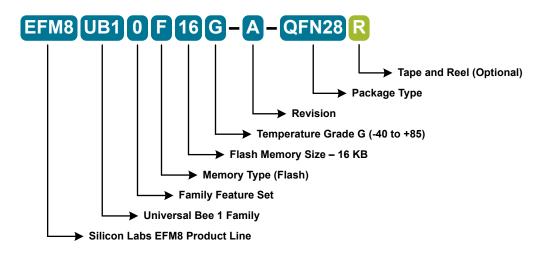

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

2010	
Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.25V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub10f16g-b-qfn20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8UB1 Part Numbering

All EFM8UB1 family members have the following features:

- CIP-51 Core running up to 50 MHz
- Three Internal Oscillators (48 MHz, 24.5 MHz and 80 kHz)
- · USB Full/Low speed Function Controller
- SMBus
- I2C Slave
- SPI
- 2 UARTs
- 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 5 16-bit Timers
- 2 Analog Comparators
- 12-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- 16-bit CRC Unit
- · Pre-loaded USB bootloader

In addition to these features, each part number in the EFM8UB1 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Separate VIO and VDD Pins	Temperature Range	Package
EFM8UB10F16G-C-QFN28	16	2304	22	20	10	12	Yes	_	-40 to +85 °C	QFN28
EFM8UB11F16G-C-QSOP24	16	2304	17	15	8	9	Yes	Yes	-40 to +85 °C	QSOP24
EFM8UB10F16G-C-QFN20	16	2304	13	11	8	5	Yes	_	-40 to +85 °C	QFN20
EFM8UB10F8G-C-QFN20	8	2304	13	11	8	5	Yes	_	-40 to +85 °C	QFN20

3. System Overview

3.1 Introduction

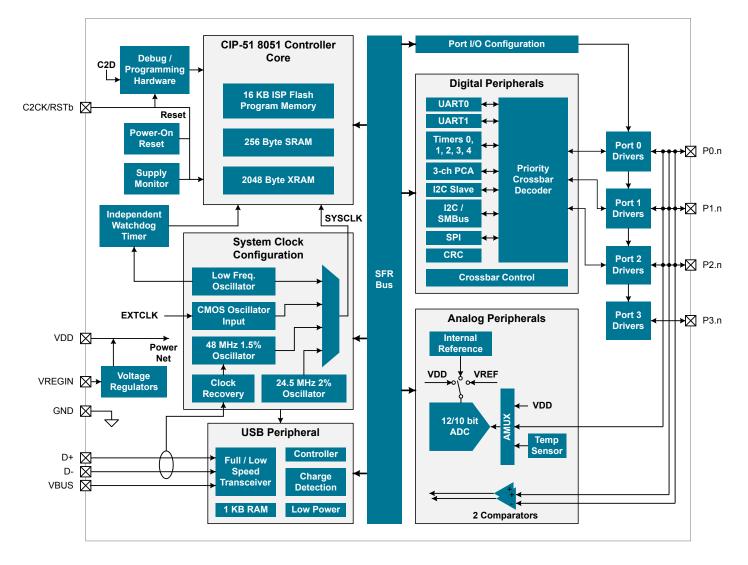


Figure 3.1. Detailed EFM8UB1 Block Diagram

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 USB0 Bus Activity Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Stop	 All internal power nets shut down 5V regulator remains active (if enabled) Internal 1.8 V LDO on Pins retain state Exit on any reset source 	 Clear STOPCF bit in REG0CN Set STOP bit in PCON0 	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 USB0 Bus Activity Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Shutdown	 All internal power nets shut down 5V regulator remains active (if enabled) Internal 1.8 V LDO off to save energy Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	 RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P3.0 and P3.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0.

The port control block offers the following features:

- Up to 22 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 20 direct-pin interrupt sources with shared interrupt vector (Port Match).

Timers (Timer 0, Timer 1, Timer 2, Timer 3, and Timer 4)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3 and Timer 4 are 16-bit timers including the following features:

- · Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes.
- Timer 4 is a low-power wake source, and can be chained together with Timer 3.
- 16-bit auto-reload timer mode.
- Dual 8-bit auto-reload timer mode.
- · External pin capture.
- LFOSC0 capture.
- · Comparator 0 capture.
- USB Start-of-Frame (SOF) capture.

