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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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C8051F55x/56x/57x
Table 5.10. Temperature Sensor Electrical Characteristics
VDDA = 1.8 to 2.75 V, –40 to +125 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Linearity — ±0.1 — °C

Slope — 3.33 — mV/°C

Slope Error* — 88 — µV/°C

Offset Temp = 0 °C — 856 — mV

Offset Error* Temp = 0 °C — ±14 — mV

Power Supply Current — 18 — µA

Tracking Time 12 — — µs

*Note:  Represents one standard deviation from the mean.

Table 5.11. Voltage Reference Electrical Characteristics
VDDA = 1.8 to 2.75 V, –40 to +125 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Internal Reference (REFBE = 1)

Output Voltage 25 °C ambient (REFLV = 0) 1.45 1.50 1.55
V

25 °C ambient (REFLV = 1), VDD = 2.6 V 2.15 2.20 2.25

VREF Short-Circuit Current — 5 10 mA

VREF Temperature  
Coefficient

— 38 — ppm/°C

Power Consumption Internal — 30 50 µA

Load Regulation Load = 0 to 200 µA to AGND — 3 — µV/µA

VREF Turn-on Time 1 4.7 µF tantalum and 0.1 µF bypass — 1.5 — ms

VREF Turn-on Time 2 0.1 µF bypass — 46 — µs

Power Supply Rejection — 1.2 — mV/V

External Reference (REFBE = 0)

Input Voltage Range 1.5 — VDDA V

Input Current Sample Rate = 200 ksps; VREF = 1.5 V — 2.1 — µA

Power Specifications

Reference Bias Generator REFBE = 1 or TEMPE = 1 — 21 40 µA
45 Rev. 1.2



C8051F55x/56x/57x
SFR Address = 0xBC; SFR Page = 0x00

SFR Definition 6.4. ADC0CF: ADC0 Configuration

Bit 7 6 5 4 3 2 1 0

Name AD0SC[4:0] AD0RPT[1:0] GAINEN

Type R/W R/W R/W R/W

Reset 1 1 1 1 1 0 0 0

Bit Name Function

7:3 AD0SC[4:0] ADC0 SAR Conversion Clock Period Bits.

SAR Conversion clock is derived from system clock by the following equation, where 
AD0SC refers to the 5-bit value held in bits AD0SC4–0. SAR Conversion clock 
requirements are given in the ADC specification table
BURSTEN = 0: FCLK is the current system clock
BURSTEN = 1: FCLK is a maximum of 30 MHz, independent of the current system 
clock..

Note: Round up the result of the calculation for AD0SC

2:1 A0RPT[1:0] ADC0 Repeat Count.

Controls the number of conversions taken and accumulated between ADC0 End of 
Conversion (ADCINT) and ADC0 Window Comparator (ADCWINT) interrupts. A con-
vert start is required for each conversion unless Burst Mode is enabled. In Burst 
Mode, a single convert start can initiate multiple self-timed conversions. Results in 
both modes are accumulated in the ADC0H:ADC0L register. When AD0RPT1–0 are 
set to a value other than '00', the AD0LJST bit in the ADC0CN register must be 
set to '0' (right justified).
00: 1 conversion is performed.
01: 4 conversions are performed and accumulated.
10: 8 conversions are performed and accumulated.
11: 16 conversions are performed and accumulated.

0 GAINEN Gain Enable Bit.

Controls the gain programming. Refer to Section “6.3. Selectable Gain” on page 53 
for information about using this bit.

AD0SC FCLK
CLKSAR
-------------------- 1–=
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C8051F55x/56x/57x
SFR Address = 0x9D; SFR Page = 0x00

SFR Definition 8.3. CPT1CN: Comparator1 Control

Bit 7 6 5 4 3 2 1 0

Name CP1EN CP1OUT CP1RIF CP1FIF CP1HYP[1:0] CP1HYN[1:0]

Type R/W R R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CP1EN Comparator1 Enable Bit.

0: Comparator1 Disabled.
1: Comparator1 Enabled.

6 CP1OUT Comparator1 Output State Flag.

0: Voltage on CP1+ < CP1–.
1: Voltage on CP1+ > CP1–.

5 CP1RIF Comparator1 Rising-Edge Flag. Must be cleared by software.

0: No Comparator1 Rising Edge has occurred since this flag was last cleared.
1: Comparator1 Rising Edge has occurred.

