SMK 1 FEFFF102 1	H, 6H, IMR3H 10 2 DMAMK3 H, 4H, IMR2H 10 ADMK 2 CB1TMK	FFFFF10 9 1 DMAMK2 FFFFF105 9 IICOMK 1	7H 8 0 DMAMK1 5H 8 UD1TMK 0
15 14 13 12 IMR3 (IMR3H ^{Note}) 1 1 1 1 1 7 6 5 4 IMR3L 1 1 WTMK WTIM After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR2 (IMR2H ^{Note}) DMAMK0 1 1 1 7 6 5 4 IMR2 (IMR2H ^{Note}) DMAMK0 1 1 1 7 6 5 4 4 IMR2L UD1RMK UD1SMK UD0TMK UD0RM After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR1 IMR1 IMR2 IMR2 IMR2 IMR2	11 1 3 K KRMK 2 FFFFF104 2L FFFFF104 11 1 1 3 1K UD0SMK	10 1 2 DMAMK3 H, 10 4H, 1MR2H 10 ADMK 2 CB1TMK	9 1 DMAMK2 FFFFF103 9 IICOMK 1	8 1 0 DMAMK1 5H 8 UD1TMK 0
IMR3 (IMR3H ^{Note}) 1 1 1 1 1 7 6 5 4 IMR3L 1 1 WTMK WTIM After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR2 (IMR2H ^{Note}) DMAMK0 1 1 1 7 6 5 4 IMR2 (IMR2H ^{Note}) DMAMK0 1 1 1 7 6 5 4 1 1 1 7 6 5 4 1 1 1 1 16 15 14 13 12 1<	1 3 K KRMK 2 FFFFF104 2L FFFFF104 11 1 3 1K UD0SMK L FFFFF1021	1 2 DMAMK3 H, IMR2H 10 ADMK 2 CB1TMK	1 DMAMK2 FFFFF105 9 IICOMK 1	1 0 DMAMK1 5H 8 UD1TMK 0
7 6 5 4 IMR3L 1 1 WTMK WTIM After reset: FFFFH R/W Address: IMR IMR2 (IMR2HNote) DMAMK0 1 1 1 7 6 5 4 IMR2 (IMR2HNote) DMAMK0 1 1 1 7 6 5 4 IMR2L UD1RMK UD1SMK UD0TMK UD0RN After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR4 (MR44 13 12	3 K KRMK 2 FFFF104 2L FFFF104 11 1 1 3 1K UD0SMK 1 FFFF102	2 DMAMK3 H, 10 4H, IMR2H 10 ADMK 2 CB1TMK	1 DMAMK2 FFFFF109 9 IICOMK 1	0 DMAMK1 5H 8 UD1TMK 0
IMR3L 1 1 WTMK WTIM After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR2 (IMR2HNote) DMAMK0 1 1 1 7 6 5 4 IMR2L UD1RMK UD1SMK UD0TMK UD0RN After reset: FFFFH R/W Address: IMR 15 14 13 12	K KRMK 2 FFFF104 2L FFFF104 11 1 3 1K UD0SMK 1 FFFF1021	DMAMK3 H, H, IMR2H 10 ADMK 2 CB1TMK	DMAMK2 FFFFF105 9 IICOMK 1	DMAMK1 5H 8 UD1TMK
After reset: FFFH R/W Address: IMR 15 14 13 12 IMR2 (IMR2HNote) DMAMK0 1 1 1 7 6 5 4 IMR2L UD1RMK UD1SMK UD0TMK UD0RM After reset: FFFFH R/W Address: IMR 15 14 13 12 IMR4 UD1 14 13 12	2 FFFFF104 2L FFFFF104 11 1 3 1K UD0SMK	H, 4H, IMR2H 10 ADMK 2 CB1TMK	FFFFF109 9 IICOMK 1	5H 8 UD1TMK 0
IMR2 (IMR2H ^{Note}) DMAMK0 1 1 1 7 6 5 4 IMR2L UD1RMK UD1SMK UD0TMK UD0RM After reset: FFFFH R/W Address: IMR 15 14 13 12	1 3 1K UD0SMK	ADMK 2 CB1TMK	IICOMK 1	UD1TMK
7 6 5 4 IMR2L UD1RMK UD1SMK UD0TMK UD0RM After reset: FFFFH R/W Address: IMR 15 14 13 12	3 1K UD0SMK	2 CB1TMK	1	0
IMR2L UD1RMK UD1SMK UD0TMK UD0RM After reset: FFFFH R/W Address: IMR IMR 15 14 13 12		CB1TMK	1	-
After reset: FFFFH R/W Address: IMR IMR 15 14 13 12	FFFFF102		CB1RMK	СВ0ТМК
	IL FFFFF102 11	H, 2H, IMR1H 10	FFFFF103 9	3H 8
	IKO TAA4OVMK	TAA3CCMK1	ТААЗССМК0	TAA3OVMK
7 6 5 4	3	2	1	0
IMR1L TAA2CCMK1 TAA2CCMK0 TAA2OVMK TAA1CCM	IK1 TAA1CCMK0	TAA1OVMK	TAA0CCMK1	TAA0CCMK0
After reset: FFFFH R/W Address: IMR IMR 15 14 13 12) FFFFF100F)L FFFFF100	H, DH, IMROH	FFFFF101	1H 8
			PMK7	PMK6
7 6 5 4	3	2	1	0
IMROL PMK5 PMK4 PMK3 PMK	2 PMK1	PMK0	LVIHMK	LVILMK
xxMKn Setting of in	terrupt mask t	flag		
0 Interrupt servicing enabled				

