E. Renesas Electronics America Inc - UPD70F3752GC-UEU-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3752gc-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin identification

AD0 to AD15:	Address/data bus	RESET:	Reset
ADTRG:	AD trigger input	RXDD0 to RXDD5:	Receive data
ANI0 to ANI23:	Analog input	SCKB0 to SCKB2:	Serial clock
ASTB:	Address strobe	SCL00:	Serial clock
AVREF0:	Analog VDD	SDA00:	Serial data
AVss:	Analog Vss	SIB0 to SIB2:	Serial input
BVDD:	Power supply for bus interface	SOB0 to SOB2:	Serial output
BVss:	Ground for bus interface	TIAA00, TIAA01,	
CLKOUT:	Clock output	TIAA10, TIAA11,	
CS0 to CS3:	Chip select	TIAA20, TIAA21,	
DCK:	Debug clock	TIAA30, TIAA31,	
DDI:	Debug data input	TIAA40, TIAA41,	
DDO:	Debug data output	TIAB00, TIAB01,	
DMS:	Debug mode select	TIAB02, TIAB03,	
DRST:	Debug reset	TIAB10, TIAB11,	
EVDD:	Power supply for external pin	TIAB12, TIAB13,	
EVss:	Ground for external pin	TIAB20, TIAB21,	
FLMD0, FLMD1:	Flash programming mode	TIAB22, TIAB23:	Timer input
HLDAK:	Hold acknowledge	TOAA00, TOAA01,	
HLDRQ:	Hold request	TOAA10, TOAA11,	
INTP0 to INTP14:	External interrupt input	TOAA20, TOAA21,	
KR0 to KR7:	Key return	TOAA30, TOAA31,	
NMI:	Non-maskable interrupt request	TOAA40, TOAA41,	
P00 to P06:	Port 0	TOAB00, TOAB01,	
P10, P11:	Port 1	TOAB02, TOAB03,	
P30 to P39:	Port 3	TOAB10, TOAB11,	
P40 to P42:	Port 4	TOAB12, TOAB13,	
P50 to P55:	Port 5	TOAB20, TOAB21,	
P60 to P615:	Port 6	TOAB22, TOAB23,	
P70 to P715:	Port 7	TOAB0B1, TOAB0B2,	
P80, P81:	Port 8	TOAB0B3, TOAB0T1,	
P90 to P915:	Port 9	TOAB0T2, TOAB0T3:	Timer output
P120 to P127:	Port 12	TXDD0 to TXDD5:	Transmit data
PCD0 to PCD3:	Port CD	V _{DD} :	Power supply
PCL:	Programmable clock output	Vss:	Ground
PCM0 to PCM5:	Port CM	WAIT:	Wait
PCS0 to PCS7:	Port CS	WR0:	Write strobe low level data
PCT0 to PCT7:	Port CT	WR1:	Write strobe high level data
PDL0 to PDL15:	Port DL	X1, X2:	Crystal for main clock
RD	Read	XT1, XT2:	Crystal for subclock
REGC:	Regulator control		

5.4.2 Bus size setting function

Each external memory area selected by $\overline{\text{CSn}}$ can be set by using the BSC register. However, the bus size can be set to 8 bits and 16 bits only.

The external memory area of the V850ES/HJ3 is selected by $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$.

(1) Bus size configuration register (BSC)

The BSC register can be read or written in 16-bit units. Reset sets this register to 5555H.

Caution Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BSC register are complete.

(4) SSCG control register (SSCGCTL)

The SSCGCTL register is an 8-bit register that controls the spread spectrum clock generator (SSCG). This register can be read or written in 8-bit or 1-bit units.

