

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

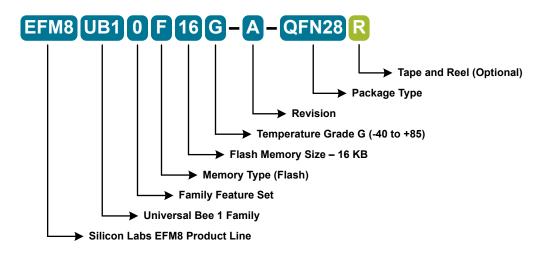
Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-WFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub10f16g-c-qfn28

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List


The EFM8UB1 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - 50 MHz maximum operating frequency
- Memory:
 - Up to 16 KB flash memory, in-system re-programmable from firmware, including 1 KB of 64-byte sectors and 15 KB of 512-byte sectors.
 - Up to 2304 bytes RAM (including 256 bytes standard 8051 RAM, 1024 bytes on-chip XRAM, and 1024 bytes of USB buffer)
- Power:
 - 5 V-input LDO regulator for direct connection to USB supply
 - Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 22 total multifunction I/O pins:
 - · All pins 5 V tolerant under bias
 - Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 48 MHz oscillator with accuracy of ±1.5% standalone and ±0.25% using USB clock recovery
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - External CMOS clock option

- Timers/Counters and PWM:
 - 3-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 5 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- Communications and Digital Peripherals:
 - USB 2.0-compliant full speed with integrated low-power transceiver, 4 bidirectional endpoints, and dedicated 1 KB buffer
 - 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus™/I2C™ Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
- Analog:
 - 12-Bit Analog-to-Digital Converter (ADC)
 - 2 x Low-current analog comparators with adjustable reference
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- Pre-loaded USB bootloader
- Temperature range -40 to 85 °C
- Single power supply of 2.2 to 3.6 V or 3.0 to 5.25 V
- QSOP24, QFN28, and QFN20 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8UB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. The on-chip 5V-to-3.3V regulator enables operation from 2.2 V up to a 5.25 V supply. Devices are available in 28-pin QFN, 20-pin QFN, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

2. Ordering Information

Figure 2.1. EFM8UB1 Part Numbering

All EFM8UB1 family members have the following features:

- CIP-51 Core running up to 50 MHz
- Three Internal Oscillators (48 MHz, 24.5 MHz and 80 kHz)
- · USB Full/Low speed Function Controller
- SMBus
- I2C Slave
- SPI
- 2 UARTs
- 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 5 16-bit Timers
- 2 Analog Comparators
- 12-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- 16-bit CRC Unit
- · Pre-loaded USB bootloader

In addition to these features, each part number in the EFM8UB1 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Separate VIO and VDD Pins	Temperature Range	Package
EFM8UB10F16G-C-QFN28	16	2304	22	20	10	12	Yes	_	-40 to +85 °C	QFN28
EFM8UB11F16G-C-QSOP24	16	2304	17	15	8	9	Yes	Yes	-40 to +85 °C	QSOP24
EFM8UB10F16G-C-QFN20	16	2304	13	11	8	5	Yes	_	-40 to +85 °C	QFN20
EFM8UB10F8G-C-QFN20	8	2304	13	11	8	5	Yes	_	-40 to +85 °C	QFN20

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 USB0 Bus Activity Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Stop	 All internal power nets shut down 5V regulator remains active (if enabled) Internal 1.8 V LDO on Pins retain state Exit on any reset source 	 Clear STOPCF bit in REG0CN Set STOP bit in PCON0 	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 USB0 Bus Activity Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Shutdown	 All internal power nets shut down 5V regulator remains active (if enabled) Internal 1.8 V LDO off to save energy Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	 RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P3.0 and P3.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0.

The port control block offers the following features:

- Up to 22 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 20 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.7 Analog

12-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 12-, 10-, and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 20 external inputs.
- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 200 ksps samples per second in 12-bit mode or 800 ksps samples per second in 10-bit mode.
- · Operation in low power modes at lower conversion speeds.
- · Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- · Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- · Flexible output data formatting.
- Includes an internal fast-settling reference with two levels (1.65 V and 2.4 V) and support for external reference and signal ground.
- Integrated temperature sensor.