4 CP1FIF Comparator1 Falling-Edge Flag. Must be cleared by software.

0: No Comparator1 Falling-Edge has occurred since this flag was last cleared.
1: Comparator1 Falling-Edge has occurred.

3:2 CP1HYP[1:0] Comparator1 Positive Hysteresis Control Bits.

00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.

1:0 CP1HYN[1:0] Comparator1 Negative Hysteresis Control Bits.

00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.
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C8051F55x/56x/57x
SFR Address = 0x82; SFR Page = All Pages

SFR Address = 0x83; SFR Page = All Pages

SFR Definition 10.1. DPL: Data Pointer Low Byte

Bit 7 6 5 4 3 2 1 0

Name DPL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 DPL[7:0] Data Pointer Low.

The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indi-
rectly addressed Flash memory or XRAM.

SFR Definition 10.2. DPH: Data Pointer High Byte

Bit 7 6 5 4 3 2 1 0

Name DPH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 DPH[7:0] Data Pointer High.

The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indi-
rectly addressed Flash memory or XRAM.
88 Rev. 1.2



C8051F55x/56x/57x
10.4.  Serial Number Special Function Registers (SFRs)
The C8051F55x/56x/57x devices include four SFRs, SN0 through SN3, that are pre-programmed during 
production with a unique, 32-bit serial number. The serial number provides a unique identification number 
for each device and can be read from the application firmware. If the serial number is not used in the appli-
cation, these four registers can be used as general purpose SFRs.

SFR Addresses: SN0 = 0xF9; SN1 = 0xFA; SN2 = 0xFB; SN3 = 0xFC; SFR Page = 0x0F;

SFR Definition 10.7. SNn: Serial Number n

Bit 7 6 5 4 3 2 1 0

Name SERNUMn[7:0]

Type R/W

Reset Varies—Unique 32-bit value

Bit Name Function

7:0 SERNUMn[7:0] Serial Number Bits.

The four serial number registers form a 32-bit serial number, with SN3 as the 
most significant byte and SN0 as the least significant byte.
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C8051F55x/56x/57x
SFR Address = 0xA7; SFR Page = All Pages

SFR Definition 12.4. SFRLAST: SFR Last

Bit 7 6 5 4 3 2 1 0

Name SFRLAST[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SFRLAST[7:0] SFR Page Stack Bits. 

This is the value that will go to the SFRNEXT register upon a return from inter-
rupt.

Write: Sets the SFR Page in the last entry of the SFR Stack. This will cause the 
SFRNEXT SFR to have this SFR page value upon a return from interrupt.

Read: Returns the value of the SFR page contained in the last entry of the SFR 
stack.

SFR page context is retained upon interrupts/return from interrupts in a 3 byte 
SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and 
SFRLAST is the third entry. The SFR stack bytes may be used alter the context 
in the SFR Page Stack, and will not cause the stack to “push” or “pop”. Only 
interrupts and return from interrupts cause pushes and pops of the SFR Page 
Stack.
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C8051F55x/56x/57x
Table 13.1. Interrupt Summary

Interrupt Source Interrupt 
Vector

Priority 
Order

Pending Flag

B
it

 a
d

d
re

s
sa

b
le

?

C
le

ar
e

d
 b

y 
H

W
? Enable 

Flag
Priority 
Control

Reset 0x0000 Top None N/A N/A Always 
Enabled

Always 
Highest

External Interrupt 0 
(INT0)

0x0003 0 IE0 (TCON.1) Y Y EX0 (IE.0) PX0 (IP.0)

Timer 0 Overflow 0x000B 1 TF0 (TCON.5) Y Y ET0 (IE.1) PT0 (IP.1)
External Interrupt 1 
(INT1)

0x0013 2 IE1 (TCON.3) Y Y EX1 (IE.2) PX1 (IP.2)

Timer 1 Overflow 0x001B 3 TF1 (TCON.7) Y Y ET1 (IE.3) PT1 (IP.3)
UART0 0x0023 4 RI0 (SCON0.0)

TI0 (SCON0.1)
Y N ES0 (IE.4) PS0 (IP.4)

Timer 2 Overflow 0x002B 5 TF2H (TMR2CN.7)
TF2L (TMR2CN.6)

Y N ET2 (IE.5) PT2 (IP.5)

SPI0 0x0033 6 SPIF (SPI0CN.7) 
WCOL (SPI0CN.6)
MODF (SPI0CN.5)
RXOVRN (SPI0CN.4)

Y N ESPI0 
(IE.6)