After re	set: 00H	R/W	Address:	FFFFF3F()H						
	7	6	5	4	3	2	<1>	<0>			
SSCGCTL	0	0	0	0	0	0	SELSSCG	SSCGON			
	SELSSCG Selection of clock to be output from multiplication block										
	0 PLL output (fPLL = fPLLO)										
	1 SSCG output (fPLL = fsscGo)										
	SSCGON SSCG function operation enable/disable										
	0 SSCG stopped										
	I	SSCG op	erating								
 Cautions 1. Write the SSCGCTL register bits when both PLL and SSCG stop (PLLCTL.PLLON 10) or are in the lock status. 2. The SELSSCG bit can be set to 1 only when the SSCGON bit = 1. When the SSCG bit is set to 0, the SELSSCG bit is automatically set to 0 (PLL output). 3. If the PLLCTL.PLLON bit is set to 0 or the main clock is stopped while the SSCGOI = 1, SSCG stops operating. 4. When SSCG starts operating, time until SSCG is locked is required. If the SSCGON bit is changed from 0 to 1 when the PLLCTL.PLLON bit = 1, n sure by software that the lockup time of SSCG (1 ms or more) elapses. If the PLLCTL.PLLON bit is changed from 0 to 1 after the SSCGON bit has beer to 1, set SSCG lockup time (1 ms or more) to the PLLS register (this is because lockup time of SSCG is longer than that of PLL). Set a value two times the SSCG lockup time (1 ms or more) to the OSTS register. 											

The relationship between the PLL/SSCG mode and PLLCTL.PLLON/SSCGCTL.SSCGON bit is shown below.

PLLCTL.PLLON Bit	SSCGCTL.SSCGON Bit	PLL Mode	SSCG Mode
0	0	Stops	Stops
0	1		
1	0	Operates	Stops
1	1		Operates

Table 6-3. Operation Condition of PLL/SSCG Mode

Figure 7-17. Basic Timing in External Trigger Pulse Output Mode

16-bit timer/event counter AA waits for a trigger when the TAAnCE bit is set to 1. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting at the same time, and outputs a PWM waveform from the TOAAn1 pin. If the trigger is generated again while the counter is operating, the counter is cleared to 0000H and restarted. (The output of the TOAAn0 pin is inverted. The TOAAn1 pin outputs a high level regardless of the status (high/low) when a trigger occurs.)

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.

Active level width = (Set value of TAAnCCR1 register) \times Count clock cycle

Cycle = (Set value of TAAnCCR0 register + 1) \times Count clock cycle

Duty factor = (Set value of TAAnCCR1 register)/(Set value of TAAnCCR0 register + 1)

The compare match request signal INTTAAnCC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTAAnCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TAAnCCRm register is transferred to the CCRm buffer register when the count value of the 16bit counter matches the value of the CCRm buffer register and the 16-bit counter is cleared to 0000H.

The valid edge of an external trigger input signal, or setting the software trigger (TAAnCTL1.TAAnEST bit) to 1 is used as the trigger.

Remark n = 0 to 4, m = 0, 1

(d) Conflict between trigger detection and match with CCR0 buffer register

If the trigger is detected immediately after the INTTABnCC0 signal is generated, the 16-bit counter is cleared to 0000H and continues counting up. Therefore, the active period of the TOABnk pin is extended by time from generation of the INTTABnCC0 signal to trigger detection.

If the trigger is detected immediately before the INTTABnCC0 signal is generated, the INTTABnCC0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOABnk pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

8.6 Timer-Tuned Operation Function

Timer AA and timer AB have a timer-tuned operation function. The timers that can be synchronized are listed in Table 8-9.

Table 8-9. Tuned Operation Function of Timers

Master Timer	Slave Timer
TAA0	TAA1
TAA2	ТААЗ
TAB0	TAA4
TAB1	TAB2

For details of the timer-tuned operation function, see 7.6 Timer-Tuned Operation Function.

(2) Batch rewrite mode (transfer mode)

This mode is set by clearing the TAB0OPT0.TAB0CMS bit to 0, the TAB0OPT1.TAB0ID4 to TAB0OPT1.TAB0ID0 bits to 00000, and the TAB0OPT2.TAB0RDE bit to 0.

In this mode, the values written to each compare register are transferred to the internal buffer register all at once at the transfer timing and compared with the counter value.

(a) Rewriting procedure

If data is written to the TAB0CCR1 register, the values set to the TAB0CCR0 to TAB0CCR3, TAB0OPT1, TAA4CCR0, and TAA4CCR1 registers are transferred all at once to the internal buffer register at the next transfer timing. Therefore, write to the TAB0CCR1 register last. Writing to the register is prohibited after the TAB0CCR1 register has been written and before the transfer timing is generated (until the crest (match between the 16-bit counter value and TAB0CCR0 register value) or the valley (match between the 16-bit counter value and 0001H)). The operation procedure is as follows.

