




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                         |
|----------------------------|-------------------------------------------------------------------------|
| Product Status             | Active                                                                  |
| Core Processor             | CIP-51 8051                                                             |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 50MHz                                                                   |
| Connectivity               | I <sup>2</sup> C, SMBus, SPI, UART/USART, USB                           |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                   |
| Number of I/O              | 22                                                                      |
| Program Memory Size        | 16KB (16K x 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 2.25K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                            |
| Data Converters            | A/D 20x12b                                                              |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 28-WFQFN Exposed Pad                                                    |
| Supplier Device Package    | 28-QFN (5x5)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm8ub10f16g-c-qfn28r |
|                            |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- · Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 48 MHz internal oscillator (HFOSC1), accurate to ±1.5% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- External CMOS clock input (EXTCLK).
- · Clock divider with eight settings for flexible clock scaling:
  - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
  - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

### 3.5 Counters/Timers and PWM

### Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to three independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0

# 4. Electrical Specifications

# 4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 12, unless stated otherwise.

# 4.1.1 Recommended Operating Conditions

| Parameter                                    | Symbol             | Test Condition | Min  | Тур | Мах             | Unit |
|----------------------------------------------|--------------------|----------------|------|-----|-----------------|------|
| Operating Supply Voltage on VDD              | V <sub>DD</sub>    |                | 2.2  | _   | 3.6             | V    |
| Operating Supply Voltage on VIO <sup>3</sup> | V <sub>IO</sub>    |                | 1.71 | _   | V <sub>DD</sub> | V    |
| Operating Supply Voltage on VRE-<br>GIN      | V <sub>REGIN</sub> |                | 3.0  | _   | 5.25            | V    |
| System Clock Frequency                       | fsysclk            |                | 0    | _   | 50              | MHz  |
| Operating Ambient Temperature                | T <sub>A</sub>     |                | -40  |     | 85              | °C   |

# Table 4.1. Recommended Operating Conditions

Note:

1. Standard USB compliance tests require 3.0 V on VDD for compliant operation.

2. All voltages with respect to GND.

3. On devices without a VIO pin,  $V_{IO}$  =  $V_{DD}$ .

4. GPIO levels are undefined whenever VIO is less than 1 V.

| Parameter                                                                                     | Symbol              | Test Condition                     | Min | Тур  | Мах  | Unit |
|-----------------------------------------------------------------------------------------------|---------------------|------------------------------------|-----|------|------|------|
| ADC0 Always-on <sup>4</sup>                                                                   | I <sub>ADC</sub>    | 800 ksps, 10-bit conversions or    | —   | 820  | 1200 | μA   |
|                                                                                               |                     | 200 ksps, 12-bit conversions       |     |      |      |      |
|                                                                                               |                     | Normal bias settings               |     |      |      |      |
|                                                                                               |                     | V <sub>DD</sub> = 3.0 V            |     |      |      |      |
|                                                                                               |                     | 250 ksps, 10-bit conversions or    | _   | 405  | 580  | μA   |
|                                                                                               |                     | 62.5 ksps 12-bit conversions       |     |      |      |      |
|                                                                                               |                     | Low power bias settings            |     |      |      |      |
|                                                                                               |                     | V <sub>DD</sub> = 3.0 V            |     |      |      |      |
| ADC0 Burst Mode, 10-bit single                                                                | I <sub>ADC</sub>    | 200 ksps, V <sub>DD</sub> = 3.0 V  | _   | 370  | _    | μA   |
| conversions, external reference                                                               |                     | 100 ksps, V <sub>DD</sub> = 3.0 V  | —   | 185  | _    | μA   |
|                                                                                               |                     | 10 ksps, V <sub>DD</sub> = 3.0 V   | _   | 20   | _    | μA   |
| ADC0 Burst Mode, 10-bit single<br>conversions, internal reference,<br>Low power bias settings | I <sub>ADC</sub>    | 200 ksps, V <sub>DD</sub> = 3.0 V  | _   | 485  | _    | μA   |
|                                                                                               |                     | 100 ksps, V <sub>DD</sub> = 3.0 V  | _   | 245  | _    | μA   |
|                                                                                               |                     | 10 ksps, V <sub>DD</sub> = 3.0 V   | _   | 25   | _    | μA   |
| ADC0 Burst Mode, 12-bit single                                                                | I <sub>ADC</sub>    | 100 ksps, V <sub>DD</sub> = 3.0 V  | _   | 505  | _    | μA   |
| conversions, external reference                                                               |                     | 50 ksps, V <sub>DD</sub> = 3.0 V   | _   | 255  | _    | μA   |
|                                                                                               |                     | 10 ksps, V <sub>DD</sub> = 3.0 V   | _   | 50   | _    | μA   |
| ADC0 Burst Mode, 12-bit single                                                                | I <sub>ADC</sub>    | 100 ksps, V <sub>DD</sub> = 3.0 V, | _   | 950  | _    | μA   |
| conversions, internal reference                                                               |                     | Normal bias                        |     |      |      |      |
|                                                                                               |                     | 50 ksps, V <sub>DD</sub> = 3.0 V,  | _   | 415  | _    | μA   |
|                                                                                               |                     | Low power bias                     |     |      |      |      |
|                                                                                               |                     | 10 ksps, V <sub>DD</sub> = 3.0 V,  | _   | 80   | _    | μA   |
|                                                                                               |                     | Low power bias                     |     |      |      |      |
| Internal ADC0 Reference, Always-                                                              | I <sub>VREFFS</sub> | Normal Power Mode                  | _   | 680  | 790  | μA   |
| on <sup>5</sup>                                                                               |                     | Low Power Mode                     | _   | 170  | 210  | μA   |
| Temperature Sensor                                                                            | ITSENSE             |                                    | —   | 70   | 120  | μA   |
| Comparator 0 (CMP0, CMP1)                                                                     | I <sub>CMP</sub>    | CPMD = 11                          | —   | 0.5  | —    | μA   |
|                                                                                               |                     | CPMD = 10                          | —   | 3    | _    | μA   |
|                                                                                               |                     | CPMD = 01                          |     | 8.5  | —    | μA   |
|                                                                                               |                     | CPMD = 00                          |     | 22.5 | _    | μA   |
| Comparator Reference                                                                          | I <sub>CPREF</sub>  |                                    |     | 1.2  |      | μA   |
| Voltage Supply Monitor (VMON0)                                                                | I <sub>VMON</sub>   |                                    |     | 15   | 20   | μA   |

