# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Obsolete                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | C166SV2                                                                       |
| Core Size                  | 16/32-Bit                                                                     |
| Speed                      | 80MHz                                                                         |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, LINbus, SPI, SSC, UART/USART, USI          |
| Peripherals                | I <sup>2</sup> S, POR, PWM, WDT                                               |
| Number of I/O              | 38                                                                            |
| Program Memory Size        | 320KB (320K x 8)                                                              |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 42K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                     |
| Data Converters            | A/D 9x10b                                                                     |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 64-LQFP Exposed Pad                                                           |
| Supplier Device Package    | PG-LQFP-64-6                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc2236n-40f80l |
|                            |                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### Summary of Features

- On-Chip Peripheral Modules
  - Two synchronizable A/D Converters with up to 9 channels, 10-bit resolution, conversion time below 1  $\mu$ s, optional data preprocessing (data reduction, range check), broken wire detection
  - 16-channel general purpose capture/compare unit (CC2)
  - Two capture/compare units for flexible PWM signal generation (CCU6x)
  - Multi-functional general purpose timer unit with 5 timers
  - Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
  - On-chip MultiCAN interface (Rev. 2.0B active) with up to 256 message objects (Full CAN/Basic CAN) on 6 CAN node
  - On-chip system timer and on-chip real time clock
- Single power supply from 3.0 V to 5.5 V
- · Power reduction and wake-up modes with flexible power management
- Programmable watchdog timer and oscillator watchdog
- Up to 40 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- · On-chip debug support via Device Access Port (DAP) or JTAG interface
- 64-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

# **Ordering Information**

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the temperature range:
  - SAF-...: -40°C to 85°C
  - SAH-...: -40°C to 110°C
  - SAK-...: -40°C to 125°C
- the package and the type of delivery.

For ordering codes for the XC223xN please contact your sales representative or local distributor.

This document describes several derivatives of the XC223xN group:

Basic Device Types are readily available and

Special Device Types are only available on request.

As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types.

For simplicity the term XC223xN is used for all derivatives throughout this document.



#### **Summary of Features**

# 1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

| Table 1 | Synopsis of XC223xN Basic Device Ty | /pes |
|---------|-------------------------------------|------|
|---------|-------------------------------------|------|

| Derivative <sup>1)</sup> | Flash<br>Memory <sup>2)</sup> | PSRAM<br>DSRAM <sup>3)</sup> | Capt./Comp.<br>Modules <sup>4)</sup> | ADC <sup>5)</sup><br>Chan. | Interfaces <sup>5)</sup>      |
|--------------------------|-------------------------------|------------------------------|--------------------------------------|----------------------------|-------------------------------|
| XC2236N-24F40L           | 192 Kbytes                    | 8 Kbytes<br>8 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>4 Serial Chan. |
| XC2236N-40F80L           | 320 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>4 Serial Chan. |
| XC2238N-40F80L           | 320 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1                       | 7 + 2                      | 6 CAN Node,<br>6 Serial Chan. |

1) The 80 MHz type is marked ...80L. The 40 MHz type is marked ...40L.

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

- 4) Due to bonding limitations in the XC223xN devices only a subset of the CCU61 features can be used. The module has the T12 and T13 timer inputs and no outputs connected. Therefore only CCU61 timers can be triggered from external. This can typically be used for periodic triggering of ADCs.
- Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).



#### Summary of Features

# 1.2 Special Device Types

Special device types are only available for high-volume applications on request.