<1> Rewriting the TAB0CCR0, TAB0CCR2, TAB0CCR3, TAB0OPT1, TAA4CCR0, and TAA4CCR1 registers

(Do not rewrite registers that do not have to be rewritten.)

<2> Rewriting the TAB0CCR1 register

(Rewrite the same value to the register even when it is not necessary to rewrite the TAB0CCR1 register.)

- <3> Holding the next rewriting pending until the transfer timing is generated (Rewrite the register next time after the INTTABOOV or INTTABOCC0 interrupt has occurred.)
- <4> Return to <1>.

CHAPTER 11 WATCH TIMER FUNCTIONS

11.1 Functions

The watch timer has the following functions.

- Watch timer: An interrupt request signal (INTWT) is generated at intervals of 0.5 or 0.25 seconds by using the main clock or subclock.
- Interval timer: An interrupt request signal (INTWTI) is generated at set intervals.

The watch timer and interval timer functions can be used at the same time.

13.3 Configuration

The block diagram of the A/D converter is shown below.

The A/D converter includes the following hardware.

Table 13-1.	Configuration	of A/	D Converter
-------------	---------------	-------	-------------

Item	Configuration
Analog inputs	m channels (ANIn pins)
Registers	Successive approximation register (SAR) A/D conversion result register n (ADA0CRn) A/D conversion result register nH (ADCRnH): Only higher 8 bits can be read
Control registers	A/D converter mode registers 0 to 2 (ADA0M0 to ADA0M2) A/D converter channel specification register 0 (ADA0S) Power fail compare mode register (ADA0PFM) Power fail compare threshold value register (ADA0PFT)

(6) UARTDn status register (UDnSTR)

The UDnSTR register is an 8-bit register that displays the UARTDn transfer status and reception error contents. This register can be read or written in 8-bit or 1-bit units, but the UDnTSF bit is a read-only bit, while the UDnPE, UDnFE, and UDnOVE bits can be read and written. However, these bits can only be cleared by writing 0; they cannot be set by writing 1 (even if 1 is written to them, the value is retained).

The initialization conditions are shown below.

Register/Bit	Initialization Conditions
UDnSTR register	ResetUDnCTL0.UDnPWR bit = 0
UDnSSF bit	 UDnRXE bit of UDnCTL0 register = 0 UDnSRS bit of UDnOPT1 register = 0
UDnDCE bit	 UDnDCS bit of UDnOPT1 register = 0 UDnTXE bit of UDnCTL0 register = 0
UDnTSF bit	• UDnCTL0.UDnTXE bit = 0
UDnPE, UDnFE, UDnOVE bits	0 writeUDnCTL0.UDnRXE bit = 0

Caution To clear the status flag, use a 1-bit manipulation instruction, or write the inverted value of a read value by using an 8-bit manipulation instruction and clear all the bits that have been set when read at once.

STT0	Star	t condition trigger					
0	Do not generate a start condition.						
1	 When bus is released (in STOP mode): Generates a start condition (for starting as a level while the SCL00 line is high level and amount of time has elapsed, the SCL00 line When a third party is communicating When communication reservation function Functions as the start condition reservation function after the bus is released. When communication reservation function The IICF0.STCF0 bit is set to 1 and th condition is generated. In the wait state (when master device): Generates a restart condition after releasing 	master). The SDA00 line is changed from high level to low then the start condition is generated. Next, after the rated is changed to low level (wait status). I is enabled (IICF0.IICRSV0 bit = 0) tion flag. When set to 1, automatically generates a star i is disabled (IICRSV0 bit = 1) e information set (1) to the STT0 bit is cleared. No star the wait.					
For maste For maste • Cannot k • When th	r reception: Cannot be set to 1 during trans cleared to 0 and slave has been r transmission: A start condition may not be ger wait period that follows output of be set to 1 at the same time as the SPT0 bit. e STT0 bit is set to 1, setting the STT0 bit to 1 aga	ain is disabled until the setting is cleared to 0.					
Condition	for clearing (STT0 bit = 0)	Condition for setting (STT0 bit = 1)					
 When the STT0 bit is set to 1 in the communication reservation disabled status Cleared when start condition is generated by master device When the LREL0 bit = 1 (exit from communications) When the IICE0 bit = 1 → 0 (operation stop) 		Set by instruction					

(3/4)

(7) IIC division clock selection registers 0 (OCKS0)

The OCKS0 register controls the I²C00 division clock.

