

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	26K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2238n24f40laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2013-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XC223xN Revision I	Data Sheet History: V1.5 2013-02						
Previous V	/ersions:						
V1.4, 2011	V1.4, 2011-07						
V1.3, 2010	-04						
V1.2, 2009	-12						
V1.1, 2009	-07						
V1.0, 2009	-03 Preliminary						
Page	Subjects (major changes since last revision)						
27	Added AB step marking.						
79	Errata SWD_X.P002 implemented: $V_{\rm SWD}$ tolerance boundaries for 5.5 V are changed.						
81	Clarified "Coding of bit fields LEVxV" descriptions. Matched with Operating Conditions: marked some coding values "out of valid operation range".						
82	Errata FLASH_X.P001 implemented: Test Condition for Flash parameter $N_{\rm ER}$ corrected						

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

1.2 Special Device Types

Special device types are only available for high-volume applications on request.

Derivative ¹⁾	Flash Memory ²⁾	PSRAM DSRAM ³⁾	Capt./Comp. Modules ⁴⁾	ADC ⁵⁾ Chan.	Interfaces ⁵⁾				
XC2232N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.				
XC2232N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.				
XC2232N-8FxL	64 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.				
XC2234N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.				
XC2234N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.				
XC2234N-16FxL	128 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.				
XC2236N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.				
XC2236N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.				
XC2236N-16FxL	128 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.				

Table 2 Synopsis of XC223xN Special Device Types

1) x is a placeholder for available speed grade in MHz. Can be 20, 40, 66 or 80.

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

4) Due to bonding limitations in the XC223xN devices only a subset of the CCU61 features can be used. The module has the T12 and T13 timer inputs and no outputs connected. Therefore only CCU61 timers can be triggered from external. This can typically be used for periodic triggering of ADCs.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

General Device Information

Tabl	Table 6Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
7	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output				
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)				
	TxDC2	02	DA/A	CAN Node 2 Transmit Data Output				
	BRKOUT	O3	DA/A	OCDS Break Signal Output				
	ADCx_REQG TyG	I	DA/A	External Request Gate Input for ADC0/1				
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input				
8	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output				
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)				
	T3OUT	02	DA/A	GPT12E Timer T3 Toggle Latch Output				
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output				
	ADCx_REQT RyE	I	DA/A	External Request Trigger Input for ADC0/1				
	RxDC2E	I	DA/A	CAN Node 2 Receive Data Input				
	ESR1_6	I	DA/A	ESR1 Trigger Input 6				
10	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input				
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1				
11	P15.4	I	In/A	Bit 4 of Port 15, General Purpose Input				
	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1				
	T6INA	I	In/A	GPT12E Timer T6 Count/Gate Input				
12	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1				
13	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1				
14	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input				
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0				
15	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input				
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0				
	TDI_A	I	In/A	JTAG Test Data Input				

General Device Information

Table	Fable 6 Pin Definitions and Functions (cont'd)									
Pin	Symbol	Ctrl.	Туре	Function						
26	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output						
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output						
	RxDC5C	I	St/B	CAN Node 5 Receive Data Input						
	T5EUDB	I	St/B	GPT12E Timer T5 External Up/Down Control Input						
	ESR1_5	I	St/B	ESR1 Trigger Input 5						
27	P2.2	00 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output						
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output						
	ESR2_5	I	St/B	ESR2 Trigger Input 5						
28	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output						
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output						
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.						
	ESR2_0	I	St/B	ESR2 Trigger Input 0						
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input						
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input						
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input						
29	P2.4	O0 / I	St/B	Bit 4 of Port 2, General Purpose Input/Output						
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output						
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output						
	CC2_CC17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.						
	ESR1_0	I	St/B	ESR1 Trigger Input 0						
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input						
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input						
30	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output						
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output						
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output						
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.						
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input						
	ESR1_10	I	St/B	ESR1 Trigger Input 10						

General Device Information

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
56	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC3	02	St/B	CAN Node 3 Transmit Data Output			
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output			
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input			
58	P10.14	00 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output			
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	ESR2_2	I	St/B	ESR2 Trigger Input 2			
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input			
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input			
59	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output			
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output			
	U0C1_DX1C	Ι	St/B	USIC0 Channel 1 Shift Clock Input			
60	XTAL2	0	Sp/M	Crystal Oscillator Amplifier Output			
61	XTAL1	I	Sp/M	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .			
	ESR2_9	I	St/B	ESR2 Trigger Input 9			
62	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC223xN completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.			

