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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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C8051F55x/56x/57x
SFR Address = 0xBB; SFR Page = 0x00; 

SFR Definition 6.13. ADC0MX: ADC0 Channel Select

Bit 7 6 5 4 3 2 1 0
Name ADC0MX[5:0]
Type R R R/W
Reset 0 0 1 1 1 1 1 1

Bit Name Function

7:6 Unused Read = 00b; Write = Don’t Care.
5:0 AMX0P[5:0] AMUX0 Positive Input Selection.

000000: P0.0
000001: P0.1
000010: P0.2
000011: P0.3
000100: P0.4
000101: P0.5
000110: P0.6
000111: P0.7
001000: P1.0
001001: P1.1
001010: P1.2
001011: P1.3
001100: P1.4
001101: P1.5
001110: P1.6
001111: P1.7
010000: P2.0
010001: P2.1
010010: P2.2 (Only available on 40-pin and 32-pin package devices)
010011: P2.3 (Only available on 40-pin and 32-pin package devices)
010100: P2.4 (Only available on 40-pin and 32-pin package devices)
010101: P2.5 (Only available on 40-pin and 32-pin package devices)
010110: P2.6 (Only available on 40-pin and 32-pin package devices)
010111: P2.7 (Only available on 40-pin and 32-pin package devices)
011000: P3.0 (Only available on 40-pin and 32-pin package devices)
011001: P3.1 (Only available on 40-pin package devices)
011010: P3.2 (Only available on 40-pin package devices)
011011: P3.3 (Only available on 40-pin package devices)
011100: P3.4 (Only available on 40-pin package devices)
011101: P3.5 (Only available on 40-pin package devices)
011110: P3.6 (Only available on 40-pin package devices)
011111: P3.7 (Only available on 40-pin package devices)
100000–101111: Reserved
110000: Temp Sensor
110001: VDD
110010–111111: GND
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C8051F55x/56x/57x
Comparator outputs can be polled in software, used as an interrupt source, and/or routed to a Port pin. 
When routed to a Port pin, Comparator outputs are available asynchronous or synchronous to the system 
clock; the asynchronous output is available even in STOP mode (with no system clock active). When dis-
abled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, 
and the power supply to the comparator is turned off. See Section “19.3. Priority Crossbar Decoder” on 
page 172 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be 
externally driven from –0.25 V to (VDD) + 0.25 V without damage or upset. The complete Comparator elec-
trical specifications are given in Table 5.12.

The Comparator response time may be configured in software via the CPTnMD registers (see SFR Defini-
tion 8.2). Selecting a longer response time reduces the Comparator supply current. See Table 5.12 for 
complete timing and supply current requirements.

Figure 8.2. Comparator Hysteresis Plot

Comparator hysteresis is software-programmable via its Comparator Control register CPTnCN. 

The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in 
Figure 8.2, various levels of negative hysteresis can be programmed, or negative hysteresis can be dis-
abled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Inter-
rupt enable and priority control, see “13. Interrupts” .) The CPnFIF flag is set to 1 upon a Comparator fall-
ing-edge, and the CPnRIF flag is set to 1 upon the Comparator rising-edge. Once set, these bits remain 
set until cleared by software. The output state of the Comparator can be obtained at any time by reading 
the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to 1, and is disabled by clearing this 
bit to 0.

Positive Hysteresis Voltage
(Programmed with CPnHYP Bits)

Negative Hysteresis Voltage
(Programmed by CPnHYN Bits)
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C8051F55x/56x/57x
SFR Address = 0x9D; SFR Page = 0x00

SFR Definition 8.3. CPT1CN: Comparator1 Control

Bit 7 6 5 4 3 2 1 0

Name CP1EN CP1OUT CP1RIF CP1FIF CP1HYP[1:0] CP1HYN[1:0]

Type R/W R R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CP1EN Comparator1 Enable Bit.

0: Comparator1 Disabled.
1: Comparator1 Enabled.

6 CP1OUT Comparator1 Output State Flag.

0: Voltage on CP1+ < CP1–.
1: Voltage on CP1+ > CP1–.

5 CP1RIF Comparator1 Rising-Edge Flag. Must be cleared by software.

0: No Comparator1 Rising Edge has occurred since this flag was last cleared.
1: Comparator1 Rising Edge has occurred.