- This register controls the l^2C00 division clock via the OCKS0 register.
- This register can be read or written in 8-bit units.

Reset sets this register to 00H.

	7	6	5	4	3	2	1	0		
OCKS0	0	0	0	OCKSEN0	OCKSTH0	0	OCKS01	OCKS00		
					ulia a 4 120 di		-1			
	OCKSENU		0	peration se	tting of I ² C di	VISION	CIOCK			
	0	Disable I ²	C division o	clock opera	tion					
	1	Enable I ²	able I ² C division clock operation							
				-						
	OCKSTH0	OCKS01	OCKS00		Selection o	f I²C di	vision clock			
	0	0	0	fxx/2						
	0	0	1	fxx/3						
	0	1	0	fxx/4						
	0	1	1	fxx/5						
	1	~	~	fvv						

(8) IIC shift register 0 (IIC0)

The IIC0 shift register is used for serial transmission/reception (shift operations) that is synchronized with the serial clock.

This register can be read or written in 8-bit units, but data should not be written to the IIC0 shift register during a data transfer.

Access (read/write) the IIC0 shift register only during the wait period. Accessing this register in communication states other than the wait period is prohibited. However, for the master device, the IIC0 shift register can be written once only after the transmission trigger bit (IICC0.STT0 bit) has been set to 1.

When the IIC0 shift register is written during wait, the wait is cancelled and data transfer is started. Reset sets this register to 00H.

7 6 5 4 3 2 1 0	
	6 5 4 3 2 1 0
IICO	

(2) DMA destination address registers 0 to 3 (DDA0 to DDA3)

I

The DDA0 to DDA3 registers set the DMA destination address (26 bits each) for DMA channel n (n = 0 to 3). These registers are divided into two 16-bit registers, DDAnH and DDAnL. These registers can be read or written in 16-bit units.

After re	set: Undefir	ned RA	N Ado	dress:	DDA	0H FF	FFF	086H	, DDA	A1H F	FFFF	08EH,	,	
					DDA	2H FF	FFF	096H	, DDA	A3H F	FFFF	09EH,	,	
					DDA	0L FF	FFF)84H,	DDA	1L FF	FFF)8CH,		
					DDA	2L FF	FFF)94H,	DDA	3L FF	FFF)9CH		
	15 14	13 12	11 10	9	8	7	6	5	4	3	2	1	0	
DDAnH	IR 0	0 0	0 0	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	
(1 = 0 to 3)	15 14	13 12	11 10	9	8	7	6	5	4	3	2	1	0	
DDAnL	DA15 DA14	1 DA13 DA12	DA11 DA1	0 DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	
(1 = 0.003)		1 1								1				
	IR		Sp	ecifica	ation o	f DMA	A tran	sfer d	estin	ation				
	0	External r	nemory o	r on-cł	nip per	iphera	al I/O							
	1	Internal R	AM											
	DA25 to DA16	6 Set an ad	ldress (A2	5 to A	16) of	DMA	trans	fer de	estina	tion				
		During DI	MA transfe	er, the	a). next E	DMA tı	ransfe	er des	tinati	on ad	dress	is hel	ld.	
		When DM first is hel	1A transfe d.	r is co	mplete	ed, the	DM/	A tran	sfer s	source	e addı	ess se	et	
			-											
	DA15 to DA0) Set an ad	ldress (A1	5 to A	0) of E	MA tr	ansfe	er des	tinati	on				
		(default v	alue is un MA transfe	define er. the	d). next [)MA tı	ransfe	er des	tinati	on ad	dress	is hel	ld.	
		When DN	1A transfe	r is co	mplete	d, the	DMA	A tran	sfer s	source	addi	ess se	et	
			u.											
Cautions 1 Be sure	to set hit	e 14 to 10) of the [חעםנ	Hron	ictor	to "	∩ "						
2. Set the	DDAnH a	nd DDAnl	L reaiste	ers at	the f	ollow	vina [·]	timir	a w	hen l	DMA	trans	sfer i	s disabled
(DCHCr	n.Enn bit =	= 0).	j						3					
Peric	od from af	ter reset	to start o	of firs	t DM	A tra	nsfe	r						
Peric	od from af	ter chann	el initial	izatio	n by	DCH	Cn.ll	NITn	bit t	o sta	art of	DMA	tran	nsfer
Peric	od from at	fter comp	oletion o	f DM	A tra	nsfer	(DC	HCn	.TCr	n bit	= 1)	to st	tart c	of the next
3 When t	transier he value d	of the DD	∆n reais	tor is	rear	ł two	n 16-	bit r	enie	tors	∆חח	nH a	nd D)D∆nl are
read.	f reading	and upd	lating c	onflic	t. a v	/alue	bei	na i	ipda	ted i	mav	be re	ead ((see 17.13
Caution	is).				,			5					1	、 · · · · · · · ·
4. Followi	ng reset,	set the	DSAnH,	DSA	nL, I	DDAr	nH,∣	DDA	nL, a	and	DBC	n re	giste	rs before
starting	DMA tra	nsfer. If t	these re	giste	rs are	e not	set,	the	oper	ratio	n wh	en D	MA t	ransfer is
started	is not gua	aranteed.												