Low Current Comparators (CMP0, CMP1)

Analog comparators are used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- · Up to 10 (CMP0) or 12 (CMP1) external positive inputs
- · Up to 10 (CMP0) or 12 (CMP1) external negative inputs
- Additional input options:
 - Internal connection to LDO output
 - · Direct connection to GND
 - Direct connection to VDD
 - Dedicated 6-bit reference DAC
- · Synchronous and asynchronous outputs can be routed to pins via crossbar
- Programmable hysteresis between 0 and ±20 mV
- · Programmable response time
- · Interrupts generated on rising, falling, or both edges
- PWM output kill feature

4.1.4 Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ^{1 , 2}	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1 , 2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	_	Cycles

Table 4.4. Flash Memory

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.

3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	SYSCLK = HFOSC0	_	170	_	ns
	PENDWK	CLKDIV = 0x00				
Snooze Mode Wake-up Time	t _{SLEEPWK}	SYSCLK = HFOSC0	—	12	—	μs
		CLKDIV = 0x00				

4.1.6 Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
High Frequency Oscillator 0 (2-	4.5 MHz)					
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz
Power Supply Sensitivity	PSS _{HFOS} C0	T _A = 25 °C	-	0.5	-	%/V
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V	_	40	_	ppm/°C
High Frequency Oscillator 1 (4	8 MHz)			I	I	
Oscillator Frequency	f _{HFOSC1}	Full Temperature and Supply Range	47.3	48	48.7	MHz
Power Supply Sensitivity	PSS _{HFOS} C1	T _A = 25 °C	-	0.02	_	%/V
Temperature Sensitivity	TS _{HFOSC1}	V _{DD} = 3.0 V	_	45	_	ppm/°C
Low Frequency Oscillator (80 k	:Hz)			I	1	
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C		0.05		%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V		65	_	ppm/°C

Table 4.6. Internal Oscillators

4.1.7 External Clock Input

Table 4.7. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock	f _{CMOS}		0	_	50	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{CMOSH}		9	_		ns
External Input CMOS Clock Low Time	t _{CMOSL}		9	_	_	ns

Table 4.13. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output High Voltage (High Drive)	V _{OH}	I _{OH} = -7 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -3.3 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	—	V
		I_{OH} = -1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (High Drive)	V _{OL}	I _{OL} = 13.5 mA, V _{IO} ≥ 3.0 V	—	—	0.6	V
		I_{OL} = 7 mA, 2.2 V ≤ V_{IO} < 3.0 V	—	—	V _{IO} x 0.2	V
		I_{OL} = 3.6 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output High Voltage (Low Drive)	V _{OH}	I _{OH} = -4.75 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -2.25 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	—	V
		I_{OH} = -1.2 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (Low Drive)	V _{OL}	I _{OL} = 6.5 mA, V _{IO} ≥ 3.0 V	—	—	0.6	V
		I_{OL} = 3.5 mA, 2.2 V ≤ V_{IO} < 3.0 V	—	—	V _{IO} x 0.2	V
		I_{OL} = 1.8 mA, 1.71 V ≤ V_{IO} < 2.2 V				
Input High Voltage	V _{IH}		V _{IO} - 0.6	—	—	V
(all port pins including VBUS)						
Input Low Voltage	VIL		—	_	0.6	V
(all port pins including VBUS)						
Pin Capacitance	C _{IO}		_	7	_	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-30	-20	-10	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	GND < V _{IN} < V _{IO}	-1.1	_	1.1	μA
Input Leakage Current with V_{IN} above V_{IO}	I _{LK}	V _{IO} < V _{IN} < V _{IO} +2.0 V	0	5	150	μA

