

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	42K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2236n40f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC223xN (XC2000 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XC223xN are summarized here.

- · High-performance CPU with five-stage pipeline and MPU
 - 12.5 ns instruction cycle @ 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1,024 Bytes on-chip special function register area (C166 Family compatible)
 Integrated Memory Protection Unit (MPU)
- · Interrupt system with 16 priority levels providing 96 interrupt nodes
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 8 Kbytes on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - Up to 16 Kbytes on-chip data SRAM (DSRAM)
 - Up to 16 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 320 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC)

Summary of Features

1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XC223xN Basic Device Type

•	•						
Derivative ¹⁾	Flash Memory ²⁾	PSRAM DSRAM ³⁾	Capt./Comp. Modules ⁴⁾	ADC ⁵⁾ Chan.	Interfaces ⁵⁾		
XC2236N-24F40L	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.		
XC2236N-40F80L	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.		
XC2238N-40F80L	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	6 CAN Node, 6 Serial Chan.		

1) The 80 MHz type is marked ...80L. The 40 MHz type is marked ...40L.

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

- 4) Due to bonding limitations in the XC223xN devices only a subset of the CCU61 features can be used. The module has the T12 and T13 timer inputs and no outputs connected. Therefore only CCU61 timers can be triggered from external. This can typically be used for periodic triggering of ADCs.
- Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

Summary of Features

1.2 Special Device Types

Special device types are only available for high-volume applications on request.

Derivative ¹⁾	Flash Memory ²⁾	PSRAM DSRAM ³⁾	Capt./Comp. Modules ⁴⁾	ADC ⁵⁾ Chan.	Interfaces ⁵⁾
XC2232N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.
XC2232N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.
XC2232N-8FxL	64 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.
XC2234N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.
XC2234N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.
XC2234N-16FxL	128 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.
XC2236N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.
XC2236N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.
XC2236N-16FxL	128 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.

Table 2 Synopsis of XC223xN Special Device Types

1) x is a placeholder for available speed grade in MHz. Can be 20, 40, 66 or 80.

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

4) Due to bonding limitations in the XC223xN devices only a subset of the CCU61 features can be used. The module has the T12 and T13 timer inputs and no outputs connected. Therefore only CCU61 timers can be triggered from external. This can typically be used for periodic triggering of ADCs.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

XC2232N, XC2234N, XC2236N, XC2238N XC2000 Family / Value Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
56	P10.13	00 / 1		Bit 13 of Port 10, General Purpose Input/Output
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input
58	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output
	ESR2_2	I	St/B	ESR2 Trigger Input 2
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input
59	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input
60	XTAL2	0	Sp/M	Crystal Oscillator Amplifier Output
61	XTAL1	1	Sp/M	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .
	ESR2_9	I	St/B	ESR2 Trigger Input 9
62	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC223xN completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.

Up to 16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

Note: The actual size of the DSRAM depends on the quoted device type.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

8 Kbytes of on-chip Stand-By SRAM (SBRAM) provide storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain M.

1024 bytes (2 \times **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC2000 Family. In order to ensure upward compatibility they should either not be accessed or written with zeros.

In order to meet the requirements of designs where more memory is required than is available on chip, up to 12 Mbytes (approximately, see **Table 8**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

The on-chip Flash memory stores code, constant data, and control data. The 320 Kbytes of on-chip Flash memory consist of 1 module of 64 Kbytes (preferably for data storage) and 1 module of 256 Kbytes. Each module is organized in 4-Kbyte sectors. The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.

Note: The actual size of the Flash memory depends on the chosen device type.

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel. For Flash parameters, please see Section 4.6.

To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

3.3 Memory Protection Unit (MPU)

The XC223xN's Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes established mechanisms such as the register security mechanism or stack overrun/underrun detection.

Four Protection Levels support flexible system programming where operating system, low level drivers, and applications run on separate levels. Each protection level permits different access restrictions for instructions and/or data.

Every access is checked (if the MPU is enabled) and an access violating the permission rules will be marked as invalid and leads to a protection trap.

A set of protection registers for each protection level specifies the address ranges and the access permissions. Applications requiring more than 4 protection levels can dynamically re-program the protection registers.

3.4 Memory Checker Module (MCHK)

The XC223xN's Memory Checker Module calculates a checksum (fractional polynomial division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on a 32-bit linear feedback shift register and may, therefore, also be used to generate pseudo-random numbers.