| ·······                  |                               |                              |                                      |                            |                                |  |  |  |  |
|--------------------------|-------------------------------|------------------------------|--------------------------------------|----------------------------|--------------------------------|--|--|--|--|
| Derivative <sup>1)</sup> | Flash<br>Memory <sup>2)</sup> | PSRAM<br>DSRAM <sup>3)</sup> | Capt./Comp.<br>Modules <sup>4)</sup> | ADC <sup>5)</sup><br>Chan. | Interfaces <sup>5)</sup>       |  |  |  |  |
| XC2232N-40FxL            | 320 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1                       | 7 + 2                      | 3 CAN Nodes,<br>6 Serial Chan. |  |  |  |  |
| XC2232N-24FxL            | 192 Kbytes                    | 8 Kbytes<br>8 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 3 CAN Nodes,<br>6 Serial Chan. |  |  |  |  |
| XC2232N-8FxL             | 64 Kbytes                     | 4 Kbytes<br>4 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 3 CAN Nodes,<br>6 Serial Chan. |  |  |  |  |
| XC2234N-40FxL            | 320 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>2 Serial Chan.  |  |  |  |  |
| XC2234N-24FxL            | 192 Kbytes                    | 8 Kbytes<br>8 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>2 Serial Chan.  |  |  |  |  |
| XC2234N-16FxL            | 128 Kbytes                    | 4 Kbytes<br>4 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>2 Serial Chan.  |  |  |  |  |
| XC2236N-40FxL            | 320 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>4 Serial Chan.  |  |  |  |  |
| XC2236N-24FxL            | 192 Kbytes                    | 8 Kbytes<br>8 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>4 Serial Chan.  |  |  |  |  |
| XC2236N-16FxL            | 128 Kbytes                    | 4 Kbytes<br>4 Kbytes         | CC2<br>CCU60/1                       | 7 + 2                      | 1 CAN Node,<br>4 Serial Chan.  |  |  |  |  |

# Table 2 Synopsis of XC223xN Special Device Types

1) x is a placeholder for available speed grade in MHz. Can be 20, 40, 66 or 80.

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

4) Due to bonding limitations in the XC223xN devices only a subset of the CCU61 features can be used. The module has the T12 and T13 timer inputs and no outputs connected. Therefore only CCU61 timers can be triggered from external. This can typically be used for periodic triggering of ADCs.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).



to a dedicated vector table location). The occurrence of a hardware trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-priority trap service is in progress, a hardware trap will interrupt any ongoing program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Depending on the package option up to 3 External Service Request (ESR) pins are provided. The ESR unit processes their input values and allows to implement user controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup and power control can be efficiently realized.

Software interrupts are supported by the 'TRAP' instruction in combination with an individual trap (interrupt) number. Alternatively to emulate an interrupt by software a program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an interrupt control register.

# 3.6 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XC223xN provides a broad range of debug and emulation features. User software running on the XC223xN can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This either consists of the 2-pin Device Access Port (DAP) or of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (DAP or JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing of data can be obtained via the debug interface, or via the external bus interface for increased performance.

Tracing of program execution is supported by the XC2000 Family emulation device. With this device the DAP can operate on clock rates of up to 20 MHz.

The DAP interface uses two interface signals, the JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.









With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC223xN to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.



# 3.17 Parallel Ports

The XC223xN provides up to 40 I/O lines which are organized into 4 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in Table 10.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

| Port | Width | I/O | Connected Modules                          |
|------|-------|-----|--------------------------------------------|
| P2   | 11    | I/O | CAN, CC2, GPT12E, USIC, DAP/JTAG           |
| P5   | 7     | I   | Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN |
| P6   | 2     | I/O | ADC, CAN, GPT12E                           |
| P7   | 1     | I/O | CAN, GPT12E, SCU, DAP/JTAG, USIC           |
| P10  | 16    | I/O | CCU6, USIC, DAP/JTAG, CAN                  |
| P15  | 2     | I   | Analog Inputs, GPT12E                      |

#### Table 10Summary of the XC223xN's Ports



# 3.19 Instruction Set Summary

Table 11 lists the instructions of the XC223xN.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"Instruction Set Manual"**.

This document also provides a detailed description of each instruction.