4.1.14 USB Transceiver

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Transmitter					1	
Output High Voltage	V _{OH}	V _{DD} ≥3.0V	2.8		_	V
Output Low Voltage	V _{OL}	V _{DD} ≥3.0V	_	_	0.8	V
Output Crossover Point	V _{CRS}		1.3	_	2.0	V
Output Impedance	Z _{DRV}	Driving High	28	36	44	Ω
		Driving Low	28	36	44	
Pull-up Resistance	R _{PU}	Full Speed (D+ Pull-up)	1.425	1.5	1.575	kΩ
		Low Speed (D- Pull-up)				
Output Rise Time	T _R	Low Speed	75	_	300	ns
		Full Speed	4	—	20	ns
Output Fall Time	T _F	Low Speed	75	—	300	ns
		Full Speed	4	_	20	ns
Receiver						
Differential Input	V _{DI}	(D+) - (D-)	0.2	_	_	V
Sensitivity						
Differential Input Common Mode Range	V _{CM}		0.8	_	2.5	V
Input Leakage Current	IL	Pullups Disabled		<1.0		μA

Table 4.14. USB Transceiver

4.2 Thermal Conditions

Table 4.15. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal Resistance	θ _{JA}	QFN-20 Packages	_	60	_	°C/W
		QFN-28 Packages	_	26	_	°C/W
		QSOP-24 Packages	_	65	_	°C/W
Note: 1. Thermal resistance assumes a	multi-layer F	PCB with any exposed pad soldered to	a PCB pad		1	

4.3 Absolute Maximum Ratings

Stresses above those listed in 4.3 Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/ default.aspx.

Table 4.16. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	4.2	V
Voltage on VREGIN	V _{REGIN}		GND-0.3	5.8	V
Voltage on D+ or D-	V _{USBD}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins (including VBUS /	V _{IN}	V _{IO} > 3.3 V	GND-0.3	5.8	V
P3.1) or RSTb		V _{IO} < 3.3 V	GND-0.3	V _{IO} +2.5	V
Total Current Sunk into Supply Pin	I _{VDD}		-	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	-	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA
Operating Junction Temperature	TJ		-40	105	°C

Note:

1. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. On devices without a VIO pin, V_{IO} = V_{DD}