(7) External interrupt falling, rising edge specification register 9H (INTF9H, INTR9H)

The INTF9H and INTR9H registers are 8-bit registers that specify detection of the falling and rising edges of the external interrupt pins (INTP4 to INTP6).

These registers can be read or written in 8-bit or 1-bit units.

Reset sets these registers to 00H.

Caution When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF9n and INTR9n bits to 0, and then set the port mode.

After	R/W	Address	: INTF9H	FFFFFC13	3H, INTR9H	I FFFFFC3	ЗН	
	15	14	13	12	11	10	9	8
INTF9H	INTF915	INTF914	INTF913	0	0	0	0	0
	INTP6	INTP5	INTP4					
	15	14	13	12	11	10	9	8
INTR9H	INTR915	INTR914	INTR913	0	0	0	0	0
	INTP6	INTP5	INTP4					
Remark For the vali	d edge spe	ecification	combinat	ions, see	Table 18	-12.		

Table 18-12. Valid Edge Specification

INTF9n	INTR9n	Valid Edge Specification (n = 13 to 15)
0	0	No edge detected
0	1	Rising edge
1	0	Falling edge
1	1	Both rising and falling edges

Caution Be sure to set the INTF9n and INTR9n bits to 00 if the corresponding pin is not used as the INTP4 to INTP6 pins.

Remark n = 13 to 15: Control of INTP4 to INTP6 pins

(3) Operation in STOP mode or after STOP mode is released

If the STOP mode is set with the CLM.CLME bit = 1, the monitor operation is stopped in the STOP mode and while the oscillation stabilization time is being counted. After the oscillation stabilization time, the monitor operation is automatically started.

(4) Operation when main clock is stopped (arbitrary)

During subclock operation (PCC.CLS bit = 1) or when the main clock is stopped by setting the PCC.MCK bit to 1, the monitor operation is stopped until the main clock operation is started (PCC.CLS bit = 0). The monitor operation is automatically started when the main clock operation is started.

- (5) Operation while CPU is operating on low-speed internal oscillation clock (CCLS.CCLSF bit = 1) The monitor operation is not started when the CCLSF bit is 1, even if the CLME bit is set to 1.
- (6) Operation while CPU is operating on high-speed internal oscillation clock (MCM.MCS bit = 0) The monitor operation is not started when the MCM.MCS bit is 0, even if the CLM.CLME bit is set to 1.