| Parameter             | Symbol            | Test Condition                                          | Min | Тур | Max | Unit |
|-----------------------|-------------------|---------------------------------------------------------|-----|-----|-----|------|
| 5V Regulator          | I <sub>VREG</sub> | Normal Mode                                             |     | 245 | 340 | μA   |
|                       |                   | (SUSEN = 0, BIASENB = 0)                                |     |     |     |      |
|                       |                   | Suspend Mode                                            |     | 60  | 100 | μA   |
|                       |                   | (SUSEN = 1, BIASENB = 0)                                |     |     |     |      |
|                       |                   | Bias Disabled                                           | _   | 2.5 | 10  | μA   |
|                       |                   | (BIASENB = 1)                                           |     |     |     |      |
|                       |                   | Disabled                                                | _   | 2.5 | _   | nA   |
|                       |                   | (BIASENB = 1, REG1ENB = 1)                              |     |     |     |      |
| USB (USB0) Full-Speed | I <sub>USB</sub>  | Low Energy Mode, 64 byte 1ms IN<br>Interrupt transfers  |     | 850 | _   | μA   |
|                       |                   | Low Energy Mode, 64 byte 1ms<br>OUT Interrupt transfers | _   | 250 | _   | μA   |
|                       |                   | Low Energy Mode, Idle (SOF only)                        | _   | 50  | _   | μA   |

#### Note:

1. Currents are additive. For example, where I<sub>DD</sub> is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes supply current from internal LDO regulator, supply monitor, and High Frequency Oscillator.

3. Includes supply current from internal LDO regulator, supply monitor, and Low Frequency Oscillator.

4. ADC0 always-on power excludes internal reference supply current.

5. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.

### 4.1.3 Reset and Supply Monitor

| Parameter                                                            | Symbol            | Test Condition                                          | Min  | Тур   | Мах  | Unit |
|----------------------------------------------------------------------|-------------------|---------------------------------------------------------|------|-------|------|------|
| VDD Supply Monitor Threshold                                         | V <sub>VDDM</sub> |                                                         | 1.95 | 2.05  | 2.15 | V    |
| Power-On Reset (POR) Threshold                                       | V <sub>POR</sub>  | Rising Voltage on VDD                                   | _    | 1.2   | _    | V    |
|                                                                      |                   | Falling Voltage on VDD                                  | 0.75 | —     | 1.36 | V    |
| VDD Ramp Time                                                        | t <sub>RMP</sub>  | Time to V <sub>DD</sub> > 2.2 V                         | 10   | —     | —    | μs   |
| Reset Delay from POR                                                 | t <sub>POR</sub>  | Relative to V <sub>DD</sub> > V <sub>POR</sub>          | 3    | 10    | 31   | ms   |
| Reset Delay from non-POR source                                      | t <sub>RST</sub>  | Time between release of reset source and code execution | _    | 50    | _    | μs   |
| RST Low Time to Generate Reset                                       | t <sub>RSTL</sub> |                                                         | 15   | —     | —    | μs   |
| Missing Clock Detector Response<br>Time (final rising edge to reset) | t <sub>MCD</sub>  | F <sub>SYSCLK</sub> >1 MHz                              | _    | 0.625 | 1.2  | ms   |
| Missing Clock Detector Trigger<br>Frequency                          | F <sub>MCD</sub>  |                                                         | _    | 7.5   | 13.5 | kHz  |
| VDD Supply Monitor Turn-On Time                                      | t <sub>MON</sub>  |                                                         | _    | 2     | —    | μs   |

