
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.25V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub10f8g-b-qfn20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8UB1 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - 50 MHz maximum operating frequency
- Memory:
 - Up to 16 KB flash memory, in-system re-programmable from firmware, including 1 KB of 64-byte sectors and 15 KB of 512-byte sectors.
 - Up to 2304 bytes RAM (including 256 bytes standard 8051 RAM, 1024 bytes on-chip XRAM, and 1024 bytes of USB buffer)
- Power:
 - 5 V-input LDO regulator for direct connection to USB supply
 - Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 22 total multifunction I/O pins:
 - · All pins 5 V tolerant under bias
 - Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 48 MHz oscillator with accuracy of ±1.5% standalone and ±0.25% using USB clock recovery
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - External CMOS clock option

- Timers/Counters and PWM:
 - 3-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 5 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- Communications and Digital Peripherals:
 - USB 2.0-compliant full speed with integrated low-power transceiver, 4 bidirectional endpoints, and dedicated 1 KB buffer
 - 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus™/I2C™ Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
- Analog:
 - 12-Bit Analog-to-Digital Converter (ADC)
 - 2 x Low-current analog comparators with adjustable reference
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- Pre-loaded USB bootloader
- Temperature range -40 to 85 °C
- Single power supply of 2.2 to 3.6 V or 3.0 to 5.25 V
- QSOP24, QFN28, and QFN20 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8UB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. The on-chip 5V-to-3.3V regulator enables operation from 2.2 V up to a 5.25 V supply. Devices are available in 28-pin QFN, 20-pin QFN, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

3. System Overview

3.1 Introduction

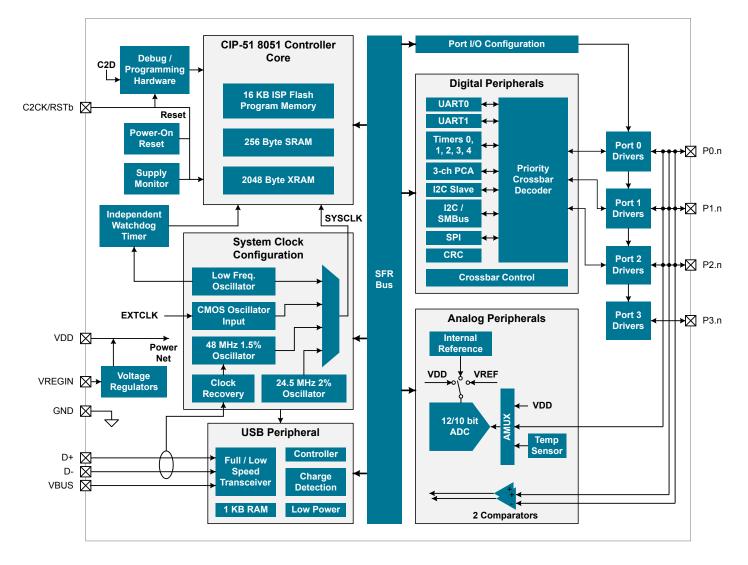


Figure 3.1. Detailed EFM8UB1 Block Diagram

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 USB0 Bus Activity Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Stop	 All internal power nets shut down 5V regulator remains active (if enabled) Internal 1.8 V LDO on Pins retain state Exit on any reset source 	 Clear STOPCF bit in REG0CN Set STOP bit in PCON0 	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 USB0 Bus Activity Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Shutdown	 All internal power nets shut down 5V regulator remains active (if enabled) Internal 1.8 V LDO off to save energy Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	 RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P3.0 and P3.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0.

The port control block offers the following features:

- Up to 22 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 20 direct-pin interrupt sources with shared interrupt vector (Port Match).

Timers (Timer 0, Timer 1, Timer 2, Timer 3, and Timer 4)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3 and Timer 4 are 16-bit timers including the following features:

- · Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes.
- Timer 4 is a low-power wake source, and can be chained together with Timer 3.
- · 16-bit auto-reload timer mode.
- Dual 8-bit auto-reload timer mode.
- · External pin capture.
- LFOSC0 capture.
- · Comparator 0 capture.
- USB Start-of-Frame (SOF) capture.