Figure 24-2. Operation Timing of Low-Voltage Detector (LVIMD Bit = 1)

retained (internal reset state).

24.5 RAM Retention Voltage Detection Operation

The supply voltage and detection voltage are compared. When the supply voltage drops below the detection voltage (including on power application), the RAMS.RAMF bit is set to 1.

When the POC function is not used and when the RAM retention voltage detection function is used, be sure to input an external reset signal if the detected voltage falls below the operating voltage.

28.1.3 Maskable functions

Reset, NMI, INTWDT2, WAIT, and HLDRQ (V850ES/HJ3 only) signals can be masked.

The maskable functions with the debugger (ID850QB) and the corresponding V850ES/Hx3 functions are listed below.

Maskable Functions with ID850QB	Corresponding V850ES/Hx3 Functions
NMIO	NMI pin input
NMI1	Non-maskable interrupt request signal (INTWDT2) generation
NMI2	_
HLDRQ	HLDRQ pin input (V850ES/HJ3 only)
RESET	Reset signal generation by RESET pin input, low-voltage detector, clock monitor, or watchdog timer (WDT2) overflow
STOP	_
WAIT	WAIT pin input (V850ES/HJ3 only)
DBINT	_

|--|

28.1.4 Register

(1) On-chip debug mode register (OCDM)

The OCDM register is used to specify whether a pin provided with an on-chip debug function is used as an onchip debug pin or as an ordinary port/peripheral function pin. It also is used to disconnect the internal pulldown resistor of the P05/INTP2/DRST pin.

After POC reset, the default value of the OCDM0 bit is "0" and the normal operation mode is set. To set the on-chip debug mode, therefore, the value of the OCDM0 bit must be changed to "1" by pin reset. If POC reset is generated during on-chip debugging, communication with MINICUBE is stopped. Therefore, reset by POC cannot be emulated.

This register is a special register and can be written only in a combination of specific sequences (see **3.4.7 Special registers**).

The OCDM register can be written only while a low level is input to the $\overline{\text{DRST}}$ pin. This register can be read or written in 8-bit or 1-bit units.

29.2 Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

29.3 Operating Conditions

(TA = -40 to +85°C, VDD = EVDD, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V, C = 4.7 μ F)

Internal System Clock Frequency	Conditions	Supply	Unit	
		Vdd, EVdd	AV _{REF0}	
$4 \text{ MHz} \le f_{xx} \le 32 \text{ MHz}$		4.0 to 5.5	4.0 to 5.5	V
$4 \text{ MHz} \le f_{xx} \le 20 \text{ MHz}$	AD converter operating	3.7 to 5.5	4.0 to 5.5	V
	AD converter stop	3.7 to 5.5	3.7 to 5.5	V
fxt = 32.768 kHz		3.7 to 5.5	3.7 to 5.5	V
f _{RL} = 240 kHz (TYP.)		3.7 to 5.5	3.7 to 5.5	V
fвн = 8 MHz (TYP.)	AD converter operating	3.7 to 5.5	4.0 to 5.5	V
	AD converter stop	3.7 to 5.5	3.7 to 5.5	V