### Table 4.3. Reset and Supply Monitor

# 4.1.6 Internal Oscillators

| Parameter                       | Symbol                    | Test Condition                    | Min  | Тур  | Max  | Unit   |
|---------------------------------|---------------------------|-----------------------------------|------|------|------|--------|
| High Frequency Oscillator 0 (2- | 4.5 MHz)                  |                                   |      |      |      |        |
| Oscillator Frequency            | f <sub>HFOSC0</sub>       | Full Temperature and Supply Range | 24   | 24.5 | 25   | MHz    |
| Power Supply Sensitivity        | PSS <sub>HFOS</sub><br>C0 | T <sub>A</sub> = 25 °C            | -    | 0.5  | -    | %/V    |
| Temperature Sensitivity         | TS <sub>HFOSC0</sub>      | V <sub>DD</sub> = 3.0 V           | _    | 40   | _    | ppm/°C |
| High Frequency Oscillator 1 (4  | 8 MHz)                    |                                   |      | I    | I    | -      |
| Oscillator Frequency            | f <sub>HFOSC1</sub>       | Full Temperature and Supply Range | 47.3 | 48   | 48.7 | MHz    |
| Power Supply Sensitivity        | PSS <sub>HFOS</sub><br>C1 | T <sub>A</sub> = 25 °C            | -    | 0.02 | _    | %/V    |
| Temperature Sensitivity         | TS <sub>HFOSC1</sub>      | V <sub>DD</sub> = 3.0 V           | _    | 45   | _    | ppm/°C |
| Low Frequency Oscillator (80 k  | :Hz)                      |                                   |      | I    | 1    |        |
| Oscillator Frequency            | f <sub>LFOSC</sub>        | Full Temperature and Supply Range | 75   | 80   | 85   | kHz    |
| Power Supply Sensitivity        | PSS <sub>LFOSC</sub>      | T <sub>A</sub> = 25 °C            |      | 0.05 |      | %/V    |
| Temperature Sensitivity         | TS <sub>LFOSC</sub>       | V <sub>DD</sub> = 3.0 V           |      | 65   | _    | ppm/°C |

## Table 4.6. Internal Oscillators

## 4.1.7 External Clock Input

## Table 4.7. External Clock Input

| Parameter                             | Symbol             | Test Condition | Min | Тур | Max | Unit |
|---------------------------------------|--------------------|----------------|-----|-----|-----|------|
| External Input CMOS Clock             | f <sub>CMOS</sub>  |                | 0   | _   | 50  | MHz  |
| Frequency (at EXTCLK pin)             |                    |                |     |     |     |      |
| External Input CMOS Clock High Time   | t <sub>CMOSH</sub> |                | 9   | _   |     | ns   |
| External Input CMOS Clock Low<br>Time | t <sub>CMOSL</sub> |                | 9   | _   | _   | ns   |

| Parameter                        | Symbol         | Test Condition                          | Min        | Тур   | Max   | Unit |
|----------------------------------|----------------|-----------------------------------------|------------|-------|-------|------|
| Slope Error                      | E <sub>M</sub> | 12 Bit Mode                             | _          | ±0.02 | ±0.1  | %    |
|                                  |                | 10 Bit Mode                             | _          | ±0.06 | ±0.24 | %    |
| Dynamic Performance 10 kHz Sine  | e Wave Input   | : 1dB below full scale, Max throughput, | using AGNI | ) pin | 1     |      |
| Signal-to-Noise                  | SNR            | 12 Bit Mode                             | 61         | 66    | _     | dB   |
|                                  |                | 10 Bit Mode                             | 53         | 60    | _     | dB   |
| Signal-to-Noise Plus Distortion  | SNDR           | 12 Bit Mode                             | 61         | 66    | _     | dB   |
|                                  |                | 10 Bit Mode                             | 53         | 60    | _     | dB   |
| Total Harmonic Distortion (Up to | THD            | 12 Bit Mode                             | _          | 71    | _     | dB   |
| 5th Harmonic)                    |                | 10 Bit Mode                             |            | 70    | _     | dB   |
| Spurious-Free Dynamic Range      | SFDR           | 12 Bit Mode                             | _          | -79   | _     | dB   |
|                                  |                | 10 Bit Mode                             | _          | -70   | _     | dB   |

# 4.1.9 Voltage Reference

| Parameter                           | Symbol                    | Test Condition                         | Min  | Тур  | Мах  | Unit   |
|-------------------------------------|---------------------------|----------------------------------------|------|------|------|--------|
| Internal Fast Settling Reference    |                           |                                        |      |      |      |        |
| Output Voltage                      | V <sub>REFFS</sub>        | 1.65 V Setting                         | 1.62 | 1.65 | 1.68 | V      |
| (Full Temperature and Supply Range) |                           | 2.4 V Setting, V <sub>DD</sub> > 2.6 V | 2.35 | 2.4  | 2.45 | V      |
| Temperature Coefficient             | TC <sub>REFFS</sub>       |                                        | _    | 50   | —    | ppm/°C |
| Turn-on Time                        | t <sub>REFFS</sub>        |                                        | _    | —    | 1.5  | μs     |
| Power Supply Rejection              | PSRR <sub>REF</sub><br>FS |                                        | _    | 400  | _    | ppm/V  |
| External Reference                  |                           | 1                                      | 1    | 1    | 1    | 1      |
| Input Current                       | IEXTREF                   | Sample Rate = 800 ksps; VREF = 3.0 V   | —    | 8    | _    | μA     |