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.6 Communications and Other Digital Peripherals

Universal Serial Bus (USB0)

The USB0 peripheral provides a full-speed USB 2.0 compliant device controller and PHY with additional Low Energy USB features. The device supports both full-speed (12MBit/s) and low speed (1.5MBit/s) operation, and includes a dedicated USB oscillator with clock recovery mechanism for crystal-free operation. No external components are required. The USB function controller (USB0) consists of a Serial Interface Engine (SIE), USB transceiver (including matching resistors and configurable pull-up resistors), and 1 KB FIFO block. The Low Energy Mode ensures the current consumption is optimized and enables USB communication on a strict power budget.

The USB0 module includes the following features:

- Full and Low Speed functionality.
- Implements 4 bidirectional endpoints.
- · Low Energy Mode to reduce active supply current based on bus bandwidth.
- · USB 2.0 compliant USB peripheral support (no host capability).
- · Direct module access to 1 KB of RAM for FIFO memory.
- Clock recovery to meet USB clocking requirements with no external components.
- · Charger detection circuitry with automatic detection of SDP, CDP, and DCP interfaces.
- · D+ and D- can be routed to ADC input to support ACM and proprietary charger architectures.

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- Asynchronous transmissions and receptions
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 8- or 9-bit data
- Automatic start and stop generation
- · Single-byte buffer on transmit and receive

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions.
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 5, 6, 7, 8, or 9 bit data.
- · Automatic start and stop generation.
- · Automatic parity generation and checking.
- · Four byte FIFO on transmit and receive.
- · Auto-baud detection.
- · LIN break and sync field detection.
- CTS / RTS hardware flow control.

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes.
- · Supports external clock frequencies up to 12 Mbps in master or slave mode.
- Support for all clock phase and polarity modes.
- 8-bit programmable clock rate (master).
- · Programmable receive timeout (slave).
- · Four byte FIFO on transmit and receive.
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte.
- Support for multiple masters on the same data lines.

Table 4.8. ADC

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Throughput Rate	f _S	12 Bit Mode	_	_	200	ksps
(High Speed Mode)		10 Bit Mode	_	_	800	ksps
Throughput Rate	f _S	12 Bit Mode	_	_	62.5	ksps
(Low Power Mode)		10 Bit Mode	_	_	250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230	_	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,	_	_	6.25	MHz
		Reference is 2.4 V internal				
		High Speed Mode,	_	_	12.5	MHz
		Reference is not 2.4 V internal				
		Low Power Mode	_	_	4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion,	1.1		μs	
		SAR Clock = 12.25 MHz,				
		System Clock = 24.5 MHz.				
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF
		Gain = 0.5	_	2.5	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		_	550	_	Ω
Voltage Reference Range	V _{REF}		1	_	V _{IO}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2xV _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}			70	_	dB
DC Performance						
Integral Nonlinearity	INL	12 Bit Mode	_	±1	±2.3	LSB
0		10 Bit Mode		±0.2	±0.6	LSB
Differential Nonlinearity (Guaran-	DNL	12 Bit Mode	-1	±0.7	1.9	LSB
teed Monotonic)		10 Bit Mode		±0.2	±0.6	LSB
Offset Error	E _{OFF}	12 Bit Mode, VREF = 1.65 V	-3	0	3	LSB
		10 Bit Mode, VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}			0.004	_	LSB/°C

Table 4.13. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output High Voltage (High Drive)	V _{OH}	I _{OH} = -7 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -3.3 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	—	V
		I_{OH} = -1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (High Drive)	V _{OL}	I _{OL} = 13.5 mA, V _{IO} ≥ 3.0 V	—	—	0.6	V
		I_{OL} = 7 mA, 2.2 V ≤ V_{IO} < 3.0 V	—	—	V _{IO} x 0.2	V
		I_{OL} = 3.6 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output High Voltage (Low Drive)	V _{OH}	I _{OH} = -4.75 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -2.25 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	—	V
		I_{OH} = -1.2 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (Low Drive)	V _{OL}	I _{OL} = 6.5 mA, V _{IO} ≥ 3.0 V	—	—	0.6	V
		I_{OL} = 3.5 mA, 2.2 V ≤ V_{IO} < 3.0 V	—	—	V _{IO} x 0.2	V
		I_{OL} = 1.8 mA, 1.71 V ≤ V_{IO} < 2.2 V				
Input High Voltage	V _{IH}		V _{IO} - 0.6	—	_	V
(all port pins including VBUS)						
Input Low Voltage	VIL		—	_	0.6	V
(all port pins including VBUS)						
Pin Capacitance	C _{IO}		_	7	_	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-30	-20	-10	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	GND < V _{IN} < V _{IO}	-1.1	_	1.1	μA
Input Leakage Current with V_{IN} above V_{IO}	I _{LK}	V _{IO} < V _{IN} < V _{IO} +2.0 V	0	5	150	μA

