
Silicon Labs - C8051F554-IM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity SMBus (2-Wire/I²C), CANbus, LINbus, SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 18

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.25V

Data Converters A/D 18x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 24-WFQFN Exposed Pad

Supplier Device Package 24-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f554-im

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f554-im-4382341
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F55x/56x/57x
Table 22.3. Sources for Hardware Changes to SMB0CN 227
Table 22.4. SMBus Status Decoding ... 233
Table 23.1. Baud Rate Generator Settings for Standard Baud Rates 236
Table 24.1. SPI Slave Timing Parameters .. 258
Table 26.1. PCA Timebase Input Options ... 282
Table 26.2. PCA0CPM and PCA0PWM Bit Settings for

PCA Capture/Compare Modules .. 284
Table 26.3. Watchdog Timer Timeout Intervals1 ... 293
12 Rev. 1.2

C8051F55x/56x/57x
6.3.2. Setting the Gain Value

The three programmable gain registers are accessed indirectly using the ADC0H and ADC0L registers
when the GAINEN bit (ADC0CF.0) bit is set. ADC0H acts as the address register, and ADC0L is the data
register. The programmable gain registers can only be written to and cannot be read. See Gain Register
Definition 6.1, Gain Register Definition 6.2, and Gain Register Definition 6.3 for more information.

The gain is programmed using the following steps:

1. Set the GAINEN bit (ADC0CF.0)

2. Load the ADC0H with the ADC0GNH, ADC0GNL, or ADC0GNA address.

3. Load ADC0L with the desired value for the selected gain register.

4. Reset the GAINEN bit (ADC0CF.0)

Notes:
1. An ADC conversion should not be performed while the GAINEN bit is set.
2. Even with gain enabled, the maximum input voltage must be less than VREGIN and the maximum

voltage of the signal after gain must be less than or equal to VREF.
In code, changing the value to 0.44 gain from the previous example looks like:

// in ‘C’:
ADC0CF |= 0x01; // GAINEN = 1
ADC0H = 0x04; // Load the ADC0GNH address
ADC0L = 0x6C; // Load the upper byte of 0x6CA to ADC0GNH
ADC0H = 0x07; // Load the ADC0GNL address
ADC0L = 0xA0; // Load the lower nibble of 0x6CA to ADC0GNL
ADC0H = 0x08; // Load the ADC0GNA address
ADC0L = 0x01; // Set the GAINADD bit
ADC0CF &= ~0x01; // GAINEN = 0

; in assembly
ORL ADC0CF,#01H ; GAINEN = 1
MOV ADC0H,#04H ; Load the ADC0GNH address
MOV ADC0L,#06CH ; Load the upper byte of 0x6CA to ADC0GNH
MOV ADC0H,#07H ; Load the ADC0GNL address
MOV ADC0L,#0A0H ; Load the lower nibble of 0x6CA to ADC0GNL
MOV ADC0H,#08H ; Load the ADC0GNA address
MOV ADC0L,#01H ; Set the GAINADD bit
ANL ADC0CF,#0FEH ; GAINEN = 0
Rev. 1.2 55

C8051F55x/56x/57x
10. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-
ware. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51
also includes on-chip debug hardware (see description in Section 27), and interfaces directly with the ana-
log and digital subsystems providing a complete data acquisition or control-system solution in a single inte-
grated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as
additional custom peripherals and functions to extend its capability (see Figure 10.1 for a block diagram).
The CIP-51 includes the following features:

 Fully Compatible with MCS-51 Instruction Set

 50 MIPS Peak Throughput with 50 MHz Clock

 0 to 50 MHz Clock Frequency

 Extended Interrupt Handler

 Reset Input

 Power Management Modes

 On-chip Debug Logic

 Program and Data Memory Security

10.1. Performance
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more
than eight system clock cycles.
Rev. 1.2 81

C8051F55x/56x/57x
Figure 10.1. CIP-51 Block Diagram

With the CIP-51's maximum system clock at 50 MHz, it has a peak throughput of 50 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that require each execu-
tion time.

Programming and Debugging Support
In-system programming of the Flash program memory and communication with on-chip debug support
logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2).

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware
breakpoints, starting, stopping and single stepping through program execution (including interrupt service
routines), examination of the program's call stack, and reading/writing the contents of registers and mem-
ory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or
other on-chip resources. C2 details can be found in Section “27. C2 Interface” on page 300.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro-
vides an integrated development environment (IDE) including editor, debugger and programmer. The IDE's
debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-sys-
tem device programming and debugging. Third party macro assemblers and C compilers are also avail-
able.

Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8

Number of Instructions 26 50 5 14 7 3 1 2 1

DATA BUS

TMP1 TMP2

PRGM. ADDRESS REG.

PC INCREMENTER

ALU
PSW

DATA BUS

D
A

T
A

 B
U

S

MEMORY
INTERFACE

MEM_ADDRESSD8

PIPELINE

BUFFER

DATA POINTER

INTERRUPT
INTERFACE

SYSTEM_IRQs

EMULATION_IRQ

MEM_CONTROL

CONTROL
LOGIC

A16

PROGRAM COUNTER (PC)

STOP

CLOCK

RESET

IDLE
POWER CONTROL

REGISTER

D
A

T
A

 B
U

S

SFR
BUS

INTERFACE

SFR_ADDRESS

SFR_CONTROL

SFR_WRITE_DATA

SFR_READ_DATA

D8

D8

B REGISTER

D
8

D
8

ACCUMULATOR

D
8

D8

D8

D8

D
8

D
8

D
8

D8

MEM_WRITE_DATA

MEM_READ_DATA

D
8

SRAM
ADDRESS
REGISTER

SRAM

D
8

STACK POINTER

D
8

82 Rev. 1.2

C8051F55x/56x/57x
Table 12.3. Special Function Registers

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register Address Description Page

ACC 0xE0 Accumulator 89

ADC0CF 0xBC ADC0 Configuration 58

ADC0CN 0xE8 ADC0 Control 60

ADC0GTH 0xC4 ADC0 Greater-Than Compare High 62

ADC0GTL 0xC3 ADC0 Greater-Than Compare Low 62

ADC0H 0xBE ADC0 High 59

ADC0L 0xBD ADC0 Low 59

ADC0LTH 0xC6 ADC0 Less-Than Compare Word High 63

ADC0LTL 0xC5 ADC0 Less-Than Compare Word Low 63

ADC0MX 0xBB ADC0 Mux Configuration 66

ADC0TK 0xBA ADC0 Tracking Mode Select 61

B 0xF0 B Register 89

CCH0CN 0xE3 Cache Control 134

CKCON 0x8E Clock Control 260

CLKMUL 0x97 Clock Multiplier 163

CLKSEL 0x8F Clock Select 158

CPT0CN 0x9A Comparator0 Control 72

CPT0MD 0x9B Comparator0 Mode Selection 73

CPT0MX 0x9C Comparator0 MUX Selection 77

CPT1CN 0x9D Comparator1 Control 72

CPT1MD 0x9E Comparator1 Mode Selection 73

CPT1MX 0x9F Comparator1 MUX Selection 77

DPH 0x83 Data Pointer High 88

DPL 0x82 Data Pointer Low 88

EIE1 0xE6 Extended Interrupt Enable 1 118

EIE2 0xE7 Extended Interrupt Enable 2 118

EIP1 0xF6 Extended Interrupt Priority 1 119

EIP2 0xF7 Extended Interrupt Priority 2 120

EMI0CF 0xB2 External Memory Interface Configuration 148

EMI0CN 0xAA External Memory Interface Control 147

EMI0TC 0xAA External Memory Interface Timing Control 152

FLKEY 0xB7 Flash Lock and Key 132

FLSCL 0xB6 Flash Scale 133

IE 0xA8 Interrupt Enable 116

IP 0xB8 Interrupt Priority 117
108 Rev. 1.2

C8051F55x/56x/57x
14.4. Flash Write and Erase Guidelines
Any system which contains routines which write or erase Flash memory from software involves some risk
that the write or erase routines will execute unintentionally if the CPU is operating outside its specified
operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modi-
fying code can result in alteration of Flash memory contents causing a system failure that is only recover-
able by re-Flashing the code in the device.

The following guidelines are recommended for any system which contains routines which write or erase
Flash from code.

14.4.1. VDD Maintenance and the VDD monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection
devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings
table are not exceeded.

2. Make certain that the minimum VREGIN rise time specification of 1 ms is met. If the system cannot
meet this rise time specification, then add an external VDD brownout circuit to the RST pin of the device
that holds the device in reset until VDD reaches the minimum threshold and re-asserts RST if VDD drops
below the minimum threshold.

3. Enable the on-chip VDD monitor in the high setting and enable the VDD monitor as a reset source as
early in code as possible. This should be the first set of instructions executed after the Reset Vector.
For C-based systems, this will involve modifying the startup code added by the C compiler. See your
compiler documentation for more details. Make certain that there are no delays in software between
enabling the VDD monitor in the high setting and enabling the VDD monitor as a reset source. Code
examples showing this can be found in “AN201: Writing to Flash from Firmware", available from the
Silicon Laboratories web site.

4. As an added precaution, explicitly enable the VDD monitor in the high setting and enable the VDD
monitor as a reset source inside the functions that write and erase Flash memory. The VDD monitor
enable instructions should be placed just after the instruction to set PSWE to a 1, but before the Flash
write or erase operation instruction.

Note: The output of the internal voltage regulator is calibrated by the MCU immediately after any reset
event. The output of the un-calibrated internal regulator could be below the high threshold setting of
the VDD Monitor. If this is the case and the VDD Monitor is set to the high threshold setting and if the
MCU receives a non-power on reset (POR), the MCU will remain in reset until a POR occurs (i.e.,
VDD Monitor will keep the device in reset). A POR will force the VDD Monitor to the low threshold
setting which is guaranteed to be below the un-calibrated output of the internal regulator. The device
will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly
recommends that the VDD Monitor is always left in the low threshold setting (i.e. default value upon
POR). When programming the Flash in-system, the VDD Monitor must be set to the high threshold
setting. For the highest system reliability, the time the VDD Monitor is set to the high threshold setting
should be minimized (e.g., setting the VDD Monitor to the high threshold setting just before the Flash
write operation and then changing it back to the low threshold setting immediately after the Flash
write operation).

5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators
and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC =
0x02" is correct. "RSTSRC |= 0x02" is incorrect.

6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a 1. Areas to check
are initialization code which enables other reset sources, such as the Missing Clock Detector or
Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC"
can quickly verify this.
129 Rev. 1.2

C8051F55x/56x/57x
SFR Address = 0x87; SFR Page = All Pages

SFR Definition 15.1. PCON: Power Control

Bit 7 6 5 4 3 2 1 0

Name GF[5:0] STOP IDLE

Type R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:2 GF[5:0] General Purpose Flags 5–0.

These are general purpose flags for use under software control.

1 STOP Stop Mode Select.

Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.
1: CPU goes into Stop mode (internal oscillator stopped).

0 IDLE IDLE: Idle Mode Select.

Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.
1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts,
Serial Ports, and Analog Peripherals are still active.)
Rev. 1.2 137

C8051F55x/56x/57x
17.5.3. Split Mode with Bank Select

When EMI0CF[3:2] are set to 10, the XRAM memory map is split into two areas, on-chip space and off-
chip space.

 Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.

 Effective addresses above the internal XRAM size boundary will access off-chip space.

 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-
chip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower
8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are
driven in “Bank Select” mode.

 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip
or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

17.5.4. External Only

When EMI0CF[3:2] are set to 11, all MOVX operations are directed to off-chip space. On-chip XRAM is not
visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the
internal XRAM size boundary.

 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven
(identical behavior to an off-chip access in “Split Mode without Bank Select” described above). This
allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower
8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.

 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full
16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

17.6. Timing
The timing parameters of the External Memory Interface can be configured to enable connection to
devices having different setup and hold time requirements. The Address Setup time, Address Hold time,
RD and WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in
units of SYSCLK periods through EMI0TC, shown in SFR Definition 17.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing
parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution
time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for RD or WR pulse + 4 SYSCLKs).
For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional
SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed
mode is 7 SYSCLK cycles (2 for /ALE + 1 for RD or WR + 4). The programmable setup and hold times
default to the maximum delay settings after a reset. Table 17.2 lists the ac parameters for the External
Memory Interface, and Figure 17.3 through Figure 17.5 show the timing diagrams for the different External
Memory Interface modes and MOVX operations.
151 Rev. 1.2

C8051F55x/56x/57x
17.6.1.2. 8-bit MOVX without Bank Select: EMI0CF[4:2] = 001 or 011

Figure 17.4. Multiplexed 8-bit MOVX without Bank Select Timing

ADDR[15:8]

AD[7:0]

T
ACH

T
WDH

T
ACW

T
ACS

T
WDS

ALE

WR

RD

EMIF WRITE DATA
EMIF ADDRESS (8 LSBs) from

R0 or R1

T
ALEH

T
ALEL

ADDR[15:8]

AD[7:0]

T
ACH

T
ACW

T
ACS

ALE

RD

WR

EMIF ADDRESS (8 LSBs) from
R0 or R1

T
ALEH

T
ALEL T

RDH
T

RDS

EMIF READ DATA

Muxed 8-bit WRITE Without Bank Select

Muxed 8-bit READ Without Bank Select
Rev. 1.2 154

C8051F55x/56x/57x
19. Port Input/Output

Digital and analog resources are available through 33 (C8051F568-9 and ‘F570-5), 25 (C8051F550-7) or
18 (C8051F550-7) I/O pins. Port pins P0.0-P4.0 on the C8051F568-9 and ‘F570-5, port pins P0.0-P3.0 on
theC8051F560-7, and port pins P0.0-P2.1 on the C8051F550-7 can be defined as general-purpose I/O
(GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in
Figure 19.3. Port pin P4.0 on the C8051F568-9 and ‘F570-5 can be used as GPIO and is shared with the
C2 Interface Data signal (C2D). Similarly, port pin P3.0 is shared with C2D on the C8051F560-7 and port
pin P2.1 on the C8051F550-7. The designer has complete control over which functions are assigned, lim-
ited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the
use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corre-
sponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder
(Figure 19.3 and Figure 19.4). The registers XBR0, XBR1, XBR2 are defined in SFR Definition 19.1 and
SFR Definition 19.2 and are used to select internal digital functions.

The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers
(PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 5.3 on
page 40.

Figure 19.1. Port I/O Functional Block Diagram

External
Pins

Digital
Crossbar

Priority
Decoder

SPI0

CAN0

UART0

CP0

T0, T1,
/INT0,
/INT1

P1.0

P1.7

P2.0

P2.7

P0.0

P0.7

Highest
Priority

Lowest
Priority

8

8

CP1

(I
nt

er
na

l D
ig

ita
l S

ig
na

ls
) SMBus0

P3.0

P3.7

8

8

PnMDOUT,
PnDMIN Registers

XBR0, XBR1,
XBR2, PnSKIP

P1
I/O

Cells

P3
I/O

Cells

P0
I/O

Cells

P2
I/O

Cells

PCA0
7

LIN0
2

PnMASK
PnMATCH
Registers

/SYSCLK

4

Lowest
Priority

Highest
Priority

Port
Latches

P0
P1
P2
P3
P4

33

(Px.0-Px.7)

P4.0
8 P4

I/O
Cell

2

2

2

4

2

2

Rev. 1.2 169

C8051F55x/56x/57x
SFR Address = 0xE1; SFR Page = 0x0F

SFR Definition 19.1. XBR0: Port I/O Crossbar Register 0

Bit 7 6 5 4 3 2 1 0

Name CP1AE CP1E CP0AE CP0E SMB0E SPI0E CAN0E URT0E

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CP1AE Comparator1 Asynchronous Output Enable.

0: Asynchronous CP1 unavailable at Port pin.
1: Asynchronous CP1 routed to Port pin.

6 CP1E Comparator1 Output Enable.

0: CP1 unavailable at Port pin.
1: CP1 routed to Port pin.

5 CP0AE Comparator0 Asynchronous Output Enable.

0: Asynchronous CP0 unavailable at Port pin.
1: Asynchronous CP0 routed to Port pin.

4 CP0E Comparator0 Output Enable.

0: CP0 unavailable at Port pin.
1: CP0 routed to Port pin.

3 SMB0E SMBus I/O Enable.

0: SMBus I/O unavailable at Port pins.
1: SMBus I/O routed to Port pins.

2 SPI0E SPI I/O Enable.

0: SPI I/O unavailable at Port pins.
1: SPI I/O routed to Port pins. Note that the SPI can be assigned either 3 or 4 GPIO
pins.

1 CAN0E CAN I/O Output Enable.

0: CAN I/O unavailable at Port pins.
1: CAN_TX, CAN_RX routed to Port pins P0.6 and P0.7.

0 URT0E UART I/O Output Enable.

0: UART I/O unavailable at Port pin.
1: UART TX0, RX0 routed to Port pins P0.4 and P0.5.
176 Rev. 1.2

C8051F55x/56x/57x
The application should perform the following steps when an interrupt is requested.

1. Check the DONE bit (LIN0ST.0) and the ERROR bit (LIN0ST.2).

2. If performing a master receive operation and the transfer was successful, read the received data from
the data buffer.

3. If the transfer was not successful, check the error register to determine the kind of error. Further error
handling has to be done by the application.

4. Set the RSTINT (LIN0CTRL.3) and RSTERR bits (LIN0CTRL.2) to reset the interrupt request and the
error flags.

20.4. LIN Slave Mode Operation
When the device is configured for slave mode operation, it must wait for a command from a master node.
Access from the firmware to the data buffer and ID registers of the LIN controller is only possible when a
data request is pending (DTREQ bit (LIN0ST.4) is 1) and also when the LIN bus is not active (ACTIVE bit
(LIN0ST.7) is set to 0).

The LIN controller in slave mode detects the header of the message frame sent by the LIN master. If slave
synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time.

The LIN controller configured for slave mode will generated an interrupt in one of three situations:

1. After the reception of the IDENTIFIER FIELD

2. When an error is detected

3. When the message transfer is completed.

The application should perform the following steps when an interrupt is detected:

1. Check the status of the DTREQ bit (LIN0ST.4). This bit is set when the IDENTIFIER FIELD has been
received.

2. If DTREQ (LIN0ST.4) is set, read the identifier from LIN0ID and process it. If DTREQ (LIN0ST.4) is not
set, continue to step 7.

3. Set the TXRX bit (LIN0CTRL.5) to 1 if the current frame is a transmit operation for the slave and set to
0 if the current frame is a receive operation for the slave.

4. Load the data length into LIN0SIZE.

5. For a slave transmit operation, load the data to transmit into the data buffer.

6. Set the DTACK bit (LIN0CTRL.4). Continue to step 10.

7. If DTREQ (LIN0ST.4) is not set, check the DONE bit (LIN0ST.0). The transmission was successful if the
DONE bit is set.

8. If the transmission was successful and the current frame was a receive operation for the slave, load the
received data bytes from the data buffer.

9. If the transmission was not successful, check LIN0ERR to determine the nature of the error. Further
error handling has to be done by the application.

10.Set the RSTINT (LIN0CTRL.3) and RSTERR bits (LIN0CTRL.2) to reset the interrupt request and the
error flags.

In addition to these steps, the application should be aware of the following:

1. If the current frame is a transmit operation for the slave, steps 1 through 5 must be completed during
the IN-FRAME RESPONSE SPACE. If it is not completed in time, a timeout will be detected by the
master.

2. If the current frame is a receive operation for the slave, steps 1 through 5 have to be finished until the
reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN
controller will be overwritten and a timeout error will be detected in the LIN controller.
198 Rev. 1.2

C8051F55x/56x/57x
Indirect Address: LIN0DT1 = 0x00, LIN0DT2 = 0x01, LIN0DT3 = 0x02, LIN0DT4 = 0x03, LIN0DT5 = 0x04,
LIN0DT6 = 0x05, LIN0DT7 = 0x06, LIN0DT8 = 0x07

LIN Register Definition 20.4. LIN0DTn: LIN0 Data Byte n

Bit 7 6 5 4 3 2 1 0

Name DATAn[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 DATAn[7:0] LIN Data Byte n.

Serial Data Byte that is received or transmitted across the LIN interface.
Rev. 1.2 203

C8051F55x/56x/57x
21.2. CAN Registers
CAN registers are classified as follows:

1. CAN Controller Protocol Registers: CAN control, interrupt, error control, bus status, test modes.

2. Message Object Interface Registers: Used to configure 32 Message Objects, send and receive data
to and from Message Objects. The CIP-51 MCU accesses the CAN message RAM via the Message
Object Interface Registers. Upon writing a message object number to an IF1 or IF2 Command Request
Register, the contents of the associated Interface Registers (IF1 or IF2) will be transferred to or from the
message object in CAN RAM.

3. Message Handler Registers: These read only registers are used to provide information to the CIP-51
MCU about the message objects (MSGVLD flags, Transmission Request Pending, New Data Flags)
and Interrupts Pending (which Message Objects have caused an interrupt or status interrupt condition).

For the registers other than CAN0CFG, refer to the Bosch CAN User’s Guide for information on the func-
tion and use of the CAN Control Protocol Registers.

21.2.1. CAN Controller Protocol Registers

The CAN Control Protocol Registers are used to configure the CAN controller, process interrupts, monitor
bus status, and place the controller in test modes.

The registers are: CAN Control Register (CAN0CN), CAN Clock Configuration (CAN0CFG), CAN Status
Register (CAN0STA), CAN Test Register (CAN0TST), Error Counter Register, Bit Timing Register, and the
Baud Rate Prescaler (BRP) Extension Register.

21.2.2. Message Object Interface Registers

There are two sets of Message Object Interface Registers used to configure the 32 Message Objects that
transmit and receive data to and from the CAN bus. Message objects can be configured for transmit or
receive, and are assigned arbitration message identifiers for acceptance filtering by all CAN nodes.

Message Objects are stored in Message RAM, and are accessed and configured using the Message
Object Interface Registers.

21.2.3. Message Handler Registers

The Message Handler Registers are read only registers. The message handler registers provide interrupt,
error, transmit/receive requests, and new data information.
Rev. 1.2 214

C8051F55x/56x/57x
All transactions are initiated by a master, with one or more addressed slave devices as the target. The
master generates the START condition and then transmits the slave address and direction bit. If the trans-
action is a WRITE operation from the master to the slave, the master transmits the data a byte at a time
waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the
data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master
generates a STOP condition to terminate the transaction and free the bus. Figure 22.3 illustrates a typical
SMBus transaction.

Figure 22.3. SMBus Transaction

22.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the “transmitter” when it is sending an address or
data byte to another device on the bus. A device is a “receiver” when an address or data byte is being sent
to it from another device on the bus. The transmitter controls the SDA line during the address or data byte.
After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or
NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

22.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL
and SDA lines remain high for a specified time (see Section “22.3.5. SCL High (SMBus Free) Timeout” on
page 221). In the event that two or more devices attempt to begin a transfer at the same time, an arbitra-
tion scheme is employed to force one master to give up the bus. The master devices continue transmitting
until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be
pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning
master continues its transmission without interruption; the losing master becomes a slave and receives the
rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and
no data is lost.

22.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different
speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow
slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line
LOW to extend the clock low period, effectively decreasing the serial clock frequency.

22.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore,
the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus
protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than
25 ms as a “timeout” condition. Devices that have detected the timeout condition must reset the communi-
cation no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to
reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to

SLA6
SDA

SLA5-0 R/W D7 D6-0

SCL

Slave Address + R/W Data ByteSTART ACK NACK STOP
Rev. 1.2 220

C8051F55x/56x/57x
SFR Address = 0xC8; Bit-Addressable; SFR Page = 0x00

SFR Definition 25.8. TMR2CN: Timer 2 Control

Bit 7 6 5 4 3 2 1 0

Name TF2H TF2L TF2LEN TF2CEN T2SPLIT TR2 T2XCLK

Type R/W R/W R/W R/W R/W R/W R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 TF2H Timer 2 High Byte Overflow Flag.

Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit
mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the
Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2
interrupt service routine. This bit is not automatically cleared by hardware.

6 TF2L Timer 2 Low Byte Overflow Flag.

Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will
be set when the low byte overflows regardless of the Timer 2 mode. This bit is not
automatically cleared by hardware.

5 TF2LEN Timer 2 Low Byte Interrupt Enable.

When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are
also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.

4 TF2CEN Timer 2 Capture Mode Enable.

0: Timer 2 Capture Mode is disabled.
1: Timer 2 Capture Mode is enabled.

3 T2SPLIT Timer 2 Split Mode Enable.

When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.
0: Timer 2 operates in 16-bit auto-reload mode.
1: Timer 2 operates as two 8-bit auto-reload timers.

2 TR2 Timer 2 Run Control.

Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables
TMR2H only; TMR2L is always enabled in split mode.

1 Unused Read = 0b; Write = Don’t Care

0 T2XCLK Timer 2 External Clock Select.

This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this
bit selects the external oscillator clock source for both timer bytes. However, the
Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to
select between the external clock and the system clock for either timer.
0: Timer 2 clock is the system clock divided by 12.
1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).
272 Rev. 1.2

C8051F55x/56x/57x
SFR Address = 0x94; SFR Page = 0x00

SFR Address = 0x95; SFR Page = 0x00

SFR Definition 25.16. TMR3L: Timer 3 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3L[7:0] Timer 3 Low Byte.

In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-
bit mode, TMR3L contains the 8-bit low byte timer value.

SFR Definition 25.17. TMR3H Timer 3 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3H[7:0] Timer 3 High Byte.

In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-
bit mode, TMR3H contains the 8-bit high byte timer value.
280 Rev. 1.2

C8051F55x/56x/57x
26.1. PCA Counter/Timer
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte
(MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches
the value of PCA0H into a “snapshot” register; the following PCA0H read accesses this “snapshot” register.
Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.
Reading PCA0H or PCA0L does not disturb the counter operation. The CPS[2:0] bits in the PCA0MD reg-
ister select the timebase for the counter/timer as shown in Table 26.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is
set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in
PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically
cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by soft-
ware. Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the
CPU is in Idle mode.

Figure 26.2. PCA Counter/Timer Block Diagram

Table 26.1. PCA Timebase Input Options
CPS2 CPS1 CPS0 Timebase

0 0 0 System clock divided by 12.
0 0 1 System clock divided by 4.
0 1 0 Timer 0 overflow.
0 1 1 High-to-low transitions on ECI (max rate = system clock divided

by 4).
1 0 0 System clock.
1 0 1 External oscillator source divided by 8.*

1 1 x Reserved.
*Note: External oscillator source divided by 8 is synchronized with the system clock.

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

PCA0MD
C
I
D
L

W
D
T
E

E
C
F

C
P
S
1

C
P
S
0

W
D
L
C
K

C
P
S
2

IDLE

0

1
PCA0H PCA0L

Snapshot
Register

To SFR Bus

Overflow
To PCA Interrupt System

CF

PCA0L
read

To PCA Modules

SYSCLK/12

SYSCLK/4

Timer 0 Overflow

ECI

000

001

010

011

100

101

SYSCLK

External Clock/8

C
C
F
3

C
C
F
5

C
C
F
4

282 Rev. 1.2

C8051F55x/56x/57x
26.2. PCA0 Interrupt Sources
Figure 26.3 shows a diagram of the PCA interrupt tree. There are five independent event flags that can be
used to generate a PCA0 interrupt. They are as follows: the main PCA counter overflow flag (CF), which is
set upon a 16-bit overflow of the PCA0 counter, an intermediate overflow flag (COVF), which can be set on
an overflow from the 8th, 9th, 10th, or 11th bit of the PCA0 counter, and the individual flags for each PCA
channel (CCF0, CCF1, CCF2, CCF3, CCF4, and CCF5), which are set according to the operation mode of
that module. These event flags are always set when the trigger condition occurs. Each of these flags can
be individually selected to generate a PCA0 interrupt, using the corresponding interrupt enable flag (ECF
for CF, ECOV for COVF, and ECCFn for each CCFn). PCA0 interrupts must be globally enabled before any
individual interrupt sources are recognized by the processor. PCA0 interrupts are globally enabled by set-
ting the EA bit and the EPCA0 bit to logic 1.

Figure 26.3. PCA Interrupt Block Diagram

26.3. Capture/Compare Modules
Each module can be configured to operate independently in one of six operation modes: Edge-triggered
Capture, Software Timer, High Speed Output, Frequency Output, 8 to 11-Bit Pulse Width Modulator, or 16-
Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the
CIP-51 system controller. These registers are used to exchange data with a module and configure the
module's mode of operation. Table 26.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM
registers used to select the PCA capture/compare module’s operating mode. All modules set to use 8, 9,
10, or 11-bit PWM mode must use the same cycle length (8-11 bits). Setting the ECCFn bit in a
PCA0CPMn register enables the module's CCFn interrupt.

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

PCA0MD
C
I
D
L

W
D
T
E

E
C
F

C
P
S
1

C
P
S
0

W
D
L
C
K

C
P
S
2

0

1

PCA Module 0
(CCF0)

PCA Module 1
(CCF1)

ECCF1

0

1

ECCF0

0

1

PCA Module 2
(CCF2)

ECCF2

PCA Counter/Timer 16-
bit Overflow

0

1

Interrupt
Priority
Decoder

EPCA0

0

1

EA

0

1

PCA0CPMn

(for n = 0 to 2)

P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

PCA0PWM
A
R
S
E
L

C
O
V
F

C
L
S
E
L
0

C
L
S
E
L
1

E
C
O
V

PCA Counter/Timer 8, 9,
10 or 11-bit Overflow

0

1

Set 8, 9, 10, or 11 bit Operation

PCA Module 3
(CCF3)

PCA Module 4
(CCF4)

PCA Module 5
(CCF5)

C
C
F
3

C
C
F
5

C
C
F
4

ECCF3

ECCF4

ECCF5

0

1

0

1

0

1

Rev. 1.2 283

C8051F55x/56x/57x
26.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA
counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and
PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transi-
tion that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge),
or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn)
in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is
enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt ser-
vice routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the
state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-
ing-edge caused the capture.

Table 26.2. PCA0CPM and PCA0PWM Bit Settings for
PCA Capture/Compare Modules

Operational Mode PCA0CPMn PCA0PWM

Bit Number 7 6 5 4 3 2 1 0 7 6 5 4–2 1–0

Capture triggered by positive edge on CEXn X X 1 0 0 0 0 A 0 X B XXX XX

Capture triggered by negative edge on CEXn X X 0 1 0 0 0 A 0 X B XXX XX

Capture triggered by any transition on CEXn X X 1 1 0 0 0 A 0 X B XXX XX

Software Timer X C 0 0 1 0 0 A 0 X B XXX XX

High Speed Output X C 0 0 1 1 0 A 0 X B XXX XX

Frequency Output X C 0 0 0 1 1 A 0 X B XXX XX

8-Bit Pulse Width Modulator (7) 0 C 0 0 E 0 1 A 0 X B XXX 00

9-Bit Pulse Width Modulator (7) 0 C 0 0 E 0 1 A D X B XXX 01

10-Bit Pulse Width Modulator (7) 0 C 0 0 E 0 1 A D X B XXX 10

11-Bit Pulse Width Modulator (7) 0 C 0 0 E 0 1 A D X B XXX 11

16-Bit Pulse Width Modulator 1 C 0 0 E 0 1 A 0 X B XXX XX

Notes:
1. X = Don’t Care (no functional difference for individual module if 1 or 0).
2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
3. B = Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).
4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the

associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated

channel is accessed via addresses PCA0CPHn and PCA0CPLn.
6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.
7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.
284 Rev. 1.2