# Table 4.9. Voltage Reference

# 4.1.12 Comparators

| Parameter                      | Symbol             | Test Condition                                 | Min   | Тур  | Max                   | Unit |
|--------------------------------|--------------------|------------------------------------------------|-------|------|-----------------------|------|
| Response Time, CPMD = 00       | t <sub>RESP0</sub> | +100 mV Differential, V <sub>CM</sub> = 1.65 V | _     | 110  | —                     | ns   |
| (Highest Speed)                |                    | -100 mV Differential, $V_{CM}$ = 1.65 V        | _     | 160  | _                     | ns   |
| Response Time, CPMD = 11 (Low- | t <sub>RESP3</sub> | +100 mV Differential, $V_{CM}$ = 1.65 V        |       | 1.2  | _                     | μs   |
| est Power)                     |                    | -100 mV Differential, V <sub>CM</sub> = 1.65 V | _     | 4.5  | _                     | μs   |
| Positive Hysteresis            | HYS <sub>CP+</sub> | CPHYP = 00                                     | _     | 0.4  | _                     | mV   |
| Mode 0 (CPMD = 00)             |                    | CPHYP = 01                                     | _     | 8    | _                     | mV   |
|                                |                    | CPHYP = 10                                     | _     | 16   | _                     | mV   |
|                                |                    | CPHYP = 11                                     | _     | 32   | _                     | mV   |
| Negative Hysteresis            | HYS <sub>CP-</sub> | CPHYN = 00                                     | _     | -0.4 | _                     | mV   |
| Mode 0 (CPMD = 00)             |                    | CPHYN = 01                                     | _     | -8   | _                     | mV   |
|                                |                    | CPHYN = 10                                     | _     | -16  | _                     | mV   |
|                                |                    | CPHYN = 11                                     |       | -32  | _                     | mV   |
| Positive Hysteresis            | HYS <sub>CP+</sub> | CPHYP = 00                                     | _     | 1.5  | _                     | mV   |
| Mode 3 (CPMD = 11)             |                    | CPHYP = 01                                     | _     | 4    | _                     | mV   |
|                                |                    | CPHYP = 10                                     | _     | 8    | _                     | mV   |
|                                |                    | CPHYP = 11                                     | _     | 16   | _                     | mV   |
| Negative Hysteresis            | HYS <sub>CP-</sub> | CPHYN = 00                                     | _     | -1.5 | _                     | mV   |
| Mode 3 (CPMD = 11)             |                    | CPHYN = 01                                     | _     | -4   | _                     | mV   |
|                                |                    | CPHYN = 10                                     | _     | -8   | —                     | mV   |
|                                |                    | CPHYN = 11                                     | _     | -16  | —                     | mV   |
| Input Range (CP+ or CP-)       | V <sub>IN</sub>    | Direct comparator input                        | -0.25 | —    | V <sub>IO</sub> +0.25 | V    |
|                                |                    | Reference DAC input                            | 1.2   |      | V <sub>IO</sub>       | V    |
| Reference DAC Resolution       | N <sub>bits</sub>  |                                                |       | 6    |                       | bits |
| Reference DAC Input Impedance  | R <sub>CPREF</sub> |                                                |       | 2.75 |                       | MΩ   |
| Input Pin Capacitance          | C <sub>CP</sub>    |                                                | _     | 7.5  | _                     | pF   |
| Common-Mode Rejection Ratio    | CMRR <sub>CP</sub> |                                                | _     | 70   |                       | dB   |
| Power Supply Rejection Ratio   | PSRR <sub>CP</sub> |                                                |       | 72   | _                     | dB   |
| Input Offset Voltage           | V <sub>OFF</sub>   | T <sub>A</sub> = 25 °C                         | -10   | 0    | 10                    | mV   |
| Input Offset Tempco            | TC <sub>OFF</sub>  |                                                | _     | 3.5  |                       | μV/° |

# Table 4.12. Comparators

### 4.1.14 USB Transceiver

| Parameter                               | Symbol           | Test Condition          | Min   | Тур  | Max   | Unit |
|-----------------------------------------|------------------|-------------------------|-------|------|-------|------|
| Transmitter                             |                  |                         |       |      | 1     |      |
| Output High Voltage                     | V <sub>OH</sub>  | V <sub>DD</sub> ≥3.0V   | 2.8   |      | _     | V    |
| Output Low Voltage                      | V <sub>OL</sub>  | V <sub>DD</sub> ≥3.0V   | _     |      | 0.8   | V    |
| Output Crossover Point                  | V <sub>CRS</sub> |                         | 1.3   | _    | 2.0   | V    |
| Output Impedance                        | Z <sub>DRV</sub> | Driving High            | 28    | 36   | 44    | Ω    |
|                                         |                  | Driving Low             | 28    | 36   | 44    |      |
| Pull-up Resistance                      | R <sub>PU</sub>  | Full Speed (D+ Pull-up) | 1.425 | 1.5  | 1.575 | kΩ   |
|                                         |                  | Low Speed (D- Pull-up)  |       |      |       |      |
| Output Rise Time                        | T <sub>R</sub>   | Low Speed               | 75    | _    | 300   | ns   |
|                                         |                  | Full Speed              | 4     | —    | 20    | ns   |
| Output Fall Time                        | T <sub>F</sub>   | Low Speed               | 75    | —    | 300   | ns   |
|                                         |                  | Full Speed              | 4     | _    | 20    | ns   |
| Receiver                                |                  |                         |       |      |       |      |
| Differential Input                      | V <sub>DI</sub>  | (D+) - (D-)             | 0.2   | _    | _     | V    |
| Sensitivity                             |                  |                         |       |      |       |      |
| Differential Input Common Mode<br>Range | V <sub>CM</sub>  |                         | 0.8   | _    | 2.5   | V    |
| Input Leakage Current                   | IL               | Pullups Disabled        |       | <1.0 |       | μA   |