4.4 Typical Performance Curves

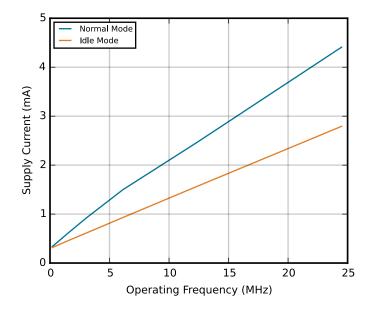


Figure 4.1. Typical Operating Supply Current using HFOSC0

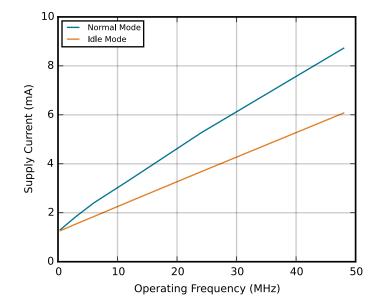


Figure 4.2. Typical Operating Supply Current using HFOSC1

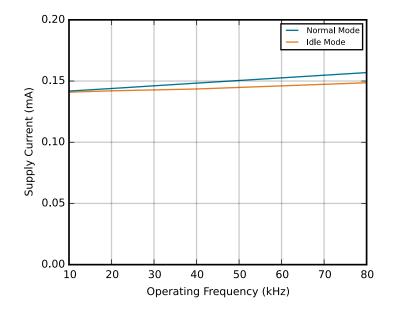


Figure 4.3. Typical Operating Supply Current using LFOSC

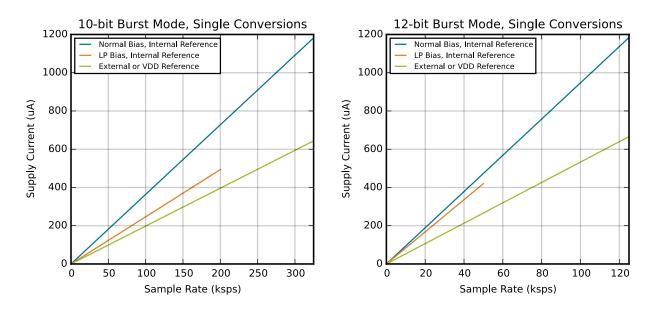


Figure 4.4. Typical ADC0 and Internal Reference Supply Current in Burst Mode

5.2 USB

Figure 5.4 Bus-Powered Connection Diagram for USB Pins on page 31 shows a typical connection bus-powered diagram for the USB pins of the EFM8UB1 devices including ESD protection diodes on the USB pins.

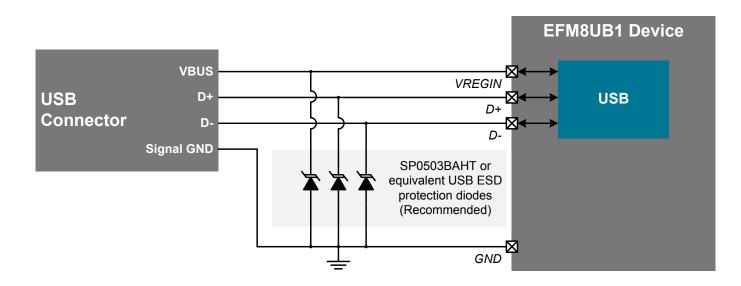


Figure 5.4. Bus-Powered Connection Diagram for USB Pins

Figure 5.5 Self-Powered Connection Diagram for USB Pins on page 31 shows a typical connection self-powered diagram for the USB pins of the EFM8UB1 devices including ESD protection diodes on the USB pins.