The Memory Checker Module is a 16-bit parallel input signature compression circuitry which enables error detection within a block of data stored in memory, registers, or communicated e.g. via serial communication lines. It reduces the probability of error masking due to repeated error patterns by calculating the signature of blocks of data.

The polynomial used for operation is configurable, so most of the commonly used polynomials may be used. Also, the block size for generating a CRC result is configurable via a local counter. An interrupt may be generated if testing the current data block reveals an error.

An autonomous CRC compare circuitry is included to enable redundant error detection, e.g. to enable higher safety integrity levels.

The Memory Checker Module provides enhanced fault detection (beyond parity or ECC) for data and instructions in volatile and non volatile memories. This is especially important for the safety and reliability of embedded systems.

3.7 Capture/Compare Unit (CC2)

The CAPCOM unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs allow event scheduling for the capture/compare registers relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer and programmed for capture or compare function.

All registers have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible

Table 9 Compare Modes

XC2232N, XC2234N, XC2236N, XC2238N XC2000 Family / Value Line

Functional Description

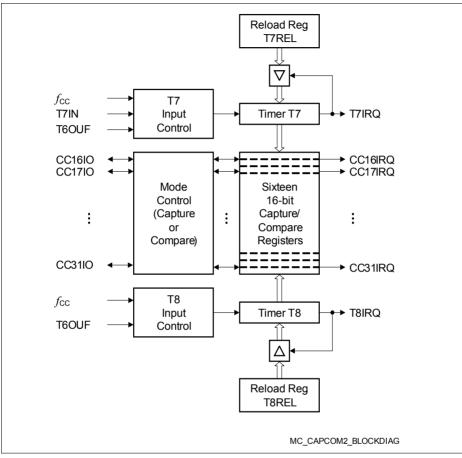
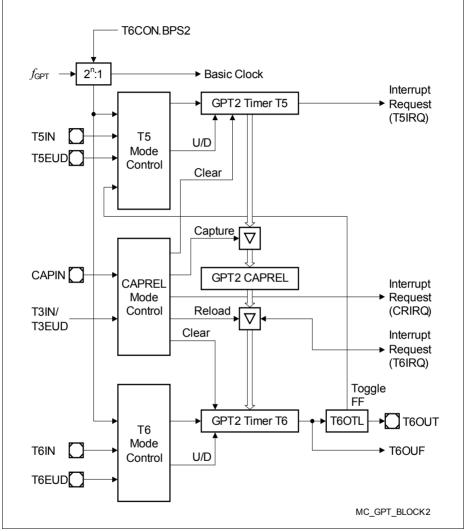


Figure 6 CAPCOM Unit Block Diagram


With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC223xN to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- Set of independent message objects (shared by the CAN nodes)
- · Dedicated control registers for each CAN node
- · Data transfer rate up to 1 Mbit/s, individually programmable for each node
- · Flexible and powerful message transfer control and error handling capabilities
- · Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.14 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.15 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz).

The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.16 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC223xN from a number of external or internal clock sources:

- · External clock signals with pad voltage or core voltage levels
- · External crystal or resonator using the on-chip oscillator
- · On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

4.3.3 Power Consumption

The power consumed by the XC223xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off. DMP_M domain is supplied by ultra low power electronic voltage regulator (ULPEVR). The alternate regulator EVR_M is switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to **Section 5.2**, **Thermal Considerations**.

Note: Operating Conditions apply.

Table 18Switching Power Consumption

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	$6 + 0.6 \\ x f_{SYS}^{1)}$	8+1.0 x f _{SYS} ¹⁾	mA	power_mode= active ; voltage_range= both ²⁾³⁾⁴⁾
Power supply current in standby mode	I _{SSB} CC	-	45	125	μA	power_mode= standby ; voltage_range= lower ⁵⁾
		-	70	220	μA	power_mode= standby ; voltage_range= upper ⁵⁾
Power supply current in stopover mode, EVVRs on	I _{SSO} CC	-	0.7	2.0	mA	power_mode= stopover ; voltage_range= both ⁴⁾

1) $f_{\rm SYS}$ in MHz

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x f_{SVS}.

- 3) Please consider the additional conditions described in section "Active Mode Power Supply Current".
- 4) The pad supply voltage has only a minor influence on this parameter.
- 5) These values are valid if the voltage validation circuits for V_{DDPB} (SWD) and V_{DDIM} (PVC_M) are off. Leaving SWD and PVC_M active adds another 90 μA.