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.6 Communications and Other Digital Peripherals

Universal Serial Bus (USB0)

The USB0 peripheral provides a full-speed USB 2.0 compliant device controller and PHY with additional Low Energy USB features. The device supports both full-speed (12MBit/s) and low speed (1.5MBit/s) operation, and includes a dedicated USB oscillator with clock recovery mechanism for crystal-free operation. No external components are required. The USB function controller (USB0) consists of a Serial Interface Engine (SIE), USB transceiver (including matching resistors and configurable pull-up resistors), and 1 KB FIFO block. The Low Energy Mode ensures the current consumption is optimized and enables USB communication on a strict power budget.

The USB0 module includes the following features:

- Full and Low Speed functionality.
- Implements 4 bidirectional endpoints.
- · Low Energy Mode to reduce active supply current based on bus bandwidth.
- · USB 2.0 compliant USB peripheral support (no host capability).
- · Direct module access to 1 KB of RAM for FIFO memory.
- Clock recovery to meet USB clocking requirements with no external components.
- · Charger detection circuitry with automatic detection of SDP, CDP, and DCP interfaces.
- · D+ and D- can be routed to ADC input to support ACM and proprietary charger architectures.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- · Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- Transmit and receive buffers to help increase throughput in faster applications

I2C Slave (I2CSLAVE0)

The I2C Slave interface is a 2-wire, bidirectional serial bus that is compatible with the I2C Bus Specification 3.0. It is capable of transferring in high-speed mode (HS-mode) at speeds of up to 3.4 Mbps. Firmware can write to the I2C interface, and the I2C interface can autonomously control the serial transfer of data. The interface also supports clock stretching for cases where the core may be temporarily prohibited from transmitting a byte or processing a received byte during an I2C transaction. This module operates only as an I2C slave device.

The I2C module includes the following features:

- Standard (up to 100 kbps), Fast (400 kbps), Fast Plus (1 Mbps), and High-speed (3.4 Mbps) transfer speeds
- · Support for slave mode only
- · Clock low extending (clock stretching) to interface with faster masters
- Hardware support for 7-bit slave address recognition

16-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:

- Support for CCITT-16 polynomial
- · Byte-level bit reversal
- Automatic CRC of flash contents on one or more 256-byte blocks
- Initial seed selection of 0x0000 or 0xFFFF

3.7 Analog

12-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 12-, 10-, and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 20 external inputs.
- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 200 ksps samples per second in 12-bit mode or 800 ksps samples per second in 10-bit mode.
- · Operation in low power modes at lower conversion speeds.
- · Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- · Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- · Flexible output data formatting.
- Includes an internal fast-settling reference with two levels (1.65 V and 2.4 V) and support for external reference and signal ground.
- Integrated temperature sensor.

Low Current Comparators (CMP0, CMP1)

Analog comparators are used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- · Up to 10 (CMP0) or 12 (CMP1) external positive inputs
- · Up to 10 (CMP0) or 12 (CMP1) external negative inputs
- Additional input options:
 - Internal connection to LDO output
 - · Direct connection to GND
 - Direct connection to VDD
 - Dedicated 6-bit reference DAC
- · Synchronous and asynchronous outputs can be routed to pins via crossbar
- Programmable hysteresis between 0 and ±20 mV
- · Programmable response time
- · Interrupts generated on rising, falling, or both edges
- PWM output kill feature

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 12, unless stated otherwise.

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Operating Supply Voltage on VDD	V _{DD}		2.2	_	3.6	V
Operating Supply Voltage on VIO ³	V _{IO}		1.71	_	V _{DD}	V
Operating Supply Voltage on VRE- GIN	V _{REGIN}		3.0	_	5.25	V
System Clock Frequency	fsysclk		0	_	50	MHz
Operating Ambient Temperature	T _A		-40		85	°C

Table 4.1. Recommended Operating Conditions

Note:

1. Standard USB compliance tests require 3.0 V on VDD for compliant operation.

2. All voltages with respect to GND.

3. On devices without a VIO pin, V_{IO} = V_{DD} .

4. GPIO levels are undefined whenever VIO is less than 1 V.

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Digital Core Supply Current						
Normal Mode-Full speed with code executing from flash	I _{DD}	F _{SYSCLK} = 48 MHz ²	_	8.9	9.8	mA
		F _{SYSCLK} = 24.5 MHz ²	_	4.3	4.9	mA
		F _{SYSCLK} = 1.53 MHz ²	_	600	—	μA
		F _{SYSCLK} = 80 kHz ³	_	145	—	μA
Idle Mode-Core halted with periph- erals running	I _{DD}	F _{SYSCLK} = 48 MHz ²	_	6	6.6	mA
		F _{SYSCLK} = 24.5 MHz ²	_	2.8	3.2	mA
		F _{SYSCLK} = 1.53 MHz ²	_	440	—	μA
		F _{SYSCLK} = 80 kHz ³	_	130	—	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	_	μA
high frequency clocks stopped, Supply monitor off.		LFO Stopped	_	120	—	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	_	25	_	μA
nigh frequency clocks stopped. Regulator in low-power state, Sup- oly monitor off.		LFO Stopped	—	20	_	μA
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	_	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	_	μA
Analog Peripheral Supply Currents				1		
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz,	_	105	_	μA
		T _A = 25 °C				
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 48 MHz,	_	850	-	μA
		T _A = 25 °C				
_ow-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,	_	4	-	μA
		T _A = 25 °C				

Table 4.2. Power Consumption

4.1.4 Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ^{1 , 2}	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1 , 2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	_	Cycles

Table 4.4. Flash Memory

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.

3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	SYSCLK = HFOSC0	_	170	_	ns
	PENDWK	CLKDIV = 0x00				
Snooze Mode Wake-up Time	t _{SLEEPWK}	SYSCLK = HFOSC0	—	12	—	μs
		CLKDIV = 0x00				

4.1.10 Temperature Sensor

Table 4.10. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	_	757	_	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	17	—	mV
Slope	М		_	2.85	_	mV/°C
Slope Error ¹	E _M		_	70	_	μV/°
Linearity			_	0.5	—	°C
Turn-on Time			_	1.8	_	μs
Note: 1. Represents one standard	deviation from th	e mean.		-		1

4.1.11 5 V Voltage Regulator

Table 4.11. 5V Voltage Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage Range ¹	V _{REGIN}		3.0	—	5.25	V
Output Voltage on VDD ²	V _{REGOUT}	GOUT Output Current = 1 to 100 mA		3.3	3.6	V
		Regulation range (VREGIN ≥ 4.1V)				
		Output Current = 1 to 100 mA	_	V _{REGIN} –	_	V
		Dropout range (VREGIN < 4.1V)		V _{DROPOUT}		
Output Current ²	IREGOUT		—	—	100	mA
Dropout Voltage	V _{DROPOUT}	Output Current = 100 mA		_	0.8	V
		1		11		1

Note:

1. Input range to meet the Output Voltage on VDD specification. If the 5 V voltage regulator is not used, VREGIN should be tied to VDD.

2. Output current is total regulator output, including any current required by the device.

4.3 Absolute Maximum Ratings

Stresses above those listed in 4.3 Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/ default.aspx.

Table 4.16. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	4.2	V
Voltage on VREGIN	V _{REGIN}		GND-0.3	5.8	V
Voltage on D+ or D-	V _{USBD}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins (including VBUS /	V _{IN}	V _{IO} > 3.3 V	GND-0.3	5.8	V
P3.1) or RSTb		V _{IO} < 3.3 V	GND-0.3	V _{IO} +2.5	V
Total Current Sunk into Supply Pin	I _{VDD}		-	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	-	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA
Operating Junction Temperature	TJ		-40	105	°C

Note:

1. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. On devices without a VIO pin, V_{IO} = V_{DD}