| Mnemonic      | Description                                                                                       | Bytes |
|---------------|---------------------------------------------------------------------------------------------------|-------|
| ADD(B)        | Add word (byte) operands                                                                          | 2/4   |
| ADDC(B)       | Add word (byte) operands with Carry                                                               | 2/4   |
| SUB(B)        | Subtract word (byte) operands                                                                     | 2/4   |
| SUBC(B)       | Subtract word (byte) operands with Carry                                                          | 2/4   |
| MUL(U)        | (Un)Signed multiply direct GPR by direct GPR (16- $\times$ 16-bit)                                | 2     |
| DIV(U)        | (Un)Signed divide register MDL by direct GPR (16-/16-bit)                                         | 2     |
| DIVL(U)       | (Un)Signed long divide reg. MD by direct GPR (32-/16-bit)                                         | 2     |
| CPL(B)        | Complement direct word (byte) GPR                                                                 | 2     |
| NEG(B)        | Negate direct word (byte) GPR                                                                     | 2     |
| AND(B)        | Bitwise AND, (word/byte operands)                                                                 | 2/4   |
| OR(B)         | Bitwise OR, (word/byte operands)                                                                  | 2/4   |
| XOR(B)        | Bitwise exclusive OR, (word/byte operands)                                                        | 2/4   |
| BCLR/BSET     | Clear/Set direct bit                                                                              | 2     |
| BMOV(N)       | Move (negated) direct bit to direct bit                                                           | 4     |
| BAND/BOR/BXOR | AND/OR/XOR direct bit with direct bit                                                             | 4     |
| BCMP          | Compare direct bit to direct bit                                                                  | 4     |
| BFLDH/BFLDL   | Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data     | 4     |
| CMP(B)        | Compare word (byte) operands                                                                      | 2/4   |
| CMPD1/2       | Compare word data to GPR and decrement GPR by 1/2                                                 | 2/4   |
| CMPI1/2       | Compare word data to GPR and increment GPR by 1/2                                                 | 2/4   |
| PRIOR         | Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR | 2     |
| SHL/SHR       | Shift left/right direct word GPR                                                                  | 2     |

### Table 11 Instruction Set Summary



| Table 11 Instruction bet ourmary (contra) |                                     |       |  |  |  |
|-------------------------------------------|-------------------------------------|-------|--|--|--|
| Mnemonic                                  | Description                         | Bytes |  |  |  |
| NOP                                       | Null operation                      | 2     |  |  |  |
| CoMUL/CoMAC                               | Multiply (and accumulate)           | 4     |  |  |  |
| CoADD/CoSUB                               | Add/Subtract                        | 4     |  |  |  |
| Co(A)SHR                                  | (Arithmetic) Shift right            | 4     |  |  |  |
| CoSHL                                     | Shift left                          | 4     |  |  |  |
| CoLOAD/STORE                              | Load accumulator/Store MAC register | 4     |  |  |  |
| CoCMP                                     | Compare                             | 4     |  |  |  |
| CoMAX/MIN                                 | Maximum/Minimum                     | 4     |  |  |  |
| CoABS/CoRND                               | Absolute value/Round accumulator    | 4     |  |  |  |
| CoMOV                                     | Data move                           | 4     |  |  |  |
| CoNEG/NOP                                 | Negate accumulator/Null operation   | 4     |  |  |  |

## Table 11 Instruction Set Summary (cont'd)

1) The Enter Power Down Mode instruction is not used in the XC223xN, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.



| Parameter                         | Symbol             | Values                 |      |      | Unit | Note /                                   |
|-----------------------------------|--------------------|------------------------|------|------|------|------------------------------------------|
|                                   |                    | Min.                   | Тур. | Max. |      | Test Condition                           |
| Output High voltage <sup>7)</sup> | V <sub>OH</sub> CC | V <sub>DDP</sub> - 1.0 | -    | _    | V    | $I_{\rm OH} \ge I_{\rm OHmax}$           |
|                                   |                    | V <sub>DDP</sub> - 0.4 | -    | -    | V    | $I_{\text{OH}} \ge I_{\text{OHnom}}^{8}$ |
| Output Low Voltage <sup>7)</sup>  | V <sub>OL</sub> CC | -                      | -    | 0.4  | V    | $I_{\rm OL} \le I_{\rm OLnom}^{8}$       |
|                                   |                    | -                      | -    | 1.0  | V    | $I_{\rm OL} \leq I_{\rm OLmax}$          |

#### Table 16 DC Characteristics for Upper Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ( $V_{\rm IN} < V_{\rm SS}$ ) or supply ripple ( $V_{\rm IN} > V_{\rm DDP}$ ), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ( $I_{\rm INJ}$ ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor  $K_{\rm CV}$ .
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*<sub>J</sub> = junction temperature [°C]): *I*<sub>OZ</sub> = 0.05 x e<sup>(1.5 + 0.028 x T,J>)</sup> [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*<sub>DDP</sub> *V*<sub>PIN</sub> [V]): *I*<sub>OZ</sub> = *I*<sub>OZtempmax</sub> (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device.
- 6) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level.
- 7) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 8) As a rule, with decreasing output current the output levels approach the respective supply level ( $V_{OL}$ -> $V_{SS}$ ,  $V_{OH}$ -> $V_{DDP}$ ). However, only the levels for nominal output currents are verified.