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC223xN's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Leakage supply current (DMP_1 off) ¹⁾	I _{LK0} CC	-	20	35	μA	<i>T</i> _J = 25 °C ²⁾
		-	115	330	μA	<i>T</i> _J = 85 °C ²⁾
		-	270	880	μA	<i>T</i> _J = 125 °C ²⁾
		-	420	1,450	μA	$T_{\rm J}$ = 150 °C ²⁾
Leakage supply current (DMP_1 powered) ¹⁾	$I_{\rm LK1} {\rm CC}$	-	0.03	0.04	mA	$T_{\rm J}$ = 25 °C ²⁾
		-	0.5	1.2	mA	<i>T</i> _J = 85 °C ²⁾
		-	1.9	5.5	mA	<i>T</i> _J = 125 °C ²⁾
		-	3.9	12.2	mA	<i>T</i> _J = 150 °C ²⁾

Table 19 Leakage Power Consumption

1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature T_J and the ambient temperature T_A must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values.

 All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} - 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7,000 × e^{- α}, with α = 5000 / (273 + 1.3 × T_{J}). For T_{J} = 150°C, this results in a current of 160 μ A.

Leakage Power Consumption Calculation

The leakage power consumption can be calculated according to the following formulas:

 I_{LK0} = 500,000 × $e^{-\alpha}$ with α = 3000 / (273 + B × T_{J})

Parameter B must be replaced by

- 1.0 for typical values
- 1.6 for maximum values

 $I_{IK1} = 530,000 \times e^{-\alpha}$ with $\alpha = 5000 / (273 + B \times T_{J})$

Parameter B must be replaced by

- 1.0 for typical values
- 1.3 for maximum values

Coding of bit fields LEVxV in SWD Configuration Registers

After power-on the supply watch dog is preconfigured to operate in the lower voltage range.

	•					
Code	Voltage Level	Notes ¹⁾				
0000 _B	-	out of valid operation range				
0001 _B	3.0 V	LEV1V: reset request				
0010 _B - 0101 _B	3.1 V- 3.4 V	step width is 0.1 V				
0110 _B	3.6 V					
0111 _B	4.0 V					
1000 _B	4.2 V					
1001 _B	4.5 V	LEV2V: no request				
1010 _B - 1110 _B	4.6 V - 5.0 V	step width is 0.1 V				
1111 _B	5.5 V					

Table 23 Coding of bit fields LEVxV in Register SWDCON0

1) The indicated default levels for LEV1V and LEV2V are selected automatically after a power-on reset.

Coding of bit fields LEVxV in PVC Configuration Registers

The core voltages are controlled internally to the nominal value of 1.5 V; a variation of ± 10 % is allowed. These operation conditions limit the possible PVC monitoring values to the predefined reset values shown in Table 24.

Table 24 Coding of bit fields LEVxV in Registers PVCyCONz

Code	Voltage Level	Notes ¹⁾
000 _B -011 _B	-	out of valid operation range
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B - 111 _B	-	out of valid operation range

1) The indicated default levels for LEV1V and LEV2V are selected automatically after a power-on reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use this warning level.

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{\text{SYS}} = f_{\text{IN}}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.7.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $(F = N / (P \times K2)).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
VCO output frequency	f _{vco} CC	50	-	110	MHz	VCOSEL= 00b; VCOmode= controlled
		10	-	40	MHz	VCOSEL= 00b; VCOmode= free running
		100	-	160	MHz	VCOSEL= 01b; VCOmode= controlled
		20	-	80	MHz	VCOSEL= 01b; VCOmode= free running

-hla 00 votom DLL Doromotoro

4.7.2.2 Wakeup Clock

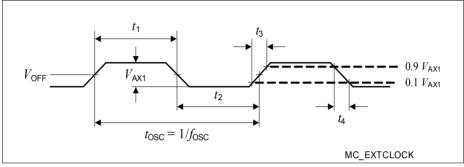
When wakeup operation is selected (SYSCON0.CLKSEL = 00_{B}), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WII}$

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

4.7.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states.


Many applications change the frequency of the system clock (f_{SYS}) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage. the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.

- 1) The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF} . This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1} .
- 2) Overload conditions must not occur on pin XTAL1.

Figure 21 External Clock Drive XTAL1

Note: For crystal or ceramic resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation.

The manufacturers of crystals and ceramic resonators offer an oscillator evaluation service. This evaluation checks the crystal/resonator specification limits to ensure a reliable oscillator operation.

4.7.5 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 30 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= upper

Parameter	Symbol Val			Values Unit		Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	_	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	-	ns	

Table 30 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 31 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= lower