Function	Functional Outline	Support (\checkmark : Supported, \times : Not supported)			
		On-Board/Off-Board Programming	On-Board/Off-Board Programming		
Blank check	The erasure status of the entire memory is checked.	\checkmark	\checkmark		
Chip erasure	The contents of the entire memory area are erased all at once.	\checkmark	× ^{Note}		
Block erasure	The contents of specified memory blocks are erased.	\checkmark	\checkmark		
Program	Writing to specified addresses, and a verify check to see if write level is secured are performed.	\checkmark	\checkmark		
Verify/checksum	Data read from the flash memory is compared with data transferred from the flash programmer.	\checkmark	× (Can be read by user program)		
Read	Data written to the flash memory is read.	\checkmark	×		
Security setting	Use of the chip erase command, block erase command, program command, and read command is prohibited, and rewriting of the boot area is prohibited.	\checkmark	× (Supported only when setting is changed from enable to disable)		

Table 26-2. Basic Functions

Note Chip erasure can be executed by specifying the entire memory area by using the block erase function.

The following table lists the security functions. The chip erase command prohibit, block erase command prohibit, program command prohibit, read command prohibit, and boot block cluster rewrite prohibit setting functions are enabled by default after shipment, and security can be set by rewriting via on-board/off-board programming. Each security function can be used in combination with the others at the same time.

Table 26-3. Security Functions

Function	Function Outline
Chip erase command prohibit	Execution of block erase and chip erase commands on all the blocks is prohibited. Once prohibition is set, setting of prohibition cannot be initialized because the chip erase command cannot be executed.
Block erase command prohibit	Execution of a block erase command on all blocks is prohibited. Setting of prohibition can be initialized by execution of a chip erase command.
Program command prohibit	Execution of program and block erase commands on all the blocks is prohibited. Setting of prohibition can be initialized by execution of the chip erase command.
Read command prohibit	Execution of a read command on all of the blocks is prohibited. Setting of the prohibition can be initialized by execution of a chip erase command.
Boot block cluster rewrite prohibit setting	Boot block cluster from block 0 to a specified block can be protected. Once a boot block cluster has been protected, it cannot be rewritten (or erased/written) afterward. Even if a chip erase command is executed, the prohibited setting cannot be initialized. The maximum block that can be specified is as follows. <i>µ</i> PD70F3747: Block 63 <i>µ</i> PD70F3750, 70F3752, 70F3755, 70F3757: Block 127

<R> 29.6.3 Supply current

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = 3.7 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions	3	MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	Idd1	Normal operation	PLL operating	fxx = 32 MHz (fx = 8 MHz)	All peripheral function operating		39	51	mA
		mode ^{Note 2}			All peripheral function stopped		32		mA
			PLL operating	fxx = 20 MHz (fx = 10 MHz)	All peripheral function operating		27	37	mA
					All peripheral function stopped		22		mA
			PLL stopped	fxx = 16 MHz (fx = 16 MHz)	All peripheral function operating		21	30	mA
					All peripheral function stopped		19		mA
	Idd2	HALT mode ^{Note 2}	PLL operating	fxx = 32 MHz (fx = 8 MHz)	All peripheral function operating		24	34	mA
					All peripheral function stopped		18		mA
			PLL operating	fxx = 20 MHz (fx = 10 MHz)	All peripheral function operating		16	23	mA
Грэз					All peripheral function stopped		12		mA
			PLL stopped	fxx = 16 MHz (fx = 16 MHz)	All peripheral function operating		13	20	mA
					All peripheral function stopped		9		mA
	Idd3	IDLE1 mode	PLL stopped ^{Note 3} fxx = High-sp	fxx = 16 MHz (fx = 16 MHz)	TAA, UARTD operating		2.4	3.6	mA
					All peripheral function stopped		1.6		mA
				fxx = 8 MHz (fx = 8 MHz) need internal	TAA, UARTD operating		1.6	2.5	mA
					All peripheral function stopped		1.3		mA
					TAA, UARTD operating		1.5	2.3	mA
			oscillation (fr		All peripheral function stopped		1.1		mA
	IDD4	IDLE2 mode	PLL	fxx = 16 MHz (fx = 16 MHz)			0.8	1.2	mA
			stopped ^{Note 3} fxx = 8 MHz		= 8 MHz)		0.5	0.8	mA
IDD5			$f_{XX} = High-speed internal oscillation (f_{RH})^{Note 4}$				0.2	0.5	mA
	Idd5	Subclock operation mode ^{Notes 4, 5}	Crystal reson	ator (fx⊤ = 32.76	88 kHz)		80	400	μA
	Idd6	Sub-IDLE mode ^{Notes 4, 5}	Crystal reson	ator (fxt = 32.76	8 kHz)		20	190	μA
	IDD7	IDD7 STOP mode ^{Notes 4, 6}	Low-speed internal oscillator (fRL) operating				18.5	100	μA
			Low-speed in	Low-speed internal oscillator (fRL) stopped				85	μA