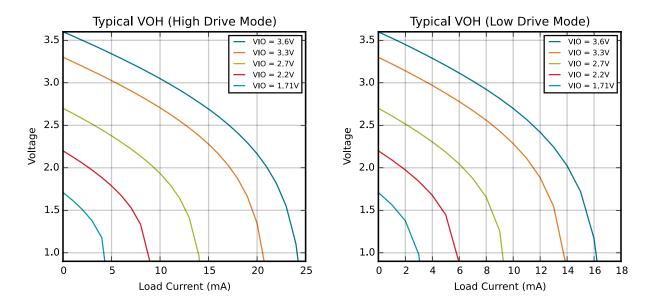


Figure 4.6. Typical V_{OH} Curves

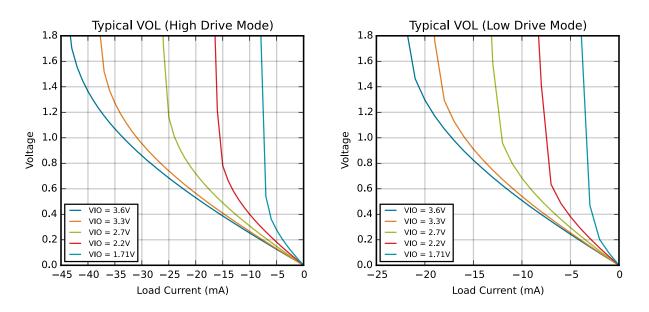


Figure 4.7. Typical V_{OL} Curves

5.3 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

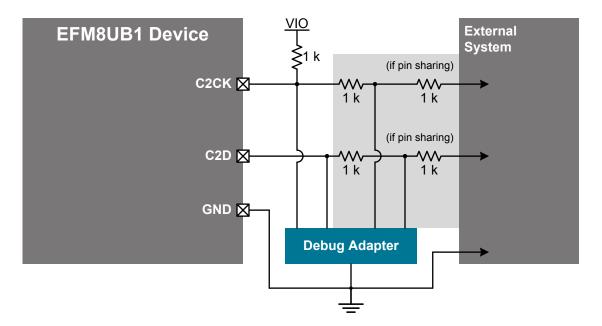


Figure 5.6. Debug Connection Diagram

5.4 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN203: "8-bit MCU Printed Circuit Board Design Notes" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF
3	GND	Ground			
4	D+	USB Data Positive			ADC0.28
5	D-	USB Data Negative			ADC0.29
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	P3.1	Multifunction I/O		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
11	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.23
					CMP1P.12
					CMP1N.12
12	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.22
					CMP1P.11
					CMP1N.11
13	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.21
					CMP1P.10
					CMP1N.10
14	P2.0	Multifunction I/O	Yes	P2MAT.0	ADC0.20
					CMP1P.9
					CMP1N.9
15	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.15
					CMP1P.7
					CMP1N.7
16	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				I2C0_SCL	CMP1P.6
					CMP1N.6
17	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				I2C0_SDA	CMP1P.5
					CMP1N.5

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP1P.4
					CMP1N.4
19	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CMP1P.3
					CMP1N.3
20	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CMP1P.2
					CMP1N.2
21	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
					CMP1P.1
					CMP1N.1
					CMP0P.10
					CMP0N.10
22	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CMP1P.0
					CMP1N.0
					CMP0P.9
					CMP0N.9
23	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP0P.7
				INT1.7	CMP0N.7
24	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.6
				INT0.6	CMP0N.6
				INT1.6	
25	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	
26	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				UART0_TX	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
3	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF
4	GND	Ground			
5	D+	USB Data Positive			ADC0.28
6	D-	USB Data Negative			ADC0.29
7	VIO	I/O Power Input			
8	VDD	Supply Power Input /			
		5V Regulator Output			
9	VREGIN	5V Regulator Input			
10	P3.1	Multifunction I/O		VBUS	
11	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
12	P2.0 /	Multifunction I/O /	Yes		
	C2D	C2 Debug Data			
13	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
					CMP1P.9
					CMP1N.9
14	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
					CMP1P.7
					CMP1N.7
15	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP1P.6
					CMP1N.6
16	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CMP1P.5
					CMP1N.5
17	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				I2C0_SCL	CMP1P.4
					CMP1N.4
18	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				I2C0_SDA	CMP1P.3
					CMP1N.3

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
3	GND	Ground			
4	D+	USB Data Positive			ADC0.28
5	D-	USB Data Negative			ADC0.29
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	P3.1	Multifunction I/O		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P2.0 /	Multifunction I/O /	Yes		
	C2D	C2 Debug Data			
11	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				I2C0_SCL	CMP1P.4
					CMP1N.4
12	GND	Ground			
13	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				I2C0_SDA	CMP1P.3
					CMP1N.3
14	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CMP1P.2
					CMP1N.2
15	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP1P.1
				INT1.7	CMP1N.1
					CMP0P.7
					CMP0N.7
16	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP1P.0
				INT0.6	CMP1N.0
				INT1.6	CMP0P.6
					CMP0N.6
17	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				UART0_TX	
19	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CMP0P.3
				INT0.3	CMP0N.3
				INT1.3	
20	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.2
				INT1.2	CMP0N.2
Center	GND	Ground			

