

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore ProcessorC166SV2Core Size6/32-BitSpeed80MHzConnectivityCANbus, EBI/EMI, I*C, LINbus, SPI, SSC, UART/USART, USIPreipheralsI*S, POR, PWM, WDTNumber of I/O38Program Memory Size202K (320K x 8)Program Memory TypeFLASHEEPROM Size-Valdage - Supply (Vcc/Vd)3V - S.5VPotage - Supply (Vcc/Vd)SV - S.5VData ConvertersAlo SuppleOperating Temperature40°C ~ 125°C (TA)Mounting TypeSuface MountProkage / Case6-LQFP Exposed PadPackage / Case6-LQFP Exposed PadSuppler Device PackageBitp://www.esfl.com/product-detail/infineon-technologies/xc223840f80baksxumal	Details	
Core Size16/32-BitSpeed80MHzConnectivityCANbus, EBI/EMI, I*C, LINbus, SPI, SSC, UART/USART, USIPeripherals1*S, POR, PWM, WDTNumber of I/O38Program Memory Size320KB (320K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSuppler Device Package-	Product Status	Obsolete
Speed80MHzConnectivityCANbus, EBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O38Program Memory Size320KB (320K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size42K × 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackageFG-LQFP-64-6	Core Processor	C166SV2
ConnectivityCANbus, EBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O38Program Memory Size320KB (320K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Core Size	16/32-Bit
PeripheralsI²S, POR, PWM, WDTNumber of I/O38Program Memory Size320KB (320K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Speed	80MHz
Number of I/O38Program Memory Size320KB (320K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Program Memory Size320KB (320K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Peripherals	I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Number of I/O	38
EEPROM Size-RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Program Memory Size	320KB (320K x 8)
RAM Size42K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	EEPROM Size	-
Data ConvertersA/D 9x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	RAM Size	42K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP Exposed PadSupplier Device PackagePG-LQFP-64-6	Data Converters	A/D 9x10b
Mounting Type Surface Mount Package / Case 64-LQFP Exposed Pad Supplier Device Package PG-LQFP-64-6	Oscillator Type	Internal
Package / Case 64-LQFP Exposed Pad Supplier Device Package PG-LQFP-64-6	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package PG-LQFP-64-6	Mounting Type	Surface Mount
	Package / Case	64-LQFP Exposed Pad
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/xc2238n40f80laakxuma1	Supplier Device Package	PG-LQFP-64-6
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2238n40f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	N Data Sheet n History: V1.5 2013-02
Previous	Versions:
V1.4, 201	11-07
V1.3, 20	10-04
V1.2, 200)9-12
V1.1, 200	09-07
V1.0, 200	09-03 Preliminary
Page	Subjects (major changes since last revision)
27	Added AB step marking.
79	Errata SWD_X.P002 implemented: V_{SWD} tolerance boundaries for 5.5 V are changed.
81	Clarified "Coding of bit fields LEVxV" descriptions. Matched with Operating Conditions: marked some coding values "out of valid operation range".
82	Errata FLASH_X.P001 implemented: Test Condition for Flash parameter $N_{\rm ER}$ corrected

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

- On-Chip Peripheral Modules
 - Two synchronizable A/D Converters with up to 9 channels, 10-bit resolution, conversion time below 1 μ s, optional data preprocessing (data reduction, range check), broken wire detection
 - 16-channel general purpose capture/compare unit (CC2)
 - Two capture/compare units for flexible PWM signal generation (CCU6x)
 - Multi-functional general purpose timer unit with 5 timers
 - Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
 - On-chip MultiCAN interface (Rev. 2.0B active) with up to 256 message objects (Full CAN/Basic CAN) on 6 CAN node
 - On-chip system timer and on-chip real time clock
- Single power supply from 3.0 V to 5.5 V
- · Power reduction and wake-up modes with flexible power management
- Programmable watchdog timer and oscillator watchdog
- Up to 40 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- · On-chip debug support via Device Access Port (DAP) or JTAG interface
- 64-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the temperature range:
 - SAF-...: -40°C to 85°C
 - SAH-...: -40°C to 110°C
 - SAK-...: -40°C to 125°C
- the package and the type of delivery.