Notes 1. Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. During SSCG operation, TYP. value + 2.5 mA, MAX. value + 4 mA
- 3. High-speed internal oscillator (fRH) stopped.
- 4. When the main clock oscillator (fxx) is stopped.
- 5. Low-speed internal oscillator (fRL) operating, high-speed internal oscillator (fRH) stopped.
- 6. When the subclock oscillator (fxT) is not used.

30.8 Basic Operation

(1) Reset timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.3 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsl	<47>		250		ns

Reset

(2) Interrupt timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.7 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI high-level width	twnih	<48>	Analog noise elimination	250		ns
NMI low-level width	I low-level width twNIL <49> Analog noise elimination		Analog noise elimination	250		ns
INTPn ^{Note 1} high-level width	twiтн	<50>	Analog noise elimination $(n = 0 \text{ to } 7)$	250		ns
			Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level width	twi⊤∟	<51>	Analog noise elimination $(n = 0 \text{ to } 7)$	250		ns
			Digital noise elimination (n = 3)	Note 2		ns

- **Notes 1.** The same value as the INTP0/P03 pin applies in the case of the ADTRG pin. The same value as the INTP2/P05 pin applies in the case of the DRST pin.
 - 2T_{samp} + 20 or 3T_{samp} + 20 T_{samp}: Sampling clock for noise elimination

Reset/interrupt

			(3/12)
Symbol	Name	Unit	Page
CB2RXL	CSIB2 receive data register L	CSI	674
CB2STR	CSIB2 status register	CSI	681
CB2TIC	Interrupt control register	INTC	841
CB2TX	CSIB2 transmit data register	CSI	674
CB2TXL	CSIB2 transmit data register L	CSI	674
CCLS	CPU operation clock status register	CG	271
CLM	Clock monitor mode register	CLM	902
DADC0	DMA addressing control register 0	DMA	799
DADC1	DMA addressing control register 1	DMA	799
DADC2	DMA addressing control register 2	DMA	799
DADC3	DMA addressing control register 3	DMA	799
DBC0	DMA transfer count register 0	DMA	798
DBC1	DMA transfer count register 1	DMA	798
DBC2	DMA transfer count register 2	DMA	798
DBC3	DMA transfer count register 3	DMA	798
DCHC0	DMA channel control register 0	DMA	800
DCHC1	DMA channel control register 1	DMA	800
DCHC2	DMA channel control register 2	DMA	800
DCHC3	DMA channel control register 3	DMA	800
DDA0H	DMA destination address register 0H	DMA	797
DDA0L	DMA destination address register 0L	DMA	797
DDA1H	DMA destination address register 1H	DMA	797
DDA1L	DMA destination address register 1L	DMA	797
DDA2H	DMA destination address register 2H	DMA	797
DDA2L	DMA destination address register 2L	DMA	797
DDA3H	DMA destination address register 3H	DMA	797
DDA3L	DMA destination address register 3L	DMA	797
DMAIC0	Interrupt control register	INTC	841
DMAIC1	Interrupt control register	INTC	841
DMAIC2	Interrupt control register	INTC	841
DMAIC3	Interrupt control register	INTC	841
DSA0H	DMA source address register 0H	DMA	796
DSA0L	DMA source address register 0L	DMA	796
DSA1H	DMA source address register 1H	DMA	796
DSA1L	DMA source address register 1L	DMA	796
DSA2H	DMA source address register 2H	DMA	796
DSA2L	DMA source address register 2L	DMA	796
DSA3H	DMA source address register 3H	DMA	796
DSA3L	DMA source address register 3L	DMA	796
DTFR0	DMA trigger factor register 0	DMA	801
DTFR1	DMA trigger factor register 1	DMA	801
DTFR2	DMA trigger factor register 2	DMA	801
DTFR3	DMA trigger factor register 3	DMA	801
	Data wait control register 0	BCU	250
		1	1