PSPI0 
(IP.6)

SMB0 0x003B 7 SI (SMB0CN.0) Y N ESMB0 
(EIE1.0)

PSMB0 
(EIP1.0)

ADC0 Window Com-
pare

0x0043 8 AD0WINT 
(ADC0CN.3)

Y N EWADC0 
(EIE1.1)

PWADC0 
(EIP1.1)

ADC0 Conversion 
Complete

0x004B 9 AD0INT (ADC0CN.5) Y N EADC0 
(EIE1.2)

PADC0 
(EIP1.2)

Programmable 
Counter Array

0x0053 10 CF (PCA0CN.7)
CCFn (PCA0CN.n)
COVF (PCA0PWM.6)

Y N EPCA0 
(EIE1.3)

PPCA0 
(EIP1.3)

Comparator0 0x005B 11 CP0FIF (CPT0CN.4) 
CP0RIF (CPT0CN.5)

N N ECP0 
(EIE1.4)

PCP0 
(EIP1.4)

Comparator1 0x0063 12 CP1FIF (CPT1CN.4) 
CP1RIF (CPT1CN.5)

N N ECP1 
(EIE1.5)

PCP1 
(EIP1.5)

Timer 3 Overflow 0x006B 13 TF3H (TMR3CN.7)
TF3L (TMR3CN.6)

N N ET3 
(EIE1.6)

PT3 
(EIP1.6)

LIN0 0x0073 14 LIN0INT (LINST.3) N N* ELIN0
(EIE1.7)

PLIN0
(EIP1.7)

Voltage Regulator 
Dropout

0x007B 15 N/A N/A N/A EREG0
(EIE2.0)

PREG0
(EIP2.0)

CAN0 0x0083 16 CAN0INT 
(CAN0CN.7)

N Y ECAN0
(EIE2.1)

PCAN0
(EIP2.1)

Port Match 0x008B 17 None N/A N/A EMAT 
(EIE2.2)

PMAT 
(EIP2.2)

*Note:  The LIN0INT bit is cleared by setting RSTINT (LINCTRL.3)
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C8051F55x/56x/57x
SFR Address = 0xE4; SFR Page = 0x0F

SFR Definition 13.7. IT01CF: INT0/INT1 Configuration

Bit 7 6 5 4 3 2 1 0

Name IN1PL IN1SL[2:0] IN0PL IN0SL[2:0]

Type R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 IN1PL INT1 Polarity.

0: INT1 input is active low.
1: INT1 input is active high.

6:4 IN1SL[2:0] INT1 Port Pin Selection Bits.

These bits select which Port pin is assigned to INT1. Note that this pin assignment is 
independent of the Crossbar; INT1 will monitor the assigned Port pin without disturb-
ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar 
will not assign the Port pin to a peripheral if it is configured to skip the selected pin.
000: Select P1.0
001: Select P1.1
010: Select P1.2
011: Select P1.3
100: Select P1.4
101: Select P1.5
110: Select P1.6
111: Select P1.7

3 IN0PL INT0 Polarity.

0: INT0 input is active low.
1: INT0 input is active high.

2:0 IN0SL[2:0] INT0 Port Pin Selection Bits.

These bits select which Port pin is assigned to INT0. Note that this pin assignment is 
independent of the Crossbar; INT0 will monitor the assigned Port pin without disturb-
ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar 
will not assign the Port pin to a peripheral if it is configured to skip the selected pin.
000: Select P1.0
001: Select P1.1
010: Select P1.2
011: Select P1.3
100: Select P1.4
101: Select P1.5
110: Select P1.6
111: Select P1.7
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C8051F55x/56x/57x
14.1.4. Flash Write Optimization

The Flash write procedure includes a block write option to optimize the time to perform consecutive byte 
writes. When block write is enabled by setting the CHBLKW bit (CCH0CN.0), writes to two consecutive 
bytes in Flash require the same amount of time as a single byte write. This is performed by caching the first 
byte that is written to Flash and then committing both bytes to Flash when the second byte is written. When 
block writes are enabled, if the second write does not occur, the first data byte written is not actually written 
to Flash. Flash bytes with block write enabled are programmed by software with the following sequence:

1. Disable interrupts (recommended).

2. Erase the 512-byte Flash page containing the target location, as described in Section 14.1.2.

3. Set the FLEWT bit (register FLSCL).

4. Set the CHBLKW bit (register CCH0CN).

5. Set the PSWE bit (register PSCTL).

6. Clear the PSEE bit (register PSCTL).

7. Write the first key code to FLKEY: 0xA5.

8. Write the second key code to FLKEY: 0xF1.

9. Using the MOVX instruction, write the first data byte to the desired location within the 512-byte sector.

10.Write the first key code to FLKEY: 0xA5.