### Table 4.14. USB Transceiver

# 4.2 Thermal Conditions

### Table 4.15. Thermal Conditions

| Parameter                                | Symbol          | Test Condition                       | Min       | Тур | Мах | Unit |
|------------------------------------------|-----------------|--------------------------------------|-----------|-----|-----|------|
| Thermal Resistance                       | θ <sub>JA</sub> | QFN-20 Packages                      | _         | 60  | _   | °C/W |
|                                          |                 | QFN-28 Packages                      | _         | 26  | _   | °C/W |
|                                          |                 | QSOP-24 Packages                     | _         | 65  | _   | °C/W |
| Note:<br>1. Thermal resistance assumes a | multi-layer F   | PCB with any exposed pad soldered to | a PCB pad |     | 1   |      |

# 5. Typical Connection Diagrams

# 5.1 Power

The figure below shows a typical connection diagram for the power pins of the EFM8UB1 devices when the internal regulator used and USB is connected (bus-powered). VBUS is not used as a sense pin in this scenario, so that pin can be used as a standard GPIO.

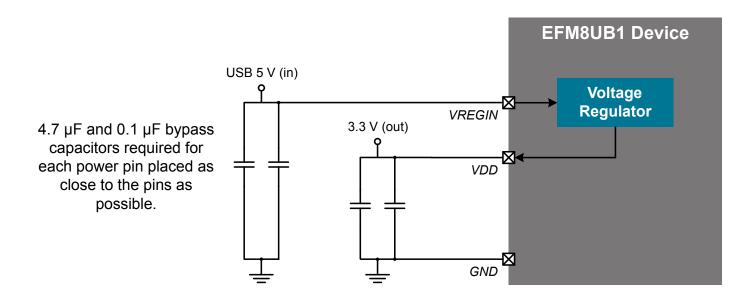



Figure 5.1. Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered)

The figure below shows a typical connection diagram for the power pins of the EFM8UB1 devices when the internal regulator used and USB is connected (self-powered). The VBUS signal is used to detect when USB is connected to a host device.

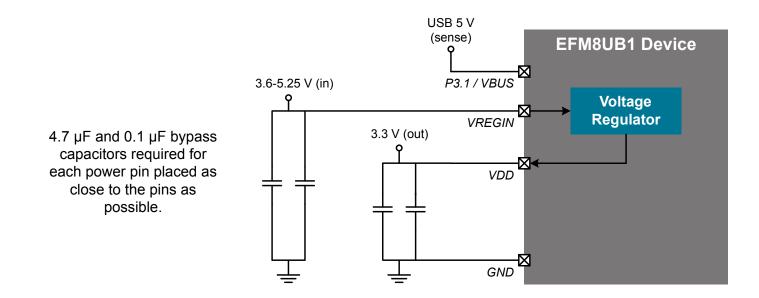



Figure 5.2. Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered)

The figure below shows a typical connection diagram for the power pins of the EFM8UB1 devices when the internal 5 V-to-3.3 V regulator is not used.

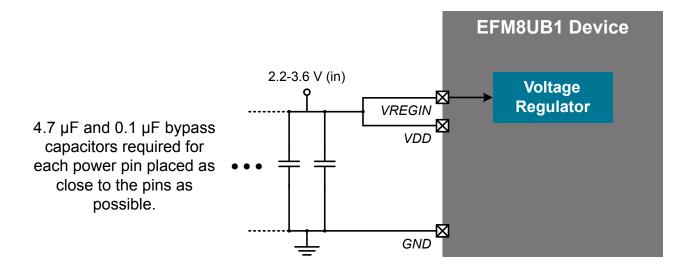



Figure 5.3. Connection Diagram with Voltage Regulator Not Used

### 5.3 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

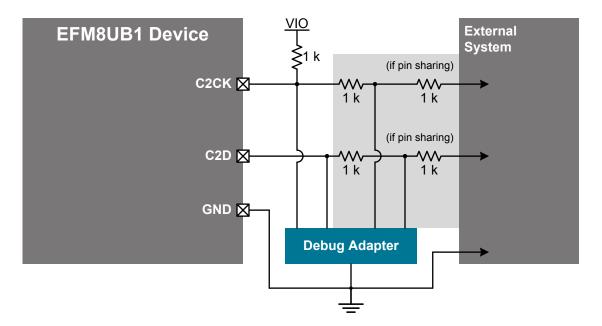



Figure 5.6. Debug Connection Diagram

### 5.4 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN203: "8-bit MCU Printed Circuit Board Design Notes" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