For ordering codes for the XC223xN please contact your sales representative or local distributor.

This document describes several derivatives of the XC223xN group:

Basic Device Types are readily available and

Special Device Types are only available on request.

As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types.

For simplicity the term XC223xN is used for all derivatives throughout this document.

Summary of Features

1.2 Special Device Types

Special device types are only available for high-volume applications on request.

Derivative ¹⁾	Flash Memory ²⁾	PSRAM DSRAM ³⁾	Capt./Comp. Modules ⁴⁾	ADC ⁵⁾ Chan.	Interfaces ⁵⁾
XC2232N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.
XC2232N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.
XC2232N-8FxL	64 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	3 CAN Nodes, 6 Serial Chan.
XC2234N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.
XC2234N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.
XC2234N-16FxL	128 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 2 Serial Chan.
XC2236N-40FxL	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.
XC2236N-24FxL	192 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.
XC2236N-16FxL	128 Kbytes	4 Kbytes 4 Kbytes	CC2 CCU60/1	7 + 2	1 CAN Node, 4 Serial Chan.

Table 2 Synopsis of XC223xN Special Device Types

1) x is a placeholder for available speed grade in MHz. Can be 20, 40, 66 or 80.

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

4) Due to bonding limitations in the XC223xN devices only a subset of the CCU61 features can be used. The module has the T12 and T13 timer inputs and no outputs connected. Therefore only CCU61 timers can be triggered from external. This can typically be used for periodic triggering of ADCs.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
31	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output			
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output			
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output			
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.			
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input			
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input			
	ESR2_6	I	St/B	ESR2 Trigger Input 6			
35	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			
36	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output			
	U0C1_SCLK OUT	01	DP/B	USIC0 Channel 1 Shift Clock Output			
	EXTCLK	02	DP/B	Programmable Clock Signal Output			
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.			
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input			

XC2232N, XC2234N, XC2236N, XC2238N XC2000 Family / Value Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
40	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output				
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output				
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output				
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input				
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input				
42	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output				
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.				
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input				
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input				
43	P10.3	00 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output				
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output				
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input				
44	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output				
	U0C0_SELO 3	01	St/B	USIC0 Channel 0 Select/Control 3 Output				
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output				
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input				
	ESR1_9	I	St/B	ESR1 Trigger Input 9				

XC2232N, XC2234N, XC2236N, XC2238N XC2000 Family / Value Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
56	P10.13	00 / 1		Bit 13 of Port 10, General Purpose Input/Output
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input
58	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output
	ESR2_2	I	St/B	ESR2 Trigger Input 2
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input
59	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input
60	XTAL2	0	Sp/M	Crystal Oscillator Amplifier Output
61	XTAL1	1	Sp/M	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .
	ESR2_9	I	St/B	ESR2 Trigger Input 9
62	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC223xN completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	

Table 8XC223xN Memory Map (cont'd)¹⁾

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

- 2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".
- 3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).
- 4) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 16 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the quoted device type.

3.2 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

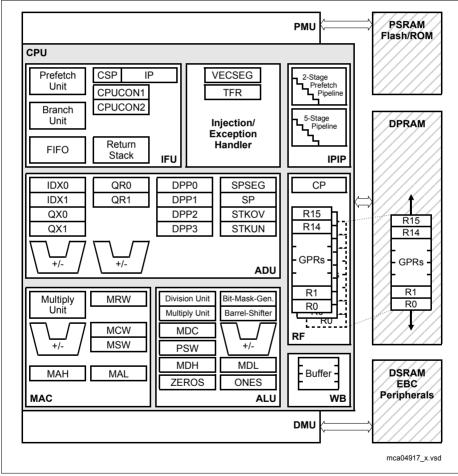


Figure 5 CPU Block Diagram

to a dedicated vector table location). The occurrence of a hardware trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-priority trap service is in progress, a hardware trap will interrupt any ongoing program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Depending on the package option up to 3 External Service Request (ESR) pins are provided. The ESR unit processes their input values and allows to implement user controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup and power control can be efficiently realized.