11.Write the second key code to FLKEY: 0xF1.

12.Using the MOVX instruction, write the second data byte to the desired location within the 512-byte 
sector. The location of the second byte must be the next higher address from the first data byte.

13.Clear the PSWE bit.

14.Clear the CHBLKW bit.
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C8051F55x/56x/57x
16.5.  Comparator0 Reset
Comparator0 can be configured as a reset source by writing a 1 to the C0RSEF flag (RSTSRC.5). Com-
parator0 should be enabled and allowed to settle prior to writing to C0RSEF to prevent any turn-on chatter 
on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting 
input voltage (on CP0+) is less than the inverting input voltage (on CP0–), the device is put into the reset 
state. After a Comparator0 reset, the C0RSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the 
reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset.

16.6.  PCA Watchdog Timer Reset
The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be 
used to prevent software from running out of control during a system malfunction. The PCA WDT function 
can be enabled or disabled by software as described in Section “26.4. Watchdog Timer Mode” on 
page 291; the WDT is enabled and clocked by SYSCLK/12 following any reset. If a system malfunction 
prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is 
set to 1. The state of the RST pin is unaffected by this reset.

16.7.  Flash Error Reset
If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This 
may occur due to any of the following:

 A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a 
MOVX write operation targets an address in or above the reserved space. 

 A Flash read is attempted above user code space. This occurs when a MOVC operation targets an 
address in or above the reserved space.

 A Program read is attempted above user code space. This occurs when user code attempts to branch 
to an address in or above the reserved space.

 A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section 
“14.3. Security Options” on page 127).

 A Flash read, write, or erase is attempted when the VDD Monitor is not enabled to the high threshold 
and set as a reset source.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the RST pin is unaffected by 
this reset.

16.8.  Software Reset
Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 fol-
lowing a software forced reset. The state of the RST pin is unaffected by this reset.
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C8051F55x/56x/57x
17.5.  Memory Mode Selection
The external data memory space can be configured in one of four modes, shown in Figure 17.2, based on 
the EMIF Mode bits in the EMI0CF register (SFR Definition 17.2). These modes are summarized below. 
More information about the different modes can be found in Section “17.6. Timing” on page 151.

Figure 17.2. EMIF Operating Modes

17.5.1. Internal XRAM Only

When bits EMI0CF[3:2] are set to 00, all MOVX instructions will target the internal XRAM space on the 
device. Memory accesses to addresses beyond the populated space will wrap on 2 kB boundaries. As an 
example, the addresses 0x800 and 0x1000 both evaluate to address 0x0000 in on-chip XRAM space.

 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address 
and R0 or R1 to determine the low-byte of the effective address.

 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.

17.5.2. Split Mode without Bank Select

When bit EMI0CF.[3:2] are set to 01, the XRAM memory map is split into two areas, on-chip space and off-
chip space.

 Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.

 Effective addresses above the internal XRAM size boundary will access off-chip space.

 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-
chip or off-chip. However, in the “No Bank Select” mode, an 8-bit MOVX operation will not drive the 
upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate 
the upper address bits at will by setting the Port state directly via the port latches. This behavior is in 
contrast with “Split Mode with Bank Select” described below. The lower 8-bits of the Address Bus A[7:0] 
are driven, determined by R0 or R1.

 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip 
or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are driven 
during the off-chip transaction.

EMI0CF[3:2] = 00

0xFFFF

0x0000

EMI0CF[3:2] = 11

0xFFFF

0x0000

EMI0CF[3:2] = 01

0xFFFF

0x0000

EMI0CF[3:2] = 10

On-Chip XRAM

On-Chip XRAM

On-Chip XRAM

On-Chip XRAM

On-Chip XRAM

On-Chip XRAM

Off-Chip 
Memory

(No Bank Select)

On-Chip XRAM

0xFFFF

0x0000

Off-Chip 
Memory

(Bank Select)

On-Chip XRAM

Off-Chip 
Memory
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C8051F55x/56x/57x
3. The LIN controller does not directly support LIN Version 1.3 Extended Frames. If the application detects 
an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LIN0CTRL.7) instead 
of setting the DTACK (LIN0CTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this 
situation, the LIN controller stops the processing of LIN communication until the next SYNC BREAK is 
received. 