| Parameter                         | Symbol             | Values                    |      |      | Unit | Note /                                   |
|-----------------------------------|--------------------|---------------------------|------|------|------|------------------------------------------|
|                                   |                    | Min.                      | Тур. | Max. |      | Test Condition                           |
| Output High voltage <sup>7)</sup> | V <sub>OH</sub> CC | V <sub>DDP</sub> -<br>1.0 | -    | -    | V    | $I_{\rm OH} \ge I_{\rm OHmax}$           |
|                                   |                    | V <sub>DDP</sub> - 0.4    | -    | -    | V    | $I_{\text{OH}} \ge I_{\text{OHnom}}^{8}$ |
| Output Low Voltage <sup>7)</sup>  | V <sub>OL</sub> CC | -                         | -    | 0.4  | V    | $I_{\rm OL} \le I_{\rm OLnom}^{8}$       |
|                                   |                    | -                         | -    | 1.0  | V    | $I_{\rm OL} \leq I_{\rm OLmax}$          |

#### Table 17 DC Characteristics for Lower Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ( $V_{\rm IN} < V_{\rm SS}$ ) or supply ripple ( $V_{\rm IN} > V_{\rm DDP}$ ), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ( $I_{\rm INJ}$ ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor  $K_{\rm CV}$ .
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*<sub>J</sub> = junction temperature [°C]): *I*<sub>OZ</sub> = 0.05 x e<sup>(1.5 + 0.028 x T,J>)</sup> [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*<sub>DDP</sub> *V*<sub>PIN</sub> [V]): *I*<sub>OZ</sub> = *I*<sub>OZtempmax</sub> (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device:  $V_{\text{PIN}} \leq V_{\text{IL}}$  for a pullup;  $V_{\text{PIN}} \geq V_{\text{IL}}$  for a pullup;  $V_{\text{PIN}} \geq V_{\text{IL}}$  for a pullup;  $V_{\text{PIN}} \geq V_{\text{IL}}$  for a pullup value of the enabled pull device.
- 6) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V<sub>PIN</sub> >= V<sub>IL</sub> for a pullup; V<sub>PIN</sub> <= V<sub>IL</sub> for a pulldown.
- 7) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 8) As a rule, with decreasing output current the output levels approach the respective supply level ( $V_{OL}$ -> $V_{SS}$ ,  $V_{OH}$ -> $V_{DDP}$ ). However, only the levels for nominal output currents are verified.



#### Table 18Switching Power Consumption

| Parameter                                                                    | Symbol                  | Values |                             |                                           | Unit | Note /                                                              |
|------------------------------------------------------------------------------|-------------------------|--------|-----------------------------|-------------------------------------------|------|---------------------------------------------------------------------|
|                                                                              |                         | Min.   | Тур.                        | Max.                                      |      | Test Condition                                                      |
| Power supply current<br>(active) with all peripherals<br>active and EVVRs on | I <sub>SACT</sub><br>CC | _      | $6 + 0.6 \\ x f_{SYS}^{1)}$ | 8+1.0<br>x f <sub>SYS</sub> <sup>1)</sup> | mA   | power_mode=<br>active ;<br>voltage_range=<br>both <sup>2)3)4)</sup> |
| Power supply current in standby mode                                         | I <sub>SSB</sub> CC     | _      | 45                          | 125                                       | μΑ   | power_mode=<br>standby ;<br>voltage_range=<br>lower <sup>5)</sup>   |
|                                                                              |                         | _      | 70                          | 220                                       | μA   | power_mode=<br>standby ;<br>voltage_range=<br>upper <sup>5)</sup>   |
| Power supply current in stopover mode, EVVRs on                              | I <sub>SSO</sub> CC     | _      | 0.7                         | 2.0                                       | mA   | power_mode=<br>stopover ;<br>voltage_range=<br>both <sup>4)</sup>   |

1)  $f_{\rm SYS}$  in MHz

2) The pad supply voltage pins (V<sub>DDPB</sub>) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x f<sub>SVS</sub>.