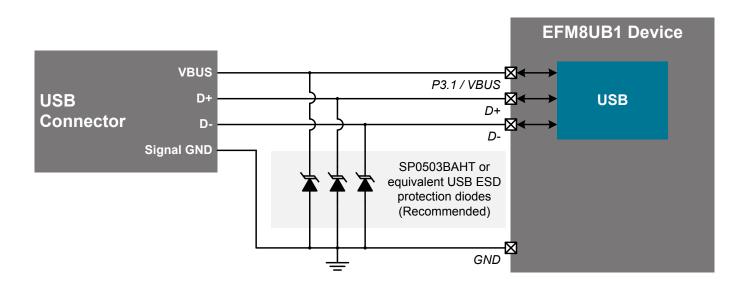
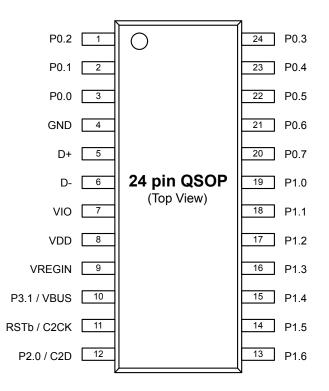



Figure 5.5. Self-Powered Connection Diagram for USB Pins

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF
3	GND	Ground			
4	D+	USB Data Positive			ADC0.28
5	D-	USB Data Negative			ADC0.29
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	P3.1	Multifunction I/O		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
11	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.23
					CMP1P.12
					CMP1N.12
12	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.22
					CMP1P.11
					CMP1N.11
13	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.21
					CMP1P.10
					CMP1N.10
14	P2.0	Multifunction I/O	Yes	P2MAT.0	ADC0.20
					CMP1P.9
					CMP1N.9
15	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.15
					CMP1P.7
					CMP1N.7
16	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				I2C0_SCL	CMP1P.6
					CMP1N.6
17	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				I2C0_SDA	CMP1P.5
					CMP1N.5

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP1P.4
					CMP1N.4
19	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CMP1P.3
					CMP1N.3
20	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CMP1P.2
					CMP1N.2
21	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
					CMP1P.1
					CMP1N.1
					CMP0P.10
					CMP0N.10
22	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CMP1P.0
					CMP1N.0
					CMP0P.9
					CMP0N.9
23	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP0P.7
				INT1.7	CMP0N.7
24	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.6
				INT0.6	CMP0N.6
				INT1.6	
25	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	
26	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				UART0_TX	

6.2 EFM8UB1x-QSOP24 Pin Definitions

Figure 6.2. EFM8UB1x-QSOP24 Pinout

Table 6.2. Pin Definitions for EFM8UB1x-QSOP24

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.2
				INT1.2	CMP0N.2
2	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CMP0P.1
				INT1.1	CMP0N.1
					AGND

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
3	GND	Ground			
4	D+	USB Data Positive			ADC0.28
5	D-	USB Data Negative			ADC0.29
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	P3.1	Multifunction I/O		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P2.0 /	Multifunction I/O /	Yes		
	C2D	C2 Debug Data			
11	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				I2C0_SCL	CMP1P.4
					CMP1N.4
12	GND	Ground			
13	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				I2C0_SDA	CMP1P.3
					CMP1N.3
14	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CMP1P.2
					CMP1N.2
15	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP1P.1
				INT1.7	CMP1N.1
					CMP0P.7
					CMP0N.7
16	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP1P.0
				INT0.6	CMP1N.0
				INT1.6	CMP0P.6
					CMP0N.6
17	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	

Dimension	Min	Тур	Мах		
eee		0.08			
Note:					

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах			
E	3.00 BSC					
E2	1.60	1.70	1.80			
f		2.50 BSC				
L	0.30	0.40	0.50			
К	0.25 REF					
R	0.09	0.125	0.15			
ааа		0.15				
bbb	0.10					
CCC		0.10				
ddd	0.05					
eee	0.08					
fff		0.10	0.10			

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. The drawing complies with JEDEC MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2 QFN20 PCB Land Pattern

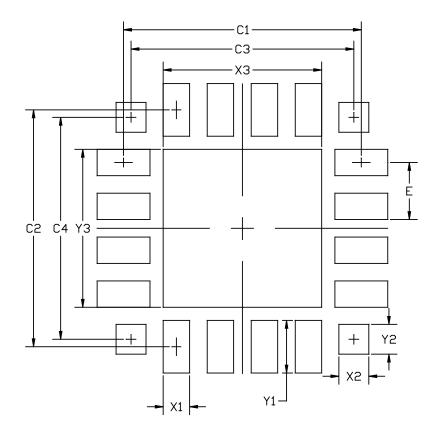


Figure 9.2. QFN20 PCB Land Pattern Drawing

Dimension	Min	Max	
C1	3.	10	
C2	3.4	10	
C3	2.5	50	
C4	2.50		
E	0.50		
X1	0.3	30	
X2	0.25	0.35	
Х3	1.80		
Y1	0.90		
Y2	0.25	0.35	
Y3	1.80		

Dimension	Min	Мах
Note:		1
1. All dimensions shown are in millimeters	mm) unless otherwise noted.	
2. Dimensioning and Tolerancing is per the	ANSI Y14.5M-1994 specification.	
3. This Land Pattern Design is based on th	e IPC-7351 guidelines.	
 All metal pads are to be non-solder mas minimum, all the way around the pad. 	defined (NSMD). Clearance between the so	older mask and the metal pad is to be 60 μm
5. A stainless steel, laser-cut and electro-p	blished stencil with trapezoidal walls should b	be used to assure good solder paste release
6. The stencil thickness should be 0.125 m	m (5 mils).	
7. The ratio of stencil aperture to land pad	size should be 1:1 for the perimeter pads.	
8. A 2 x 2 array of 0.75 mm openings on a	0.95 mm pitch should be used for the center	pad to assure proper paste volume.
9. A No-Clean, Type-3 solder paste is reco	mmended.	

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN20 Package Marking

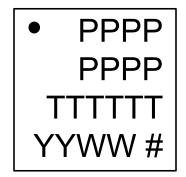


Figure 9.3. QFN20 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

10. Revision History

10.1 Revision 1.1

December 16, 2015

Updated 3.2 Power to properly reflect that a comparator falling edge wakes the device from Suspend and Snooze.

Added Note 4 to Table 4.1 Recommended Operating Conditions on page 12.

Added 5.3 Debug.

10.2 Revision 1.0

Updated any TBD numbers in 4.1 Electrical Characteristics and adjusted various specifications.

Updated VOH and VOL graphs in Figure 4.6 Typical V_{OH} Curves on page 28 and Figure 4.7 Typical V_{OL} Curves on page 28 and updated the VOH and VOL specifications in Table 4.13 Port I/O on page 22.

Added more information to 3.10 Bootloader.

Updated part numbers to Revision C.

10.3 Revision 0.3

Updated QFN20 packaging and landing diagram dimensions.

Updated QFN28 D and E minimum value.

Updated some characterization TBD values.

Added maximum allowable voltages on D+ and D- and added VBUS / P3.1 to the standard I/O row in Table 4.16 Absolute Maximum Ratings on page 24.

Added a diagram to 5.1 Power for cases when the internal 5 V-to-3.3 V regulator is not used.

Updated the 5 V-to-3.3 V regulator Electrical Characteristics table.

Added Stop mode to the Power Modes table in 3.2 Power.

10.4 Revision 0.2

Initial release.

	6.2 EFM8UB1x-QSOP24 Pin Definitions	S.	-																	.37
	6.3 EFM8UB1x-QFN20 Pin Definitions .		-																	.40
7.	QFN28 Package Specifications		-																	43
	7.1 QFN28 Package Dimensions		-																	.43
	7.2 QFN28 PCB Land Pattern		-																	.45
	7.3 QFN28 Package Marking		•									•	•							.46
8.	QSOP24 Package Specifications																			47
	8.1 QSOP24 Package Dimensions		-																	.47
	8.2 QSOP24 PCB Land Pattern		-																	.49
	8.3 QSOP24 Package Marking		-									•								.50
9.	QFN20 Package Specifications																			51
	9.1 QFN20 Package Dimensions		-																	.51
	9.2 QFN20 PCB Land Pattern		•				•			•			•					•	•	.53
	9.2 QFN20 PCB Land Pattern 9.3 QFN20 Package Marking																			
10					•			•	•			•		•		•				.54
10	9.3 QFN20 Package Marking	 		 	•	 		•	•	•	•	•	•	•	•	•	•		•	.54 55
10	9.3 QFN20 Package Marking	 		 		 	· ·						•						•	.54 55 .55
10	9.3 QFN20 Package Marking D. Revision History 10.1 Revision 1.1	• •		•••		• •	•					•		•	•		•			.54 55 .55 .55
10	9.3 QFN20 Package Marking	• • • •		 		· ·	• •							•						.54 55 .55 .55 .55