4. Changing the configuration of the checksum during a transaction will cause the interface to reset and 
the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is 
in progress. The same applies to changes in the LIN interface mode from slave mode to master mode 
and from master mode to slave mode.

20.5.  Sleep Mode and Wake-Up
To reduce the system’s power consumption, the LIN Protocol Specification defines a Sleep Mode. The 
message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in 
the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode 
Frame from the Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by 
setting the SLEEP bit (LIN0CTRL.6). 

If the SLEEP bit (LIN0CTRL.6) of the LIN slave application is not set and there is no bus activity for four 
seconds (specified bus idle timeout), the IDLTOUT bit (LIN0ST.6) is set and an interrupt request is gener-
ated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit 
(LIN0CTRL.6). 

Sending a wake-up signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To 
send a wake-up signal, the application has to set the WUPREQ bit (LIN0CTRL.1). After successful trans-
mission of the wake-up signal, the DONE bit (LIN0ST.0) of the master node is set and an interrupt request 
is generated. The LIN slave does not generate an interrupt request after successful transmission of the 
wake-up signal but it generates an interrupt request if the master does not respond to the wake-up signal 
within 150 milliseconds. In that case, the ERROR bit (LIN0ST.2) and TOUT bit (LIN0ERR.2) are set. The 
application then has to decide whether or not to transmit another wake-up signal. 

All LIN nodes that detect a wake-up signal will set the WAKEUP (LIN0ST.1) and DONE bits (LIN0ST.0) and 
generate an interrupt request. After that, the application has to clear the SLEEP bit (LIN0CTRL.6) in the 
LIN slave. 

20.6.  Error Detection and Handling
The LIN controller generates an interrupt request and stops the processing of the current frame if it detects 
an error. The application has to check the type of error by processing LIN0ERR. After that, it has to reset 
the error register and the ERROR bit (LIN0ST.2) by writing a 1 to the RSTERR bit (LIN0CTRL.2). Starting a 
new message with the LIN controller selected as master or sending a Wakeup signal with the LIN control-
ler selected as a master or slave is possible only if the ERROR bit (LIN0ST.2) is set to 0. 
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C8051F55x/56x/57x
21.1.  Bosch CAN Controller Operation
The CAN Controller featured in the C8051F550/1/4/5, ‘F560/1/4/5/8/9, and ‘F572/3 devices is a full imple-
mentation of Bosch’s full CAN module and fully complies with CAN specification 2.0B. A block diagram of 
the CAN controller is shown in Figure 21.2. The CAN Core provides shifting (CANTX and CANRX), serial/
parallel conversion of messages, and other protocol related tasks such as transmission of data and accep-
tance filtering. The message RAM stores 32 message objects which can be received or transmitted on a 
CAN network. The CAN registers and message handler provide an interface for data transfer and notifica-
tion between the CAN controller and the CIP-51.

The function and use of the CAN Controller is detailed in the Bosch CAN User’s Guide. The User’s Guide 
should be used as a reference to configure and use the CAN controller. This data sheet describes how to 
access the CAN controller.

All of the CAN controller registers are located on SFR Page 0x0C. Before accessing any of the CAN regis-
ters, the SFRPAGE register must be set to 0x0C. 

The CAN Controller is typically initialized using the following steps:

1. Set the SFRPAGE register to the CAN registers page (page 0x0C).

2. Set the INIT and the CCE bits to 1 in CAN0CN. See the CAN User’s Guide for bit definitions.

3. Set timing parameters in the Bit Timing Register and the BRP Extension Register.

4. Initialize each message object or set its MsgVal bit to NOT VALID.

5. Reset the INIT bit to 0.

Figure 21.2. CAN Controller Diagram

21.1.1. CAN Controller Timing

The CAN controller’s clock (fsys) is derived from the CIP-51 system clock (SYSCLK). The internal oscillator 
is accurate to within 0.5% of 24 MHz across the entire temperature range and for VDD voltages greater 
than or equal to the minimum output of the on-chip voltage regulator, so an external oscillator is not 
required for CAN communication for most systems. 

Refer to Section “4.10.4 Oscillator Tolerance Range” in the Bosch CAN User’s Guide for further informa-
tion regarding this topic.
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overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable 
and re-enable) the SMBus in the event of an SCL low timeout.

22.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus 
is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and 
SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the 
SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated 
following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only 
implementation.