- 3) Please consider the additional conditions described in section "Active Mode Power Supply Current".
- 4) The pad supply voltage has only a minor influence on this parameter.
- These values are valid if the voltage validation circuits for V<sub>DDPB</sub> (SWD) and V<sub>DDIM</sub> (PVC\_M) are off. Leaving SWD and PVC\_M active adds another 90 μA.

#### Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC223xN's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ( $V_{\rm DDPA}$ ) supplies the A/D converters and Port 6. Power domain B ( $V_{\rm DDPB}$ ) supplies the on-chip EVVRs and all other ports.



# 4.4 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.* 

### Table 20 ADC Parameters

| Parameter                                       | Symbol                    | Values |      |      | Unit     | Note /                            |
|-------------------------------------------------|---------------------------|--------|------|------|----------|-----------------------------------|
|                                                 |                           | Min.   | Тур. | Max. |          | Test Condition                    |
| Switched capacitance at<br>an analog input      | C <sub>AINSW</sub><br>CC  | -      | -    | 4    | pF       | not subject to<br>production test |
| Total capacitance at an analog input            | C <sub>AINT</sub><br>CC   | _      | -    | 10   | pF       | not subject to<br>production test |
| Switched capacitance at the reference input     | C <sub>AREFSW</sub><br>CC | _      | -    | 7    | pF       | not subject to<br>production test |
| Total capacitance at the reference input        | C <sub>AREFT</sub><br>CC  | -      | -    | 15   | pF       | not subject to<br>production test |
| Differential Non-Linearity<br>Error             | EA <sub>DNL</sub>  <br>CC | -      | 0.8  | 1    | LSB      |                                   |
| Gain Error                                      | $ EA_{GAIN} $ CC          | -      | 0.4  | 0.8  | LSB      |                                   |
| Integral Non-Linearity                          | EA <sub>INL</sub>  <br>CC | -      | 0.8  | 1.2  | LSB      |                                   |
| Offset Error                                    | EA <sub>OFF</sub>  <br>CC | -      | 0.5  | 0.8  | LSB      |                                   |
| Analog clock frequency                          | $f_{\rm ADCI}{ m SR}$     | 0.5    | -    | 16.5 | MHz      | voltage_range=<br>lower           |
|                                                 |                           | 0.5    | -    | 20   | MHz      | voltage_range=<br>upper           |
| Input resistance of the selected analog channel | R <sub>AIN</sub> CC       | _      | -    | 2    | kOh<br>m | not subject to<br>production test |
| Input resistance of the reference input         | R <sub>AREF</sub><br>CC   | -      | -    | 2    | kOh<br>m | not subject to<br>production test |



Sample time and conversion time of the XC223xN's A/D converters are programmable. The timing above can be calculated using Table 21.

The limit values for  $f_{ADCI}$  must not be exceeded when selecting the prescaler value.

| GLOBCTR.5-0<br>(DIVA) | A/D Converter<br>Analog Clock $f_{ADCI}$ | INPCRx.7-0<br>(STC) | Sample Time <sup>1)</sup><br>t <sub>s</sub> |
|-----------------------|------------------------------------------|---------------------|---------------------------------------------|
| 000000 <sub>B</sub>   | f <sub>sys</sub>                         | 00 <sub>H</sub>     | $t_{ADCI} \times 2$                         |
| 000001 <sub>B</sub>   | f <sub>SYS</sub> / 2                     | 01 <sub>H</sub>     | $t_{ADCI} \times 3$                         |
| 000010 <sub>B</sub>   | f <sub>SYS</sub> / 3                     | 02 <sub>H</sub>     | $t_{ADCI} \times 4$                         |
| :                     | $f_{\rm SYS}$ / (DIVA+1)                 | :                   | $t_{ADCI} \times (STC+2)$                   |
| 111110 <sub>B</sub>   | f <sub>SYS</sub> / 63                    | FE <sub>H</sub>     | $t_{ADCI} 	imes 256$                        |
| 111111 <sub>B</sub>   | f <sub>SYS</sub> / 64                    | FF <sub>H</sub>     | $t_{ADCI} 	imes 257$                        |