<R> 29.6.3 Supply current

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = 3.7 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions	3	MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD1	Normal operation	PLL operating	fxx = 32 MHz (fx = 8 MHz)	All peripheral function operating		39	51	mA
		mode ^{Note 2}			All peripheral function stopped		32		mA
			PLL operating	fxx = 20 MHz (fx = 10 MHz)	All peripheral function operating		27	37	mA
					All peripheral function stopped		22		mA
			PLL stopped	fxx = 16 MHz (fx = 16 MHz)	All peripheral function operating		21	30	mA
					All peripheral function stopped		19		mA
	Idd2	HALT mode ^{Note 2}	PLL operating	fxx = 32 MHz (fx = 8 MHz)	All peripheral function operating		24	34	mA
					All peripheral function stopped		18		mA
			PLL operating	fxx = 20 MHz (fx = 10 MHz)	All peripheral function operating		16	23	mA
					All peripheral function stopped		12		mA
			PLL stopped	fxx = 16 MHz (fx = 16 MHz)	All peripheral function operating		13	20	mA
					All peripheral function stopped		9		mA
lo	Idd3	IDLE1	PLL stopped ^{Note 3} fxx = High-sp oscillation (fr	fxx = 16 MHz (fx = 16 MHz)	TAA, UARTD operating		2.4	3.6	mA
		mode			All peripheral function stopped		1.6		mA
				fxx = 8 MHz (fx = 8 MHz) beed internal $(H)^{Note 4}$	TAA, UARTD operating		1.6	2.5	mA
					All peripheral function stopped		1.3		mA
					TAA, UARTD operating		1.5	2.3	mA
					All peripheral function stopped		1.1		mA
	IDD4	nD4 IDLE2 mode	PLL	fxx = 16 MHz (1	^f x = 16 MHz)		0.8	1.2	mA
IDD5 IDD6 IDD7			stopped ^{Note 3} fxx = 8 MHz (fx =		= 8 MHz)		0.5	0.8	mA
			$f_{XX} = High-speed internal oscillation (f_{BH})^{Note 4}$				0.2	0.5	mA
	Idd5	Subclock operation mode ^{Notes 4, 5}	Crystal reson	Crystal resonator (fxr = 32.768 kHz)				400	μA
	Idd6	Sub-IDLE mode ^{Notes 4, 5}	Crystal reson	Crystal resonator (fxt = 32.768 kHz)				190	μA
	IDD7	IDD7 STOP mode ^{Notes 4, 6}	Low-speed in	nternal oscillator	(fRL) operating		18.5	100	μA
			Low-speed internal oscillator (fRL) stopped				10.5	85	μA

Notes 1. Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. During SSCG operation, TYP. value + 2.5 mA, MAX. value + 4 mA
- 3. High-speed internal oscillator (fRH) stopped.
- 4. When the main clock oscillator (fxx) is stopped.
- 5. Low-speed internal oscillator (fRL) operating, high-speed internal oscillator (fRH) stopped.
- 6. When the subclock oscillator (fxT) is not used.

(9) POC circuit characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC0		3.3	3.5	3.7	V
Power supply startup time	tртн	$V_{\text{DD}} = 0 \ \text{V} \rightarrow 3.3 \ \text{V}$	0.002			ms
Response delay time 1 ^{Note 1}	tртно	After VDD reaches 3.7 V on power application			2.0	ms
Response delay time 2 ^{Note 2}	tpd	After VDD drops below 3.3 V on power drop			1.0	ms
Minimum VDD width	tew		0.2			ms

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD}, \text{ V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ C}_L = 50 \text{ pF})$

Notes 1. The time required to release a reset after the detection voltage is detected.

2. The time required to output a reset after the detection voltage is detected.

32.2 Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

(TA = 25°C, VDD = EVDD = BVDD = AVREF0 = VSS = EVSS = BVSS = AVSS = 0 V)

32.3 Operating Conditions

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD}, 4.0 \text{ V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \text{C} = 4.7 \text{ } \mu\text{F})$

Internal System Clock Frequency	Conditions	Supply	Unit	
		$V_{DD} = EV_{DD} = BV_{DD}$	AV _{REF0}	
4 MHz \leq fxx \leq 32 MHz		4.0 to 5.5	4.0 to 5.5	V
$4 \text{ MHz} \le f_{xx} \le 20 \text{ MHz}$	AD converter operating	3.7 to 5.5	4.0 to 5.5	V
	AD converter stop	3.7 to 5.5	3.7 to 5.5	V
32 kHz ≤ fx⊤≤ 35 kHz		3.7 to 5.5	3.7 to 5.5	V
f _{RL} = 240 kHz (TYP.)		3.7 to 5.5	3.7 to 5.5	V
fвн = 8 MHz (TYP.)	AD converter operating	3.7 to 5.5	4.0 to 5.5	V
	AD converter stop	3.7 to 5.5	3.7 to 5.5	V

Bus hold