Software interrupts are supported by the 'TRAP' instruction in combination with an individual trap (interrupt) number. Alternatively to emulate an interrupt by software a program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an interrupt control register.

3.6 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XC223xN provides a broad range of debug and emulation features. User software running on the XC223xN can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This either consists of the 2-pin Device Access Port (DAP) or of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (DAP or JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing of data can be obtained via the debug interface, or via the external bus interface for increased performance.

Tracing of program execution is supported by the XC2000 Family emulation device. With this device the DAP can operate on clock rates of up to 20 MHz.

The DAP interface uses two interface signals, the JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC223xN to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- UART (asynchronous serial channel)
 - module capability: maximum baud rate = f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - module capability: maximum baud rate = f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI (synchronous serial channel with or without data buffer)
 - module capability: maximum baud rate = f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- IIS (Inter-IC Sound Bus)
 - module capability: maximum baud rate = f_{SYS} / 2
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

4.3.3 Power Consumption

The power consumed by the XC223xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off. DMP_M domain is supplied by ultra low power electronic voltage regulator (ULPEVR). The alternate regulator EVR_M is switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to **Section 5.2**, **Thermal Considerations**.

Note: Operating Conditions apply.

Table 18Switching Power Consumption

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	$6 + 0.6 \\ x f_{SYS}^{1)}$	8+1.0 x f _{SYS} ¹⁾	mA	power_mode= active ; voltage_range= both ²⁾³⁾⁴⁾
Power supply current in standby mode	I _{SSB} CC	-	45	125	μA	power_mode= standby ; voltage_range= lower ⁵⁾
		-	70	220	μA	power_mode= standby ; voltage_range= upper ⁵⁾
Power supply current in stopover mode, EVVRs on	I _{SSO} CC	-	0.7	2.0	mA	power_mode= stopover ; voltage_range= both ⁴⁾

1) $f_{\rm SYS}$ in MHz

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x f_{SVS}.

- 3) Please consider the additional conditions described in section "Active Mode Power Supply Current".
- 4) The pad supply voltage has only a minor influence on this parameter.
- These values are valid if the voltage validation circuits for V_{DDPB} (SWD) and V_{DDIM} (PVC_M) are off. Leaving SWD and PVC_M active adds another 90 μA.

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC223xN's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Leakage supply current (DMP_1 off) ¹⁾	I _{LK0} CC	-	20	35	μA	<i>T</i> _J = 25 °C ²⁾
		-	115	330	μA	<i>T</i> _J = 85 °C ²⁾
		-	270	880	μA	<i>T</i> _J = 125 °C ²⁾
		-	420	1,450	μA	<i>T</i> _J = 150 °C ²⁾
Leakage supply current (DMP_1 powered) ¹⁾	I _{LK1} CC	-	0.03	0.04	mA	$T_{\rm J}$ = 25 °C ²⁾
		-	0.5	1.2	mA	<i>T</i> _J = 85 °C ²⁾
		-	1.9	5.5	mA	<i>T</i> _J = 125 °C ²⁾
		-	3.9	12.2	mA	<i>T</i> _J = 150 °C ²⁾

Table 19 Leakage Power Consumption

1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature T_J and the ambient temperature T_A must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values.

 All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} - 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7,000 × e^{- α}, with α = 5000 / (273 + 1.3 × T_{J}). For T_{J} = 150°C, this results in a current of 160 μ A.