22.4.  Using the SMBus
The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting con-
trol for serial transfers; higher level protocol is determined by user software. The SMBus interface provides 
the following application-independent features:

 Byte-wise serial data transfers

 Clock signal generation on SCL (Master Mode only) and SDA data synchronization

 Timeout/bus error recognition, as defined by the SMB0CF configuration register

 START/STOP timing, detection, and generation

 Bus arbitration

 Interrupt generation

 Status information

SMBus interrupts are generated for each data byte or slave address that is transferred. The point at which 
the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. 
When a transmitter (i.e. sending address/data, receiving an ACK), this interrupt is generated after the ACK 
cycle so that software may read the received ACK value; when receiving data (i.e. receiving address/data, 
sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgo-
ing ACK value. See Section 22.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or 
the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control 
register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 22.4.2; 
Table 22.4 provides a quick SMB0CN decoding reference.

22.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, 
select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is 
set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the 
INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, 
the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit 
is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of 
the current transfer).
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24.2.  SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the 
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when 
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer 
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data 
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag 
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device 
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex 
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The 
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is 
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by 
reading SPI0DAT. 

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire 
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-
MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is 
used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this 
mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a 
Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will 
typically default to being slave devices while they are not acting as the system master device. In multi-mas-
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. 
Figure 24.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this 
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices 
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 24.3 
shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an 
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value 
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be 
addressed using general-purpose I/O pins. Figure 24.4 shows a connection diagram for a master device in 
4-wire master mode and two slave devices.
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SFR Address = 0xF8; Bit-Addressable; SFR Page = 0x00

SFR Definition 24.2. SPI0CN: SPI0 Control

Bit 7 6 5 4 3 2 1 0

Name SPIF WCOL MODF RXOVRN NSSMD[1:0] TXBMT SPIEN

Type R/W R/W R/W R/W R/W R R/W

Reset 0 0 0 0 0 1 1 0

Bit Name Function

7 SPIF SPI0 Interrupt Flag.

This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are 
enabled, setting this bit causes the CPU to vector to the SPI0 interrupt service rou-
tine. This bit is not automatically cleared by hardware. It must be cleared by soft-
ware.

6 WCOL Write Collision Flag. 

This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate a 
write to the SPI0 data register was attempted while a data transfer was in progress. 
It must be cleared by software.

5 MODF Mode Fault Flag.

This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a mas-
ter mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). 
This bit is not automatically cleared by hardware. It must be cleared by software.

4 RXOVRN Receive Overrun Flag (valid in slave mode only).

This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the 
receive buffer still holds unread data from a previous transfer and the last bit of the 
current transfer is shifted into the SPI0 shift register. This bit is not automatically 
cleared by hardware. It must be cleared by software.

3:2 NSSMD[1:0] Slave Select Mode.

Selects between the following NSS operation modes: 
(See Section 24.2 and Section 24.3).
00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin.
01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device.
1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the 
device and will assume the value of NSSMD0.

1 TXBMT Transmit Buffer Empty.

This bit will be set to logic 0 when new data has been written to the transmit buffer. 
When data in the transmit buffer is transferred to the SPI shift register, this bit will 
be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.

0 SPIEN SPI0 Enable. 

0: SPI disabled.
1: SPI enabled.
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Figure 25.1. T0 Mode 0 Block Diagram

25.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The 
counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0. 

25.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start 
value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all 
ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If 
Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is 
not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be 
correct. When in Mode 2, Timer 1 operates identically to Timer 0. 

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the 
TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0
is active as defined by bit IN0PL in register IT01CF (see Section “13.3. External Interrupts INT0 and INT1” 
on page 122 for details on the external input signals INT0 and INT1).
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This mode allows software to determine the external oscillator frequency when an RC network or capacitor 
is used to generate the clock source. 

Figure 25.6. Timer 2 External Oscillator Capture Mode Block Diagram
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SFR Address = 0xCC; SFR Page = 0x00

SFR Address = 0xCD; SFR Page = 0x00

SFR Definition 25.11. TMR2L: Timer 2 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2L[7:0] Timer 2 Low Byte.

In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-
bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 25.12. TMR2H Timer 2 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2H[7:0] Timer 2 High Byte.

In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-
bit mode, TMR2H contains the 8-bit high byte timer value.
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Figure 26.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the 
hardware.

26.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare 
register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in 
PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is 
enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt ser-
vice routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn regis-
ter enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Cap-
ture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the 
ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.
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