Functional Description

3 Functional Description

The architecture of the XC223xN combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources. This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC223xN.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC223xN.

Figure 4 Block Diagram

Functional Description

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	

Table 8XC223xN Memory Map (cont'd)¹⁾

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

- 2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".
- 3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).
- 4) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 16 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the quoted device type.

Functional Description

3.12 Universal Serial Interface Channel Modules (USIC)

The XC223xN features the USIC modules USIC0, USIC1, USIC2. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

Table 13Operating Conditions (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Overload current coupling factor for digital I/O pins	K _{OVD} CC	-	1.0 x 10 ⁻²	3.0 x 10 ⁻²	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	50	mA	not subject to production test
Digital core supply voltage for domain M ⁸⁾	V _{DDIM} CC	-	1.5	-		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	-	V	

1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

- 2) Use one Capacitor for each pin.
- This is the reference load. For bigger capacitive loads, use the derating factors listed in the pad properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).

4.3 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XC223xN can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XC223xN are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.7.4**.

4.3.3 Power Consumption

The power consumed by the XC223xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off. DMP_M domain is supplied by ultra low power electronic voltage regulator (ULPEVR). The alternate regulator EVR_M is switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to **Section 5.2**, **Thermal Considerations**.

Note: Operating Conditions apply.

Table 20ADC Parameters (cont'd)

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50 ³⁾		
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50 ⁴⁾		
Conversion time for 8-bit result ²⁾	t _{c8} CC	(11+S) TC) x t_{ADCI} +	_	_		
		t _{SYS}				
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	(13+ <i>S</i> <i>TC</i>) x	-	-		
		<i>t</i> _{ADCI} + 2 x				
		t _{SYS}				
Total Unadjusted Error	TUE CC	-	1	2	LSB	5)
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	4	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	-	-	15	μS	
Analog reference ground	$V_{\rm AGND}$ SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V_{AGND}	-	V_{AREF}	V	6)
Analog reference voltage	V_{AREF} SR	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	

 These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used: C_{AINTtyp} = 12 pF, C_{AINStyp} = 5 pF, R_{AINtyp} = 1.0 kOhm, C_{AREFTtyp} = 15 pF, C_{AREFStyp} = 10 pF, R_{AREFStyp} = 1.0 kOhm.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.

3) The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μ s. Result below 10% (66_H)

- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_µ)
- 5) TUE is tested at V_{AREF} = V_{DDPA} = 5.0 V, V_{AGND} = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

Figure 16 Equivalent Circuitry for Analog Inputs

- 2) Flash module 1 can be erased/programmed while code is executed and/or data is read from Flash module 0.
- 3) Value of IMB_IMBCTRL.WSFLASH.
- 4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies.

Access to the XC223xN Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{\text{SYS}} = f_{\text{IN}}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.7.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $(F = N / (P \times K2)).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed C_L = 20 pF.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 64 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

PLL frequency band selection

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Table 31 USIC SSC Master Mode Timing for Lower Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 10 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 9 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-7	-	11	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	-	-	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 32 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC*= slave ; voltage_range= upper

Table 32 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	-	-	ns	

4.7.6 Debug Interface Timing

The debugger can communicate with the XC223xN either via the 2-pin DAP interface or via the standard JTAG interface.

Debug via DAP

The following parameters are applicable for communication through the DAP debug interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 34 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= upper

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	_	-	ns	
DAP0 high time	t ₁₂ SR	8	-	-	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	17	20	-	ns	

 Table 34
 DAP Interface Timing for Upper Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Table 35 is valid under the following conditions: C_{L} = 20 pF; voltage_range = lower

Electrical Parameters

Figure 24 DAP Timing Host to Device

Figure 25 DAP Timing Device to Host

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 36 is valid under the following conditions: C_L= 20 pF; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
TCK clock period	t ₁ SR	50	-	-	ns	1)
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	

 Table 36
 JTAG Interface Timing for Upper Voltage Range

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.