Leakage Power Consumption Calculation

The leakage power consumption can be calculated according to the following formulas:

 I_{LK0} = 500,000 × $e^{-\alpha}$ with α = 3000 / (273 + B × T_{J})

Parameter B must be replaced by

- 1.0 for typical values
- 1.6 for maximum values

 $I_{IK1} = 530,000 \times e^{-\alpha}$ with $\alpha = 5000 / (273 + B \times T_{J})$

Parameter B must be replaced by

- 1.0 for typical values
- 1.3 for maximum values

- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_µ)
- 5) TUE is tested at V_{AREF} = V_{DDPA} = 5.0 V, V_{AGND} = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

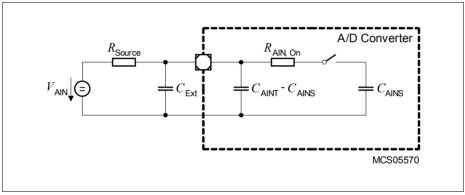
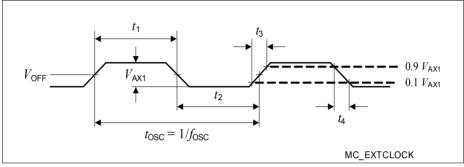



Figure 16 Equivalent Circuitry for Analog Inputs

- 1) The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF} . This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1} .
- 2) Overload conditions must not occur on pin XTAL1.

Figure 21 External Clock Drive XTAL1

Note: For crystal or ceramic resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation.

The manufacturers of crystals and ceramic resonators offer an oscillator evaluation service. This evaluation checks the crystal/resonator specification limits to ensure a reliable oscillator operation.

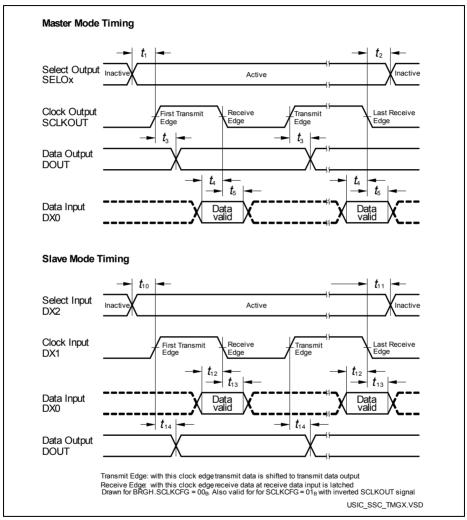


Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

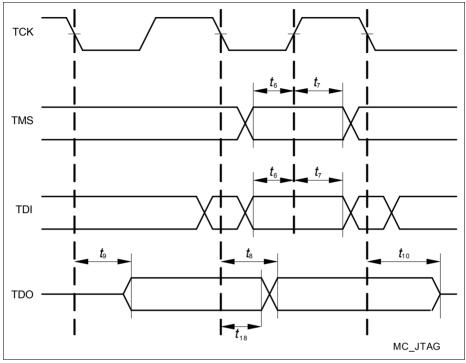


Figure 27 JTAG Timing

XC2232N, XC2234N, XC2236N, XC2238N XC2000 Family / Value Line

Package and Reliability

Package Outlines

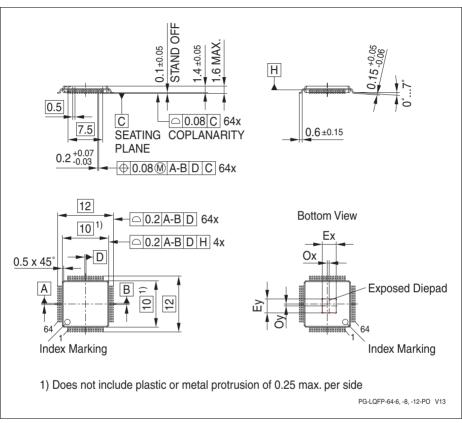


Figure 28 PG-LQFP-64-6 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages