

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I²C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f554-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.2. C8051F560-7 (32-pin) Block Diagram 18 Figure 1.3. C8051F550-7 (24-pin) Block Diagram 19 Figure 3.1. QFN-40 Pinout Diagram (Top View) 24 Figure 3.2. QFP-32 Pinout Diagram (Top View) 25 Figure 3.3. QFN-32 Pinout Diagram (Top View) 26 Figure 3.4. QFN-40 Pinout Diagram (Top View) 26 Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.2. QFN-40 Landing Diagram 30 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.6. QFN-32 Landing Diagram 31 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.6. QFN-32 Landing Diagram 33 Figure 5.1 Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADCO Functional Block Diagram 47 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. ADCO Window Compare Example: Left-Justified Data 64 Figure 6.5. ADCO Undow Compare Example: Left-Justified Data 64 Figure 7.1. Voltage Reference Functional Block Diagram 70 Figure 8.3. Comparator Functional Block Diagram 70 Figure 8.3. Comparator Input Multiplexer Block Diagram 70	Figure 1.1, C8051E568-9 and 'E570-5 (40-pin) Block Diagram	17
Figure 1.3. C8051F550-7 (24-pin) Block Diagram 19 Figure 3.1. QFN-40 Pinout Diagram (Top View) 24 Figure 3.2. QFP-32 Pinout Diagram (Top View) 25 Figure 3.3. QFN-32 Pinout Diagram (Top View) 26 Figure 3.4. QFN-24 Pinout Diagram (Top View) 27 Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.3. QFN-32 Package Drawing 30 Figure 4.6. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 31 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADCO Functional Block Diagram 47 Figure 6.2. ADCO Tracking Modes 49 Figure 6.3. 12-Bit ADC Burst Mode Example 50 Figure 6.4. ADCO Wuitolew Mode Example 50 Figure 6.5. ADCO Equivalent Input Circuit 53 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 7.1. Voltage Reference Functional Block Diagram 70 Figure 8.3. Comparator Functional Block Diagram 70 Figure 8.4. COMparator Functional Block Diagram 70 Figure 8.	Figure 1.2. C8051F560-7 (32-pin) Block Diagram	18
Figure 3.1. QFN-40 Pinout Diagram (Top View) 24 Figure 3.2. QFP-32 Pinout Diagram (Top View) 25 Figure 3.3. QFN-32 Pinout Diagram (Top View) 26 Figure 3.4. QFN-24 Pinout Diagram (Top View) 27 Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFN-32 Landing Diagram 31 Figure 4.5. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 31 Figure 4.6. QFN-32 Landing Diagram 33 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Input Multiplexer Block Diagram 76 Fig	Figure 1.3. C8051F550-7 (24-pin) Block Diagram	19
Figure 3.2. QFP-32 Pinout Diagram (Top View) 25 Figure 3.3. QFN-32 Pinout Diagram (Top View) 26 Figure 3.4. QFN-32 Pinout Diagram (Top View) 27 Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.6. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.6. QFN-24 Landing Diagram 33 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADCO Functional Block Diagram 47 Figure 6.2. ADCO Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. ADCO Window Compare Example: Right-Justified Data 64 Figure 6.5. ADC Window Compare Example: Left-Justified Data 64 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 8.3. Comparator Hysteresis Plot 71 Figure 8.1. Comparator Sor Voltage Regulator Input/Output— 79 <td< td=""><td>Figure 3.1. QFN-40 Pinout Diagram (Top View)</td><td>24</td></td<>	Figure 3.1. QFN-40 Pinout Diagram (Top View)	24
Figure 3.3. QFN-32 Pinout Diagram (Top View) 26 Figure 3.4. QFN-24 Pinout Diagram (Top View) 27 Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.5. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.7. QFN-24 Package Drawing 34 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADCO Functional Block Diagram 47 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. ADCO Equivalent Input Circuit 53 Figure 6.3. ADCO Equivalent Input Circuit 53 Figure 6.3. ADCO Window Compare Example: Right-Justified Data 64 Figure 6.3. ADCO Window Compare Example: Right-Justified Data 64 Figure 6.3. ADCO Multiplexer Block Diagram 65 Figure 8.3. Comparator Functional Block Diagram 68 Figure 9.1. Comparator Functional Block Diagram 68 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— </td <td>Figure 3.2. QFP-32 Pinout Diagram (Top View)</td> <td>25</td>	Figure 3.2. QFP-32 Pinout Diagram (Top View)	25
Figure 3.4. QFN-24 Pinout Diagram (Top View) 27 Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.4. QFP-32 Landing Diagram 33 Figure 4.4. QFN-32 Landing Diagram 33 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Mode 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.4. ADC Window Compare Example: Right-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79	Figure 3.3. QFN-32 Pinout Diagram (Top View)	26
Figure 4.1. QFN-40 Package Drawing 28 Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.6. QFN-32 Landing Diagram 32 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.6. QFN-32 Landing Diagram 33 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADCO Functional Block Diagram 47 Figure 6.2. ADCO Tracking Mode Example 50 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. ADCO Equivalent Input Circuit 53 Figure 6.5. ADCO Equivalent Input Circuit 53 Figure 6.8. ADCO Multiplexer Block Diagram 64 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Input Multiplexer Block Diagram 70 Figure 8.3. Comparator Input Multiplexer Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 <td>Figure 3.4. QFN-24 Pinout Diagram (Top View)</td> <td>27</td>	Figure 3.4. QFN-24 Pinout Diagram (Top View)	27
Figure 4.2. QFN-40 Landing Diagram 29 Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.5. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Package Drawing 33 Figure 4.7. QFN-24 Package Drawing 34 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADCO Functional Block Diagram 47 Figure 6.3. 12-Bit ADC Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 7.1. Voltage Reference Functional Block Diagram 65 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.1. Comparator Hysteresis Plot 71 Figure 8.1. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 76 <td>Figure 4.1. QFN-40 Package Drawing</td> <td>28</td>	Figure 4.1. QFN-40 Package Drawing	28
Figure 4.3. QFP-32 Package Drawing 30 Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.5. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.7. QFN-24 Package Drawing 34 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 7.1. Voltage Reference Functional Block Diagram 65 Figure 8.2. Comparator Functional Block Diagram 70 Figure 8.3. Comparator Functional Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 70 Figure 10.1. CIP-51 Block Diagram 82 Figure 10.1. CIP-51 Bloc	Figure 4.2. QFN-40 Landing Diagram	29
Figure 4.4. QFP-32 Landing Diagram 31 Figure 4.5. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.7. QFN-24 Package Drawing 34 Figure 4.8. QFN-24 Landing Diagram 35 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 7.1. Voltage Reference Functional Block Diagram 65 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 82	Figure 4.3. QFP-32 Package Drawing	30
Figure 4.5. QFN-32 Package Drawing 32 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.7. QFN-24 Package Drawing 34 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADCO Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 65 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Functional Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 80 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12	Figure 4.4. QFP-32 Landing Diagram	31
Figure 4.6. QFN-32 Landing Diagram 33 Figure 4.7. QFN-24 Package Drawing 34 Figure 4.8. QFN-24 Landing Diagram 35 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 67 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPIODAT 97 Figure 12.4. SFR	Figure 4.5. QFN-32 Package Drawing	32
Figure 4.7. QFN-24 Package Drawing 34 Figure 4.8. QFN-24 Landing Diagram 35 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 66 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.1. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98	Figure 4.6. QFN-32 Landing Diagram	33
Figure 4.8. QFN-24 Landing Diagram 35 Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 67 Figure 8.1. Comparator Functional Block Diagram 68 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.2. Flash Program Memory Map 92 Figure 12.1. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Vol Den PCA Interrupt Oc	Figure 4.7. QFN-24 Package Drawing	34
Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency 39 Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 67 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.3. Comparator Input Multiplexer Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 70 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 92 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.4. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Mile Using SFR Page 0x0 To Access SPI0DAT 98 Figure 12.4. SFR P	Figure 4.8. QFN-24 Landing Diagram	35
Figure 6.1. ADC0 Functional Block Diagram 47 Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Functional Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.2. SFR Page Stack 96 Figure 12.3. SFR Page Stack Mile Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.4. SFR Page Stack After CAN0 Interrupt Occurring During a CAN0 ISR . 99 99	Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency	39
Figure 6.2. ADC0 Tracking Modes 49 Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.2. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack After CAN0 Interrupt Occurs 98	Figure 6.1. ADC0 Functional Block Diagram	47
Figure 6.3. 12-Bit ADC Tracking Mode Example 50 Figure 6.3. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occu	Figure 6.2. ADC0 Tracking Modes	49
Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 51 Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 8.1. Comparator Functional Block Diagram 68 Figure 8.2. Comparator Functional Block Diagram 70 Figure 8.3. Comparator Functional Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 10.1. CIP-51 Block Diagram 80 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98	Figure 6.3. 12-Bit ADC Tracking Mode Example	50
Figure 6.5. ADC0 Equivalent Input Circuit 53 Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 8.1. Comparator Functional Block Diagram 68 Figure 8.2. Comparator Functional Block Diagram 70 Figure 8.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.2. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98	Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4	51
Figure 6.6. ADC Window Compare Example: Right-Justified Data 64 Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 8.1. Voltage Reference Functional Block Diagram 68 Figure 8.2. Comparator Functional Block Diagram 70 Figure 8.3. Comparator Input Multiplexer Block Diagram 70 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 71 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.2. Flash Program Memory Map 92 Figure 12.2. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CANO ISR . 99 99	Figure 6.5. ADC0 Equivalent Input Circuit	53
Figure 6.7. ADC Window Compare Example: Left-Justified Data 64 Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.2. SFR Page Stack 96 Figure 12.3. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98	Figure 6.6. ADC Window Compare Example: Right-Justified Data	64
Figure 6.8. ADC0 Multiplexer Block Diagram 65 Figure 6.9. Temperature Sensor Transfer Function 67 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 9.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 80 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 12.1. SFR Page Stack 96 Figure 12.2. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98	Figure 6.7. ADC Window Compare Example: Left-Justified Data	64
Figure 6.9. Temperature Sensor Transfer Function 67 Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 8.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 80 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99 99	Figure 6.8. ADC0 Multiplexer Block Diagram	65
Figure 7.1. Voltage Reference Functional Block Diagram 68 Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 8.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.2. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	Figure 6.9. Temperature Sensor Transfer Function	67
Figure 8.1. Comparator Functional Block Diagram 70 Figure 8.2. Comparator Hysteresis Plot 71 Figure 8.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output— 79 Figure 10.1. CIP-51 Block Diagram 80 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	Figure 7.1. Voltage Reference Functional Block Diagram	68
Figure 8.2. Comparator Hysteresis Plot 71 Figure 8.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Dis- 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR , 99	Figure 8.1. Comparator Functional Block Diagram	70
Figure 8.3. Comparator Input Multiplexer Block Diagram 76 Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Dis- 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.3. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurs 98	Figure 8.2. Comparator Hysteresis Plot	71
Figure 9.1. External Capacitors for Voltage Regulator Input/Output— 79 Regulator Enabled 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Dis- 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	Figure 8.3. Comparator Input Multiplexer Block Diagram	76
Regulator Enabled 79 Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Dis- abled 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	Figure 9.1. External Capacitors for Voltage Regulator Input/Output—	_
Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Disabled 80 Figure 10.1. CIP-51 Block Diagram 82 Figure 11.1. C8051F55x/56x/57x Memory Map 92 Figure 11.2. Flash Program Memory Map 93 Figure 12.1. SFR Page Stack 96 Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs 98 Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	Regulator Enabled	79
abled80Figure 10.1. CIP-51 Block Diagram82Figure 11.1. C8051F55x/56x/57x Memory Map92Figure 11.2. Flash Program Memory Map93Figure 12.1. SFR Page Stack96Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT97Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs98Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR99	Figure 9.2. External Capacitors for Voltage Regulator Input/Output—Regulator Dis	S-
Figure 10.1. CIP-51 Block Diagram82Figure 11.1. C8051F55x/56x/57x Memory Map92Figure 11.2. Flash Program Memory Map93Figure 12.1. SFR Page Stack96Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT97Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs98Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	abled	80
Figure 11.1. C8051F55x/56x/57x Memory Map92Figure 11.2. Flash Program Memory Map93Figure 12.1. SFR Page Stack96Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT97Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs98Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR . 99	Figure 10.1. CIP-51 Block Diagram	82
Figure 11.2. Flash Program Memory Map	Figure 11.1. C8051F55x/56x/57x Memory Map	92
Figure 12.1. SFR Page Stack	Figure 11.2. Flash Program Memory Map	93
Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT 97 Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs	Figure 12.1. SFR Page Stack	96
Figure 12.3. SFR Page Stack After CANO Interrupt Occurs	Figure 12.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT	97
Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CANO ISR . 99	Figure 12.3. SFR Page Stack After CANO Interrupt Occurs	98
	Figure 12.4. SFR Page Stack Upon PCA Interrupt Occurring During a CAN0 ISR .	99
Figure 12.5. SFR Page Stack Upon Return From PCA Interrupt	Figure 12.5. SFR Page Stack Upon Return From PCA Interrupt 1	100
Figure 12.6 SER Page Stack Upon Return From CAN0 Interrupt	Figure 12.6. SFR Page Stack Upon Return From CAN0 Interrupt 1	101
	Figure 14.1. Flash Program Memory Map	127
	Figure 14.1. Flash Program Memory Map 1	127

C8051F55x/56x/57x

Comparator outputs can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and the power supply to the comparator is turned off. See Section "19.3. Priority Crossbar Decoder" on page 172 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 5.12.

The Comparator response time may be configured in software via the CPTnMD registers (see SFR Definition 8.2). Selecting a longer response time reduces the Comparator supply current. See Table 5.12 for complete timing and supply current requirements.

Comparator hysteresis is software-programmable via its Comparator Control register CPTnCN.

The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Figure 8.2, various levels of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see "13. Interrupts" .) The CPnFIF flag is set to 1 upon a Comparator falling-edge, and the CPnRIF flag is set to 1 upon the Comparator rising-edge. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to 1, and is disabled by clearing this bit to 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

SFR Definition 8.1. CPT0CN: Comparator0 Control

Bit	7	6	5	4	3	2	1	0
Name	CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0H	/P[1:0]	CP0H	/N[1:0]
Туре	R/W	R	R/W	R/W	R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9A; SFR Page = 0x00

Bit	Name	Function
7	CP0EN	Comparator0 Enable Bit.
		0: Comparator0 Disabled.
		1: Comparator0 Enabled.
6	CP0OUT	Comparator0 Output State Flag.
		0: Voltage on CP0+ < CP0–.
		1: Voltage on CP0+ > CP0–.
5	CP0RIF	Comparator0 Rising-Edge Flag. Must be cleared by software.
		0: No Comparator0 Rising Edge has occurred since this flag was last cleared.
		1: Comparator0 Rising Edge has occurred.
4	CP0FIF	Comparator0 Falling-Edge Flag. Must be cleared by software.
		0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.
		1: Comparator0 Falling-Edge has occurred.
3:2	CP0HYP[1:0]	Comparator0 Positive Hysteresis Control Bits.
		00: Positive Hysteresis Disabled.
		01: Positive Hysteresis = 5 mV.
		10: Positive Hysteresis = 10 mV .
		11: Positive Hysteresis = 20 mV.
1:0	CP0HYN[1:0]	Comparator0 Negative Hysteresis Control Bits.
		00: Negative Hysteresis Disabled.
		01: Negative Hysteresis = 5 mV.
		10: Negative Hysteresis = 10 mV .
		$11. \text{ inegative } \Box \text{ ysterests} = 20 \text{ fitv.}$

11. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization is shown in Figure 11.1

Figure 11.1. C8051F55x/56x/57x Memory Map

11.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F55x/56x/57x devices implement 32 kB or 16 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x7FFF in 32 kB devices and addresses 0x0000 to 0x3FFF in 16 kB devices. The address 0x7BFF in 32 kB devices and 0x3FFF in 16 kB devices serves as the security lock byte for the device. Addresses above 0x7BFF are reserved in the 32 kB devices.

12. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the C8051F55x/56x/57x's resources and peripherals. The CIP-51 controller core duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the C8051F55x/56x/57x. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 12.3 lists the SFRs implemented in the C8051F55x/56x/57x device family.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g., P0, TCON, SCON0, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing unoccupied addresses in the SFR space will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 12.3, for a detailed description of each register.

12.1. SFR Paging

The CIP-51 features SFR paging, allowing the device to map many SFRs into the 0x80 to 0xFF memory address space. The SFR memory space has 256 *pages*. In this way, each memory location from 0x80 to 0xFF can access up to 256 SFRs. The C8051F55x/56x/57x family of devices utilizes three SFR pages: 0x00, 0x0C, and 0x0F. SFR pages are selected using the Special Function Register Page Selection register, SFRPAGE (see SFR Definition 11.3). The procedure for reading and writing an SFR is as follows:

- 1. Select the appropriate SFR page number using the SFRPAGE register.
- 2. Use direct accessing mode to read or write the special function register (MOV instruction).

12.2. Interrupts and SFR Paging

When an interrupt occurs, the SFR Page Register will automatically switch to the SFR page containing the flag bit that caused the interrupt. The automatic SFR Page switch function conveniently removes the burden of switching SFR pages from the interrupt service routine. Upon execution of the RETI instruction, the SFR page is automatically restored to the SFR Page in use prior to the interrupt. This is accomplished via a three-byte SFR Page Stack. The top byte of the stack is SFRPAGE, the current SFR Page. The second byte of the SFR Page Stack is SFRNEXT. The third, or bottom byte of the SFR Page Stack is SFRLAST. Upon an interrupt, the current SFRPAGE value is pushed to the SFRNEXT byte, and the value of SFRNEXT is pushed to SFRLAST. Hardware then loads SFRPAGE with the SFR Page containing the flag bit associated with the interrupt. On a return from interrupt, the SFR Page Stack is popped resulting in the value of SFRNEXT returning to the SFRPAGE register, thereby restoring the SFR page context without software intervention. The value in SFRLAST (0x00 if there is no SFR Page value in the bottom of the stack) of the stack is placed in SFRNEXT register. If desired, the values stored in SFRNEXT and SFR-LAST may be modified during an interrupt, enabling the CPU to return to a different SFR Page upon execution of the RETI instruction (on interrupt exit). Modifying registers in the SFR Page Stack does not cause a push or pop of the stack. Only interrupt calls and returns will cause push/pop operations on the SFR Page Stack.

On the C8051F55x/56x/57x devices, vectoring to an interrupt will switch SFRPAGE to page 0x00, except for the CAN0 interrupt which will switch SFRPAGE to page 0x0C.

SFR Definition 13.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	ELIN0	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	ESMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6; SFR Page = All Pages

Bit	Name	Function
7	ELIN0	Enable LIN0 Interrupt. This bit sets the masking of the LIN0 interrupt. 0: Disable LIN0 interrupts. 1: Enable interrupt requests generated by the LIN0INT flag.
6	ET3	 Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
5	ECP1	Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
4	ECP0	Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
3	EPCA0	 Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
2	EADC0	 Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the AD0INT flag.
1	EWADC0	 Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
0	ESMB0	Enable SMBus (SMB0) Interrupt. This bit sets the masking of the SMB0 interrupt. 0: Disable all SMB0 interrupts. 1: Enable interrupt requests generated by SMB0.

SFR Definition 13.7. IT01CF: INT0/INT1 Configuration

Bit	7	6	5	4	3	2	1	0
Name	IN1PL	IN1SL[2:0]			IN0PL		IN0SL[2:0]	
Туре	R/W	R/W			R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE4; SFR Page = 0x0F

Bit	Name	Function
7	IN1PL	INT1 Polarity. 0: INT1 input is active low.
		1: INT1 input is active high.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to INT1. Note that this pin assignment is independent of the Crossbar; INT1 will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7
3	INOPL	INTO Polarity. 0: INTO input is active low. 1: INTO input is active high.
2:0	IN0SL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to INTO. Note that this pin assignment is independent of the Crossbar; INTO will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7

SFR Definition 14.4. CCH0CN: Cache Control								
Bit	7	6	5	4	3	2	1	0
Nam	e Reserved	Reserved	CHPFEN	Reserved	Reserved	Reserved	Reserved	CHBLKW
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Rese	t 0	0	1	0	0	0	0	0
SFR A	ddress = 0xE	3; SFR Page	e = 0x0F	•	L	L	L	
Bit	Name		Function					
7:6	Reserved	Must Write 0	0b					
5	CHPFEN	Cache Prefe 0: Prefetch e 1: Prefetch e	Cache Prefect Enable Bit. D: Prefetch engine is disabled. 1: Prefetch engine is enabled.					
4:1	Reserved	Must Write 0000b.						
0	CHBLKW	Block Write Enable Bit. This bit allows block writes to Flash memory from firmware. 0: Each byte of a software Flash write is written individually. 1: Flash bytes are written in groups of two.						

SFR Definition 14.5. ONESHOT: Flash Oneshot Period

Bit	7	6	5	4	3	2	1	0
Name						PERIC	DD[3:0]	
Туре	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	1	1

SFR Address = 0xBE; SFR Page = 0x0F

Bit	Name	Function
7:4	Unused	Read = 0000b. Write = don't care.
3:0	PERIOD[3:0]	Oneshot Period Control Bits. These bits limit the internal Flash read strobe width as follows. When the Flash read strobe is de-asserted, the Flash memory enters a low-power state for the remainder
		of the system clock cycle. $FLASH_{RDMAX} = 5ns + (PERIOD \times 5ns)$

15. Power Management Modes

The C8051F55x/56x/57x devices have three software programmable power management modes: Idle, Stop, and Suspend. Idle mode and Stop mode are part of the standard 8051 architecture, while Suspend mode is an enhanced power-saving mode implemented by the high-speed oscillator peripheral.

Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Suspend mode is similar to Stop mode in that the internal oscillator and CPU are halted, but the device can wake on events such as a Port Match or Comparator low output. Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode and Suspend mode consume the least power because the majority of the device is shut down with no clocks active. SFR Definition 15.1 describes the Power Control Register (PCON) used to control the C8051F55x/56x/57x devices' Stop and Idle power management modes. Suspend mode is controlled by the SUSPEND bit in the OSCICN register (SFR Definition 18.2).

Although the C8051F55x/56x/57x has Idle, Stop, and Suspend modes available, more control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off oscillators lowers power consumption considerably, at the expense of reduced functionality.

15.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode when a future interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction that has two or more opcode bytes, for example:

// in 'C':	
PCON $ = 0 \times 01;$	// set IDLE bit
PCON = PCON;	<pre>// followed by a 3-cycle dummy instruction</pre>
; in assembly:	
ORL PCON, #01h	; set IDLE bit
MOV PCON, PCON	; followed by a 3-cycle dummy instruction

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "16.6. PCA Watchdog Timer Reset" on page 142 for more information on the use and configuration of the WDT.

18.4. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 18.1. A 10 M Ω resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 18.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 18.6).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "19.3. Priority Crossbar Decoder" on page 172 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See Section "19.4. Port I/O Initialization" on page 174 for details on Port input mode selection.

18.4.1. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 18.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 18.6 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN setting of 111b and a 32.768 kHz Watch Crystal requires an XFCN setting of 001b. After an external 32.768 kHz oscillator is stabilized, the XFCN setting can be switched to 000 to save power. It is recommended to enable the missing clock detector before switching the system clock to any external oscillator source.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- 1. Force XTAL1 and XTAL2 to a high state. This involves enabling the Crossbar and writing 1 to the port pins associated with XTAL1 and XTAL2.
- 2. Configure XTAL1 and XTAL2 as analog inputs using.
- 3. Enable the external oscillator.
- 4. Wait at least 1 ms.
- 5. Poll for XTLVLD => 1.
- 6. Enable the Missing Clock Detector.
- 7. Switch the system clock to the external oscillator.

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The desired load capacitance depends upon the crystal and the manufacturer. Refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 18.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 18.3.

C8051F55x/56x/57x

SFR Definition 19.1. XBR0: Port I/O Crossbar Register 0

Bit	7	6	5	4	3	2	1	0
Name	CP1AE	CP1E	CP0AE	CP0E	SMB0E	SPI0E	CAN0E	URT0E
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE1; SFR Page = 0x0F

Bit	Name	Function
7	CP1AE	Comparator1 Asynchronous Output Enable. 0: Asynchronous CP1 unavailable at Port pin. 1: Asynchronous CP1 routed to Port pin.
6	CP1E	Comparator1 Output Enable. 0: CP1 unavailable at Port pin. 1: CP1 routed to Port pin.
5	CP0AE	Comparator0 Asynchronous Output Enable. 0: Asynchronous CP0 unavailable at Port pin. 1: Asynchronous CP0 routed to Port pin.
4	CP0E	Comparator0 Output Enable. 0: CP0 unavailable at Port pin. 1: CP0 routed to Port pin.
3	SMB0E	SMBus I/O Enable. 0: SMBus I/O unavailable at Port pins. 1: SMBus I/O routed to Port pins.
2	SPI0E	 SPI I/O Enable. O: SPI I/O unavailable at Port pins. 1: SPI I/O routed to Port pins. Note that the SPI can be assigned either 3 or 4 GPIO pins.
1	CAN0E	CAN I/O Output Enable. 0: CAN I/O unavailable at Port pins. 1: CAN_TX, CAN_RX routed to Port pins P0.6 and P0.7.
0	URT0E	UART I/O Output Enable. 0: UART I/O unavailable at Port pin. 1: UART TX0, RX0 routed to Port pins P0.4 and P0.5.

SFR Definition 19.23. P2SKIP: Port 2 Skip

Bit	7	6	5	4	3	2	1	0			
Name	P2SKIP[7:0]										
Туре	R/W										
Reset	0 0 0 0 0 0 0 0										

SFR Address = 0xD6; SFR Page = 0x0F

Bit	Name	Function						
7:0	P2SKIP[7:0]	Port 2 Crossbar Skip Enable Bits.						
		 These bits select Port 2 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P2.n pin is not skipped by the Crossbar. 1: Corresponding P2.n pin is skipped by the Crossbar. 						
Note:	ote: P2.2-P2.7 are available on 40-pin and 32-pin packages.							

SFR Definition 19.24. P3: Port 3

Bit	7	6	5	4	3	2	1	0			
Name	P3[7:0]										
Туре	R/W										
Reset	1 1 1 1 1 1 1 1										

SFR Address = 0xB0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P3[7:0]	Port 3 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P3.n Port pin is logic LOW. 1: P3.n Port pin is logic HIGH.
Note:	P3.0 is avai	lable on 40-pin and 32-pin packag	es. P3.1-P3.7 are available on 4	l0-pin packages

21.2.4. CAN Register Assignment

The standard Bosch CAN registers are mapped to SFR space as shown below and their full definitions are available in the CAN User's Guide. The name shown in the Name column matches what is provided in the CAN User's Guide. One additional SFR which is not a standard Bosch CAN register, CAN0CFG, is provided to configure the CAN clock. All CAN registers are located on SFR Page 0x0C.

CAN	Name	SFR Name	SFR	SFR Name	SFR	16-bit	Reset
Addr.		(High)	Addr.	(Low)	Addr.	SFR	Value
0x00	CAN Control Register	_	—	CAN0CN	0xC0		0x01
0x02	Status Register	_	—	CAN0STAT	0x94		0x00
0x04	Error Counter ¹	CAN0ERRH	0x97	CAN0ERRL	0x96	CAN0ERR	0x0000
0x06	Bit Timing Register ²	CAN0BTH	0x9B	CAN0BTL	0x9A	CAN0BT	0x2301
0x08	Interrupt Register ¹	CANOIIDH	0x9D	CAN0IIDL	0x9C	CAN0IID	0x0000
0x0A	Test Register	_	—	CAN0TST	0x9E		0x00 ^{3,4}
0x0C	BRP Extension Register ²	_	—	CAN0BRPE	0xA1		0x00
0x10	IF1 Command Request	CAN0IF1CRH	0xBF	CAN0IF1CRL	0xBE	CAN0IF1CR	0x0001
0x12	IF1 Command Mask	CAN0IF1CMH	0xC3	CAN0IF1CML	0xC2	CAN0IF1CM	0x0000
0x14	IF1 Mask 1	CAN0IF1M1H	0xC5	CAN0IF1M1L	0xC4	CAN0IF1M1	0xFFFF
0x16	IF1 Mask 2	CAN0IF1M2H	0xC7	CAN0IF1M2L	0xC6	CAN0IF1M2	0xFFFF
0x18	IF1 Arbitration 1	CAN0IF1A1H	0xCB	CAN0IF1A1L	0xCA	CAN0IF1A1	0x0000
0x1A	IF1 Arbitration 2	CAN0IF1A2H	0xCD	CAN0IF1A2L	0xCC	CAN0IF1A2	0x0000
0x1C	IF1 Message Control	CAN0IF1MCH	0xD3	CAN0IF1MCL	0xD2	CAN0IF1MC	0x0000
0x1E	IF1 Data A 1	CAN0IF1DA1H	0xD5	CAN0IF1DA1L	0xD4	CAN0IF1DA1	0x0000
0x20	IF1 Data A 2	CAN0IF1DA2H	0xD7	CAN0IF1DA2L	0xD6	CAN0IF1DA2	0x0000
0x22	IF1 Data B 1	CAN0IF1DB1H	0xDB	CAN0IF1DB1L	0xDA	CAN0IF1DB1	0x0000
0x24	IF1 Data B 2	CAN0IF1DB2H	0xDD	CAN0IF1DB2L	0xDC	CAN0IF1DB2	0x0000
0x40	IF2 Command Request	CAN0IF2CRH	0xDF	CAN0IF2CRL	0xDE	CAN0IF2CR	0x0001
0x42	IF2 Command Mask	CAN0IF2CMH	0xE3	CAN0IF2CML	0xE2	CAN0IF2CM	0x0000
0x44	IF2 Mask 1	CAN0IF2M1H	0xEB	CAN0IF2M1L	0xEA	CAN0IF2M1	0xFFFF
0x46	IF2 Mask 2	CAN0IF2M2H	0xED	CAN0IF2M2L	0xEC	CAN0IF2M2	0xFFFF
0x48	IF2 Arbitration 1	CAN0IF2A1H	0xEF	CAN0IF2A1L	0xEE	CAN0IF2A1	0x0000
0x4A	IF2 Arbitration 2	CAN0IF2A2H	0xF3	CAN0IF2A2L	0xF2	CAN0IF2A2	0x0000
0x4C	IF2 Message Control	CAN0IF2MCH	0xCF	CAN0IF2MCL	0xCE	CAN0IF2MC	0x0000
0x4E	IF2 Data A 1	CAN0IF2DA1H	0xF7	CAN0IF2DA1L	0xF6	CAN0IF2DA1	0x0000

Notes:

1. Read-only register.

2. Write-enabled by CCE.

3. The reset value of CAN0TST could also be r0000000b, where r signifies the value of the CAN RX pin.

4. Write-enabled by Test.

SFR Definition 21.1. CAN0CFG: CAN Clock Configuration

Bit	7	6	5	4	3	2	1	0	
Name	Unused	Unused	Unused	Unused	Unused	Unused	SYSDIV[1:0]		
Туре	R	R	R	R	R	R	R/W		
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0x92; SFR Page = 0x0C

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care.
1:0	SYSDIV[1:0]	CAN System Clock Divider Bits.
		The CAN controller clock is derived from the CIP-51 system clock. The CAN control- ler clock must be less than or equal to 25 MHz. 00: CAN controller clock = System Clock/1. 01: CAN controller clock = System Clock/2. 10: CAN controller clock = System Clock/4. 11: CAN controller clock = System Clock/8.

	Values	s Re	ead		Current SMbus State	Typical Response Options	Va Wr	lues ite	sto	s ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK	Next Status Vector Exp
	0100	0	0	0	urrent SMbus State Typical Response Options slave byte was transmitted; No action required (expecting STOP condition). ACK received. Load SMB0DAT with next data byte to transmit. Slave byte was transmitted; No action required (expecting Master to end transfer). No action required (expecting Master to end transfer). No action required (expecting Master to end transfer). n illegal STOP or bus error as detected while a Slave ansmission was in progress. If Write, Acknowledge received address slave address + R/W was ceived; ACK requested. If Write, Acknowledge received address NACK received address. If Read, Load SMB0DAT with data byte; ACK received address. No action required duress. If Write, Acknowledge received address. CK requested. If Write, Acknowledge received address. NACK received address. If Read, Load SMB0DAT with data byte; ACK received address. CK requested. If Write, Acknowledge received address. STOP was detected while dressed as a Slave Transiter or Slave Receiver. Iclear STO. St arbitration while attempt- g a STOP. No action required (transfer complete/aborted). st arbitration while attempt- g a repeated START. Abort failed transfer. Reschedule failed transfer. Abort failed transfer.		0	0	Х	0001
ter		0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
ansmit		0	1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0		Х	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х			
	0010	1	0	Х	A slave address + R/W was received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000
						If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	—
		1	1	Х	Lost arbitration as master; slave address + R/W received;	If Write, Acknowledge received address	0	0	1	0000
					ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	
						Reschedule failed transfer; NACK received address.	1	0	0	1110
	0001	0	0	Х	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х	
ceiver		1	1	Х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	—
ve Rec	0000	1	0	Х	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
Sla						NACK received byte.	0	0	0	
u	0010	0	1	Х	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	
ditic					ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110
Con	0001	0	1	Х	Lost arbitration due to a	Abort failed transfer.	0	0	Х	—
ror					detected STOP.	Reschedule failed transfer.	1	0	Х	1110
ъ	0000	1	1	Х	Lost arbitration while transmit-	Abort failed transfer.	0	0	0	—
Bu					ting a data byte as master.	Reschedule failed transfer.	1	0	0	1110

Table 22.4. SMBus Status Decoding (Continued)

SFR	Definition	23.1.	SCON0:	Serial	Port 0	Control
-----	------------	-------	--------	--------	--------	---------

Bit	7	6	5	4	3	2	1	0
Name	OVR0	PERR0	THRE0	REN0	TBX0	RBX0	TI0	RI0
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	0	0	0	0

C8051F55x/56x/57x

SFR Definition 25.6. TH0: Timer 0 High Byte

Bit	7	6	5	4	3	2	1	0
Nam	e	TH0[7:0]						
Туре	R/W							
Rese	et 0	0	0	0	0	0	0	0
SFR Address = 0x8C; SFR Page = All Pages								
Bit	Name	Function						
7:0	TH0[7:0]	Timer 0 Hig	jh Byte.					

	The TH0	register	is the	high	byte	of the	16-bit	Timer	0.
--	---------	----------	--------	------	------	--------	--------	-------	----

SFR Definition 25.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0
Nam	• TH1[7:0]							
Туре	R/W							
Rese	et 0	0	0	0	0	0	0	0
SFR Address = 0x8D; SFR Page = All Pages								
Bit	Name	Function						
7:0	TH1[7:0]	Timer 1 High Byte.						
		The TH1 register is the high byte of the 16-bit Timer 1.						

Figure 26.7. PCA Frequency Output Mode

26.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8-bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9, 10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8-bit PWM mode and another for 11bit mode (for example). However, other PCA channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

26.3.5.1. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 26.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register, and setting the CLSEL bits in register PCA0PWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MATn bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will occur every 256 PCA clock cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 26.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle = $\frac{(256 - PCA0CPHn)}{256}$

Equation 26.2. 8-Bit PWM Duty Cycle

Using Equation 26.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

System Clock (Hz)	PCA0CPL5	Timeout Interval (ms)						
24,000,000	255	32.8						
24,000,000	128	16.5						
24,000,000	32	4.2						
3,000,000	255	262.1						
3,000,000	128	132.1						
3,000,000	32	33.8						
187,500 ²	255	4194						
187,500 ²	128	2114						
187,500 ²	32	541						
Notes:								
1. Assumes SYSCLK/12 as the PCA clock source, and a PCA0L value								
of 0x00 at the update time.								
Internal SYSCLK reset frequency = Internal Oscillator divided by								
128.								

Table 26.3. Watchdog Timer Timeout Intervals¹