7.2 QFN28 PCB Land Pattern

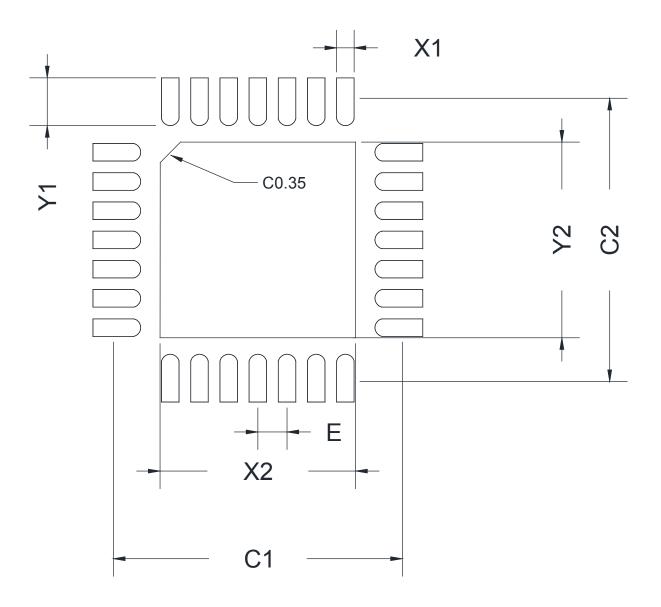


Figure 7.2. QFN28 PCB Land Pattern Drawing

Table 7.2.	QFN28 PCB L	and Pattern	Dimensions
------------	-------------	-------------	------------

Dimension	Min	Мах
C1	4.8	30
C2	4.8	30
E	0.6	50
X1	0.3	30
X2	3.3	35
Y1	0.9	95

Dimension	Min	Мах			
Y2	3.35				
Note:					
1. All dimensions shown are in millimeters (mm) unless otherwise noted.					

- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2 x 2 array of 1.2 mm square openings on a 1.5 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7.3 QFN28 Package Marking

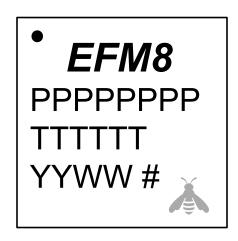


Figure 7.3. QFN28 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFN20 Package Specifications

9.1 QFN20 Package Dimensions

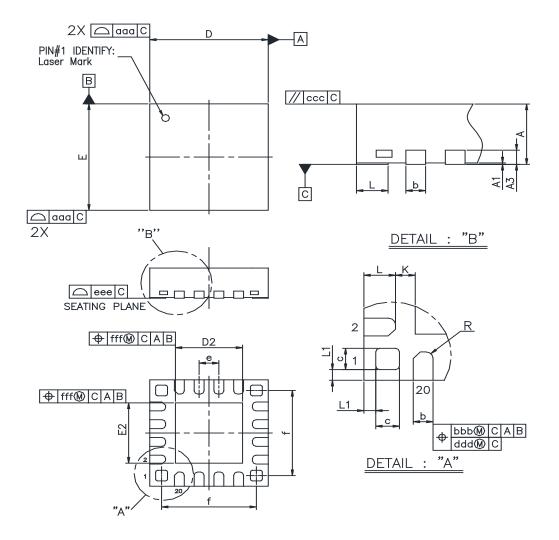


Figure 9.1. QFN20 Package Drawing

Dimension	Min	Тур	Мах
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
С	0.25	0.30	0.35
D	3.00 BSC		
D2	1.6	1.70	1.80
е	0.50 BSC		

10. Revision History

10.1 Revision 1.1

December 16, 2015

Updated 3.2 Power to properly reflect that a comparator falling edge wakes the device from Suspend and Snooze.

Added Note 4 to Table 4.1 Recommended Operating Conditions on page 12.

Added 5.3 Debug.

10.2 Revision 1.0

Updated any TBD numbers in 4.1 Electrical Characteristics and adjusted various specifications.

Updated VOH and VOL graphs in Figure 4.6 Typical V_{OH} Curves on page 28 and Figure 4.7 Typical V_{OL} Curves on page 28 and updated the VOH and VOL specifications in Table 4.13 Port I/O on page 22.

Added more information to 3.10 Bootloader.

Updated part numbers to Revision C.

10.3 Revision 0.3

Updated QFN20 packaging and landing diagram dimensions.

Updated QFN28 D and E minimum value.

Updated some characterization TBD values.

Added maximum allowable voltages on D+ and D- and added VBUS / P3.1 to the standard I/O row in Table 4.16 Absolute Maximum Ratings on page 24.

Added a diagram to 5.1 Power for cases when the internal 5 V-to-3.3 V regulator is not used.

Updated the 5 V-to-3.3 V regulator Electrical Characteristics table.

Added Stop mode to the Power Modes table in 3.2 Power.

10.4 Revision 0.2

Initial release.