| Pin<br>Number | Pin Name | Description          | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|----------------------|---------------------|---------------------------------|------------------|
| 2             | P0.0     | Multifunction I/O    | Yes                 | P0MAT.0                         | ADC0.0           |
|               |          |                      |                     | INT0.0                          | CMP0P.0          |
|               |          |                      |                     | INT1.0                          | CMP0N.0          |
|               |          |                      |                     |                                 | VREF             |
| 3             | GND      | Ground               |                     |                                 |                  |
| 4             | D+       | USB Data Positive    |                     |                                 | ADC0.28          |
| 5             | D-       | USB Data Negative    |                     |                                 | ADC0.29          |
| 6             | VDD      | Supply Power Input / |                     |                                 |                  |
|               |          | 5V Regulator Output  |                     |                                 |                  |
| 7             | VREGIN   | 5V Regulator Input   |                     |                                 |                  |
| 8             | P3.1     | Multifunction I/O    |                     | VBUS                            |                  |
| 9             | RST /    | Active-low Reset /   |                     |                                 |                  |
|               | C2CK     | C2 Debug Clock       |                     |                                 |                  |
| 10            | P3.0 /   | Multifunction I/O /  |                     |                                 |                  |
|               | C2D      | C2 Debug Data        |                     |                                 |                  |
| 11            | P2.3     | Multifunction I/O    | Yes                 | P2MAT.3                         | ADC0.23          |
|               |          |                      |                     |                                 | CMP1P.12         |
|               |          |                      |                     |                                 | CMP1N.12         |
| 12            | P2.2     | Multifunction I/O    | Yes                 | P2MAT.2                         | ADC0.22          |
|               |          |                      |                     |                                 | CMP1P.11         |
|               |          |                      |                     |                                 | CMP1N.11         |
| 13            | P2.1     | Multifunction I/O    | Yes                 | P2MAT.1                         | ADC0.21          |
|               |          |                      |                     |                                 | CMP1P.10         |
|               |          |                      |                     |                                 | CMP1N.10         |
| 14            | P2.0     | Multifunction I/O    | Yes                 | P2MAT.0                         | ADC0.20          |
|               |          |                      |                     |                                 | CMP1P.9          |
|               |          |                      |                     |                                 | CMP1N.9          |
| 15            | P1.7     | Multifunction I/O    | Yes                 | P1MAT.7                         | ADC0.15          |
|               |          |                      |                     |                                 | CMP1P.7          |
|               |          |                      |                     |                                 | CMP1N.7          |
| 16            | P1.6     | Multifunction I/O    | Yes                 | P1MAT.6                         | ADC0.14          |
|               |          |                      |                     | I2C0_SCL                        | CMP1P.6          |
|               |          |                      |                     |                                 | CMP1N.6          |
| 17            | P1.5     | Multifunction I/O    | Yes                 | P1MAT.5                         | ADC0.13          |
|               |          |                      |                     | I2C0_SDA                        | CMP1P.5          |
|               |          |                      |                     |                                 | CMP1N.5          |

| Pin<br>Number | Pin Name | Description          | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|----------------------|---------------------|---------------------------------|------------------|
| 3             | P0.0     | Multifunction I/O    | Yes                 | P0MAT.0                         | ADC0.0           |
|               |          |                      |                     | INT0.0                          | CMP0P.0          |
|               |          |                      |                     | INT1.0                          | CMP0N.0          |
|               |          |                      |                     |                                 | VREF             |
| 4             | GND      | Ground               |                     |                                 |                  |
| 5             | D+       | USB Data Positive    |                     |                                 | ADC0.28          |
| 6             | D-       | USB Data Negative    |                     |                                 | ADC0.29          |
| 7             | VIO      | I/O Power Input      |                     |                                 |                  |
| 8             | VDD      | Supply Power Input / |                     |                                 |                  |
|               |          | 5V Regulator Output  |                     |                                 |                  |
| 9             | VREGIN   | 5V Regulator Input   |                     |                                 |                  |
| 10            | P3.1     | Multifunction I/O    |                     | VBUS                            |                  |
| 11            | RSTb /   | Active-low Reset /   |                     |                                 |                  |
|               | C2CK     | C2 Debug Clock       |                     |                                 |                  |
| 12            | P2.0 /   | Multifunction I/O /  | Yes                 |                                 |                  |
|               | C2D      | C2 Debug Data        |                     |                                 |                  |
| 13            | P1.6     | Multifunction I/O    | Yes                 | P1MAT.6                         | ADC0.14          |
|               |          |                      |                     |                                 | CMP1P.9          |
|               |          |                      |                     |                                 | CMP1N.9          |
| 14            | P1.5     | Multifunction I/O    | Yes                 | P1MAT.5                         | ADC0.13          |
|               |          |                      |                     |                                 | CMP1P.7          |
|               |          |                      |                     |                                 | CMP1N.7          |
| 15            | P1.4     | Multifunction I/O    | Yes                 | P1MAT.4                         | ADC0.12          |
|               |          |                      |                     |                                 | CMP1P.6          |
|               |          |                      |                     |                                 | CMP1N.6          |
| 16            | P1.3     | Multifunction I/O    | Yes                 | P1MAT.3                         | ADC0.11          |
|               |          |                      |                     |                                 | CMP1P.5          |
|               |          |                      |                     |                                 | CMP1N.5          |
| 17            | P1.2     | Multifunction I/O    | Yes                 | P1MAT.2                         | ADC0.10          |
|               |          |                      |                     | I2C0_SCL                        | CMP1P.4          |
|               |          |                      |                     |                                 | CMP1N.4          |
| 18            | P1.1     | Multifunction I/O    | Yes                 | P1MAT.1                         | ADC0.9           |
|               |          |                      |                     | I2C0_SDA                        | CMP1P.3          |
|               |          |                      |                     |                                 | CMP1N.3          |

| Pin<br>Number | Pin Name | Description       | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|-------------------|---------------------|---------------------------------|------------------|
| 19            | P1.0     | Multifunction I/O | Yes                 | P1MAT.0                         | ADC0.8           |
|               |          |                   |                     |                                 | CMP1P.2          |
|               |          |                   |                     |                                 | CMP1N.2          |
| 20            | P0.7     | Multifunction I/O | Yes                 | P0MAT.7                         | ADC0.7           |
|               |          |                   |                     | INT0.7                          | CMP1P.1          |
|               |          |                   |                     | INT1.7                          | CMP1N.1          |
|               |          |                   |                     |                                 | CMP0P.7          |
|               |          |                   |                     |                                 | CMP0N.7          |
| 21            | P0.6     | Multifunction I/O | Yes                 | P0MAT.6                         | ADC0.6           |
|               |          |                   |                     | CNVSTR                          | CMP1P.0          |
|               |          |                   |                     | INT0.6                          | CMP1N.0          |
|               |          |                   |                     | INT1.6                          | CMP0P.6          |
|               |          |                   |                     |                                 | CMP0N.6          |
| 22            | P0.5     | Multifunction I/O | Yes                 | P0MAT.5                         | ADC0.5           |
|               |          |                   |                     | INT0.5                          | CMP0P.5          |
|               |          |                   |                     | INT1.5                          | CMP0N.5          |
|               |          |                   |                     | UART0_RX                        |                  |
| 23            | P0.4     | Multifunction I/O | Yes                 | P0MAT.4                         | ADC0.4           |
|               |          |                   |                     | INT0.4                          | CMP0P.4          |
|               |          |                   |                     | INT1.4                          | CMP0N.4          |
|               |          |                   |                     | UART0_TX                        |                  |
| 24            | P0.3     | Multifunction I/O | Yes                 | P0MAT.3                         | ADC0.3           |
|               |          |                   |                     | EXTCLK                          | CMP0P.3          |
|               |          |                   |                     | INT0.3                          | CMP0N.3          |
|               |          |                   |                     | INT1.3                          |                  |

| Pin    | Pin Name | Description          | Crossbar Capability | Additional Digital | Analog Functions |
|--------|----------|----------------------|---------------------|--------------------|------------------|
| Number |          |                      |                     | Functions          |                  |
| 3      | GND      | Ground               |                     |                    |                  |
| 4      | D+       | USB Data Positive    |                     |                    | ADC0.28          |
| 5      | D-       | USB Data Negative    |                     |                    | ADC0.29          |
| 6      | VDD      | Supply Power Input / |                     |                    |                  |
|        |          | 5V Regulator Output  |                     |                    |                  |
| 7      | VREGIN   | 5V Regulator Input   |                     |                    |                  |
| 8      | P3.1     | Multifunction I/O    |                     | VBUS               |                  |
| 9      | RST /    | Active-low Reset /   |                     |                    |                  |
|        | C2CK     | C2 Debug Clock       |                     |                    |                  |
| 10     | P2.0 /   | Multifunction I/O /  | Yes                 |                    |                  |
|        | C2D      | C2 Debug Data        |                     |                    |                  |
| 11     | P1.2     | Multifunction I/O    | Yes                 | P1MAT.2            | ADC0.10          |
|        |          |                      |                     | I2C0_SCL           | CMP1P.4          |
|        |          |                      |                     |                    | CMP1N.4          |
| 12     | GND      | Ground               |                     |                    |                  |
| 13     | P1.1     | Multifunction I/O    | Yes                 | P1MAT.1            | ADC0.9           |
|        |          |                      |                     | I2C0_SDA           | CMP1P.3          |
|        |          |                      |                     |                    | CMP1N.3          |
| 14     | P1.0     | Multifunction I/O    | Yes                 | P1MAT.0            | ADC0.8           |
|        |          |                      |                     |                    | CMP1P.2          |
|        |          |                      |                     |                    | CMP1N.2          |
| 15     | P0.7     | Multifunction I/O    | Yes                 | P0MAT.7            | ADC0.7           |
|        |          |                      |                     | INT0.7             | CMP1P.1          |
|        |          |                      |                     | INT1.7             | CMP1N.1          |
|        |          |                      |                     |                    | CMP0P.7          |
|        |          |                      |                     |                    | CMP0N.7          |
| 16     | P0.6     | Multifunction I/O    | Yes                 | P0MAT.6            | ADC0.6           |
|        |          |                      |                     | CNVSTR             | CMP1P.0          |
|        |          |                      |                     | INT0.6             | CMP1N.0          |
|        |          |                      |                     | INT1.6             | CMP0P.6          |
|        |          |                      |                     |                    | CMP0N.6          |
| 17     | P0.5     | Multifunction I/O    | Yes                 | P0MAT.5            | ADC0.5           |
|        |          |                      |                     | INT0.5             | CMP0P.5          |
|        |          |                      |                     | INT1.5             | CMP0N.5          |
|        |          |                      |                     | UART0_RX           |                  |

# 7. QFN28 Package Specifications

## 7.1 QFN28 Package Dimensions

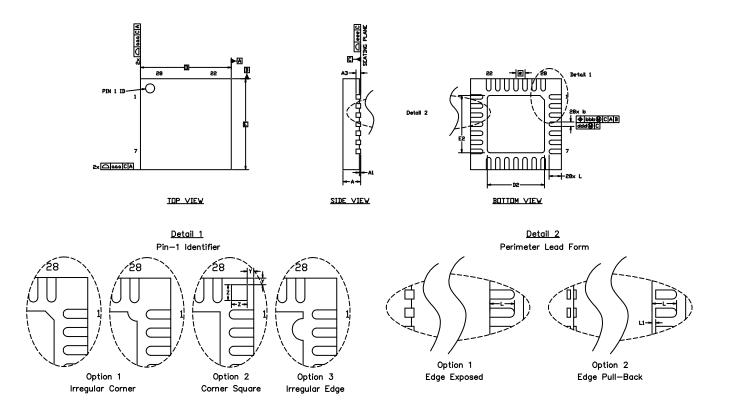



Figure 7.1. QFN28 Package Drawing

### Table 7.1. QFN28 Package Dimensions

| Dimension | Min            | Тур      | Мах  |
|-----------|----------------|----------|------|
| A         | 0.70           | 0.75     | 0.80 |
| A1        | 0.00           | —        | 0.05 |
| A3        |                | 0.20 REF |      |
| b         | 0.20           | 0.25     | 0.30 |
| D         | 4.90           | 5.00     | 5.10 |
| D2        | 3.15           | 3.25     | 3.35 |
| e         | 0.50 BSC       |          |      |
| E         | 4.90 5.00 5.10 |          |      |
| E2        | 3.15 3.25 3.3  |          | 3.35 |
| L         | 0.45 0.55 0.65 |          | 0.65 |
| ааа       | 0.15           |          |      |
| bbb       | 0.10           |          |      |
| ddd       | 0.05           |          |      |

| Dimension | Min | Тур  | Мах |
|-----------|-----|------|-----|
| eee       |     | 0.08 |     |
| Note:     |     |      |     |

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

| Dimension                                                               | Min | Мах |  |  |  |
|-------------------------------------------------------------------------|-----|-----|--|--|--|
| Y2                                                                      | 3.: | 35  |  |  |  |
| Note:                                                                   |     |     |  |  |  |
| 1. All dimensions shown are in millimeters (mm) unless otherwise noted. |     |     |  |  |  |

- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2 x 2 array of 1.2 mm square openings on a 1.5 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

### 7.3 QFN28 Package Marking

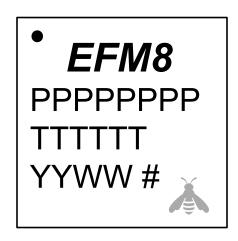



Figure 7.3. QFN28 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

#### 8.2 QSOP24 PCB Land Pattern

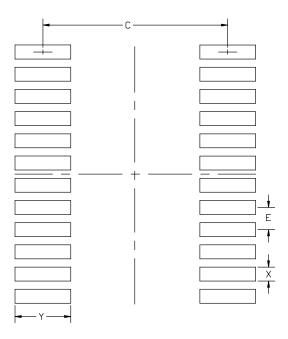



Figure 8.2. QSOP24 PCB Land Pattern Drawing

| Table 8.2. | QSOP24 PCB Land Pattern Dimens | sions |
|------------|--------------------------------|-------|
|------------|--------------------------------|-------|

| Dimension | Min   | Мах  |
|-----------|-------|------|
| С         | 5.20  | 5.30 |
| E         | 0.635 | BSC  |
| X         | 0.30  | 0.40 |
| Y         | 1.50  | 1.60 |

### Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

# 10. Revision History

### 10.1 Revision 1.1

December 16, 2015

Updated 3.2 Power to properly reflect that a comparator falling edge wakes the device from Suspend and Snooze.

Added Note 4 to Table 4.1 Recommended Operating Conditions on page 12.

Added 5.3 Debug.

### 10.2 Revision 1.0

Updated any TBD numbers in 4.1 Electrical Characteristics and adjusted various specifications.

Updated VOH and VOL graphs in Figure 4.6 Typical  $V_{OH}$  Curves on page 28 and Figure 4.7 Typical  $V_{OL}$  Curves on page 28 and updated the VOH and VOL specifications in Table 4.13 Port I/O on page 22.

Added more information to 3.10 Bootloader.

Updated part numbers to Revision C.

### 10.3 Revision 0.3

Updated QFN20 packaging and landing diagram dimensions.

Updated QFN28 D and E minimum value.

Updated some characterization TBD values.

Added maximum allowable voltages on D+ and D- and added VBUS / P3.1 to the standard I/O row in Table 4.16 Absolute Maximum Ratings on page 24.

Added a diagram to 5.1 Power for cases when the internal 5 V-to-3.3 V regulator is not used.

Updated the 5 V-to-3.3 V regulator Electrical Characteristics table.

Added Stop mode to the Power Modes table in 3.2 Power.

### 10.4 Revision 0.2

Initial release.