 Table 21
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

## **Converter Timing Example A:**

| Assumptions:   | $f_{\rm SYS}$           | = 80 MHz (i.e. $t_{SYS}$ = 12.5 ns), DIVA = 03 <sub>H</sub> , STC = 00 <sub>H</sub>                  |  |  |  |  |  |
|----------------|-------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Analog clock   | $f_{\sf ADCI}$          | $= f_{SYS} / 4 = 20 \text{ MHz}$ , i.e. $t_{ADCI} = 50 \text{ ns}$                                   |  |  |  |  |  |
| Sample time    | t <sub>S</sub>          | $= t_{ADCI} \times 2 = 100 \text{ ns}$                                                               |  |  |  |  |  |
| Conversion 10  | -bit:                   |                                                                                                      |  |  |  |  |  |
|                | <i>t</i> <sub>C10</sub> | = $13 \times t_{ADCI}$ + $2 \times t_{SYS}$ = $13 \times 50$ ns + $2 \times 12.5$ ns = 0.675 $\mu$ s |  |  |  |  |  |
| Conversion 8-I | oit:                    |                                                                                                      |  |  |  |  |  |
|                | t <sub>C8</sub>         | = $11 \times t_{ADCI}$ + 2 × $t_{SYS}$ = 11 × 50 ns + 2 × 12.5 ns = 0.575 µs                         |  |  |  |  |  |

#### **Converter Timing Example B:**

| Assumptions:      | $f_{\rm SYS}$           | = 40 MHz (i.e. $t_{SYS}$ = 25 ns), DIVA = 02 <sub>H</sub> , STC = 03 <sub>H</sub> |  |  |  |  |
|-------------------|-------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| Analog clock      | $f_{\sf ADCI}$          | = <i>f</i> <sub>SYS</sub> / 3 = 13.3 MHz, i.e. <i>t</i> <sub>ADCI</sub> = 75 ns   |  |  |  |  |
| Sample time       | t <sub>S</sub>          | = $t_{ADCI} \times 5 = 375 \text{ ns}$                                            |  |  |  |  |
| Conversion 10     | -bit:                   |                                                                                   |  |  |  |  |
|                   | <i>t</i> <sub>C10</sub> | = $16 \times t_{ADCI}$ + 2 × $t_{SYS}$ = 16 × 75 ns + 2 × 25 ns = 1.25 µs         |  |  |  |  |
| Conversion 8-bit: |                         |                                                                                   |  |  |  |  |
|                   | t <sub>C8</sub>         | = $14 \times t_{ADCI}$ + 2 × $t_{SYS}$ = 14 × 75 ns + 2 × 25 ns = 1.10 µs         |  |  |  |  |
|                   |                         |                                                                                   |  |  |  |  |



- 2) Flash module 1 can be erased/programmed while code is executed and/or data is read from Flash module 0.
- 3) Value of IMB\_IMBCTRL.WSFLASH.
- 4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies.

Access to the XC223xN Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.



# 4.7 AC Parameters

These parameters describe the dynamic behavior of the XC223xN.

# 4.7.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).



Figure 17 Input Output Waveforms







| Parameter            | Symbol              | Values |      |      | Unit | Note /                                   |
|----------------------|---------------------|--------|------|------|------|------------------------------------------|
|                      |                     | Min.   | Тур. | Max. | _    | Test Condition                           |
| VCO output frequency | f <sub>vco</sub> CC | 50     | -    | 110  | MHz  | VCOSEL= 00b;<br>VCOmode=<br>controlled   |
|                      |                     | 10     | -    | 40   | MHz  | VCOSEL= 00b;<br>VCOmode=<br>free running |
|                      |                     | 100    | -    | 160  | MHz  | VCOSEL= 01b;<br>VCOmode=<br>controlled   |
|                      |                     | 20     | -    | 80   | MHz  | VCOSEL= 01b;<br>VCOmode=<br>free running |

#### -hla 00 votom DLL Doromotoro

#### 4.7.2.2 Wakeup Clock

When wakeup operation is selected (SYSCON0.CLKSEL =  $00_{B}$ ), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WII}$ 

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

#### 4.7.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states.

Many applications change the frequency of the system clock  $(f_{SYS})$  during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage. the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.





Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.





Figure 27 JTAG Timing

www.infineon.com

Published by Infineon Technologies AG