4.4 Typical Performance Curves

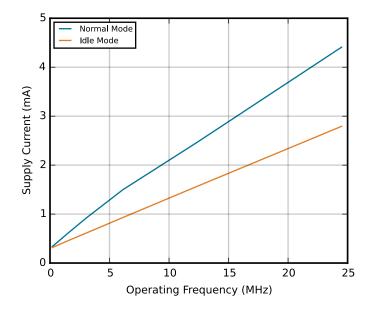


Figure 4.1. Typical Operating Supply Current using HFOSC0

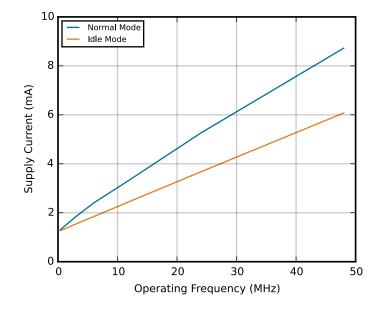


Figure 4.2. Typical Operating Supply Current using HFOSC1

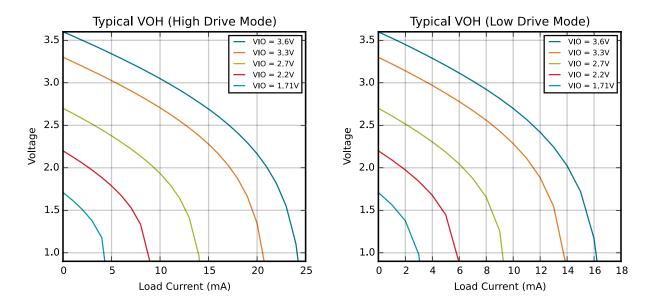


Figure 4.6. Typical VOH Curves

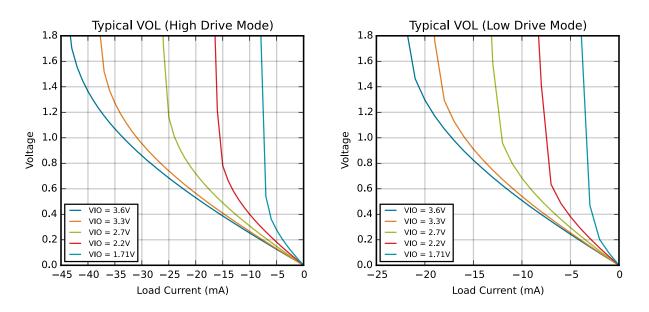
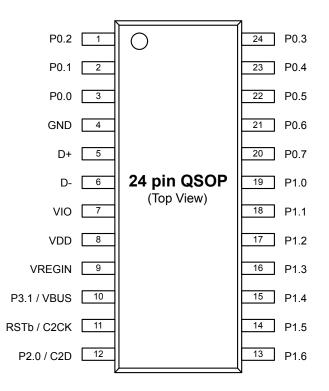



Figure 4.7. Typical V_{OL} Curves

6.2 EFM8UB1x-QSOP24 Pin Definitions

Figure 6.2. EFM8UB1x-QSOP24 Pinout

Table 6.2. Pin Definitions for EFM8UB1x-QSOP24

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.2
				INT1.2	CMP0N.2
2	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CMP0P.1
				INT1.1	CMP0N.1
					AGND

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CMP1P.2
					CMP1N.2
20	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP1P.1
				INT1.7	CMP1N.1
					CMP0P.7
					CMP0N.7
21	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP1P.0
				INT0.6	CMP1N.0
				INT1.6	CMP0P.6
					CMP0N.6
22	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	
23	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				UART0_TX	
24	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CMP0P.3
				INT0.3	CMP0N.3
				INT1.3	

6.3 EFM8UB1x-QFN20 Pin Definitions

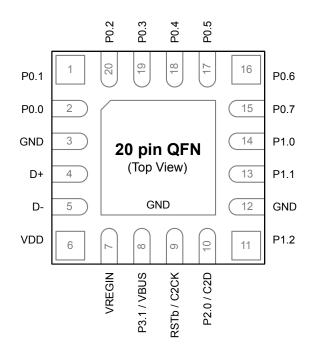


Figure 6.3. EFM8UB1x-QFN20 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CMP0P.1
				INT1.1	CMP0N.1
					AGND
2	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF

7.2 QFN28 PCB Land Pattern

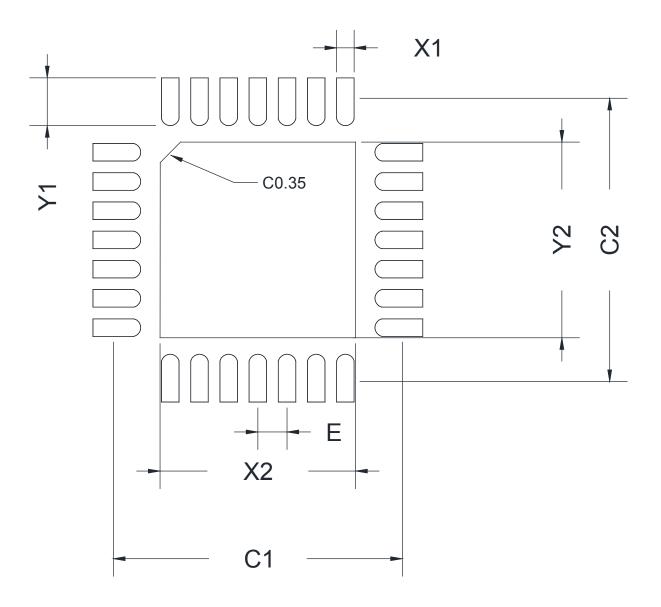


Figure 7.2. QFN28 PCB Land Pattern Drawing

Table 7.2.	QFN28 PCB Land Pattern Dimensions
------------	-----------------------------------

Dimension	Min	Мах
C1	4.8	30
C2	4.8	30
E	0.6	50
X1	0.3	30
X2	3.3	35
Y1	0.9	95

Figure 8.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Мах				
Note:		1				
1. All dimensions shown are in millimeters (mm) unless otherwise noted.						
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.						
3. This Land Pattern Design is based on the IPC-7351 guidelines.						
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.						
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.						
6. The stencil thickness should be 0.125 mm (5 mils).						
7. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.						
8. A 2 x 2 array of 0.75 mm openings on a 0.95 mm pitch should be used for the center pad to assure proper paste volume.						
9. A No-Clean, Type-3 solder paste is recommended.						

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN20 Package Marking

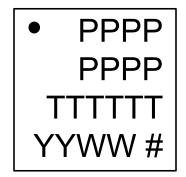
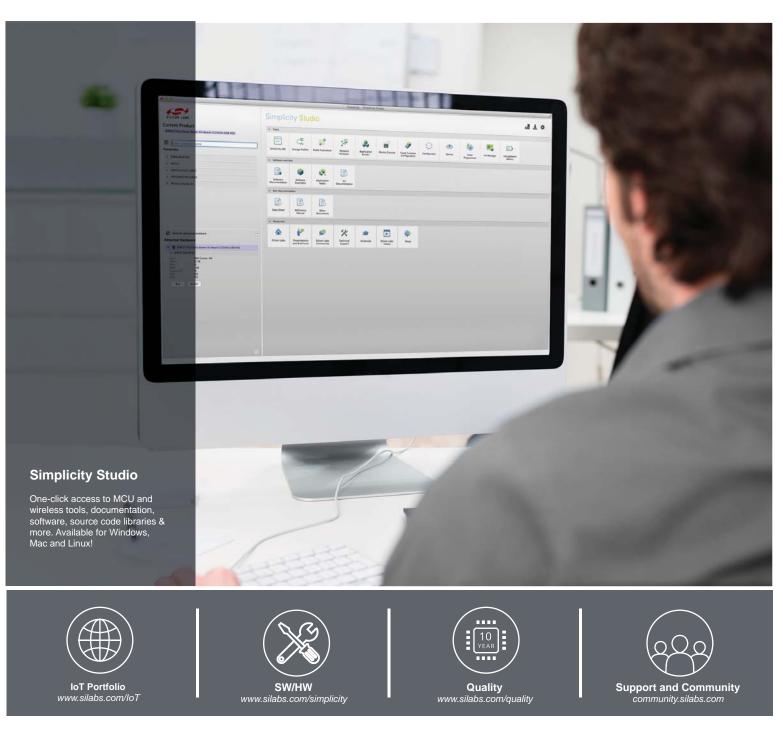



Figure 9.3. QFN20 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com