4 CP1FIF Comparator1 Falling-Edge Flag. Must be cleared by software.

0: No Comparator1 Falling-Edge has occurred since this flag was last cleared.
1: Comparator1 Falling-Edge has occurred.

3:2 CP1HYP[1:0] Comparator1 Positive Hysteresis Control Bits.

00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.

1:0 CP1HYN[1:0] Comparator1 Negative Hysteresis Control Bits.

00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.
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C8051F55x/56x/57x
Figure 12.1. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using 
the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFR0CN). This 
function defaults to “enabled” upon reset. In this way, the autoswitching function will be enabled unless dis-
abled in software.

A summary of the SFR locations (address and SFR page) are provided in Table 12.3 in the form of an SFR 
memory map. Each memory location in the map has an SFR page row, denoting the page in which that 
SFR resides. Certain SFRs are accessible from ALL SFR pages, and are denoted by the “(ALL PAGES)” 
designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the “(ALL PAGES)” designa-
tion, indicating these SFRs are accessible from all SFR pages regardless of the SFRPAGE register value.

SFRNEXT

SFRPAGE

SFRLAST

CIP-51

Interrupt
Logic

SFRPGCN Bit
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C8051F55x/56x/57x
While CIP-51 executes in-line code (writing values to SPI0DAT in this example), the CAN0 Interrupt 
occurs. The CIP-51 vectors to the CAN0 ISR and pushes the current SFR Page value (SFR Page 0x00) 
into SFRNEXT in the SFR Page Stack. The SFR page needed to access CAN’s SFRs is then automatically 
placed in the SFRPAGE register (SFR Page 0x0C). SFRPAGE is considered the “top” of the SFR Page 
Stack. Software can now access the CAN0 SFRs. Software may switch to any SFR Page by writing a new 
value to the SFRPAGE register at any time during the CAN0 ISR to access SFRs that are not on SFR 
Page 0x0C. See Figure 12.3.

Figure 12.3. SFR Page Stack After CAN0 Interrupt Occurs
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C8051F55x/56x/57x
13.  Interrupts

The C8051F55x/56x/57x devices include an extended interrupt system supporting a total of 18 interrupt 
sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and exter-
nal inputs pins varies according to the specific version of the device. Each interrupt source has one or 
more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets 
a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is 
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI 
instruction, which returns program execution to the next instruction that would have been executed if the 
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the 
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt 
enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the 
EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 
disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has 
two or more opcode bytes. Using EA (global interrupt enable) as an example:

// in 'C': 
EA = 0; // clear EA bit. 
EA = 0; // this is a dummy instruction with two-byte opcode. 

; in assembly: 
CLR EA ; clear EA bit. 
CLR EA ; this is a dummy instruction with two-byte opcode.

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction 
which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruc-
tion, the interrupt may be taken. However, a read of the enable bit will return a 0 inside the interrupt service 
routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. 
However, most are not cleared by the hardware and must be cleared by software before returning from the 
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) 
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after 
the completion of the next instruction.

13.1.  MCU Interrupt Sources and Vectors
The C8051F55x/56x/57x MCUs support 18 interrupt sources. Software can simulate an interrupt by setting 
any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be gener-
ated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt 
sources, associated vector addresses, priority order and control bits are summarized in Table 13.1. Refer 
to the datasheet section associated with a particular on-chip peripheral for information regarding valid 
interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).
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C8051F55x/56x/57x
Table 13.1. Interrupt Summary

Interrupt Source Interrupt 
Vector

Priority 
Order

Pending Flag

B
it

 a
d

d
re

s
sa

b
le

?

C
le

ar
e

d
 b

y 
H

W
? Enable 

Flag
Priority 
Control

Reset 0x0000 Top None N/A N/A Always 
Enabled

Always 
Highest

External Interrupt 0 
(INT0)

0x0003 0 IE0 (TCON.1) Y Y EX0 (IE.0) PX0 (IP.0)

Timer 0 Overflow 0x000B 1 TF0 (TCON.5) Y Y ET0 (IE.1) PT0 (IP.1)
External Interrupt 1 
(INT1)

0x0013 2 IE1 (TCON.3) Y Y EX1 (IE.2) PX1 (IP.2)

Timer 1 Overflow 0x001B 3 TF1 (TCON.7) Y Y ET1 (IE.3) PT1 (IP.3)
UART0 0x0023 4 RI0 (SCON0.0)

TI0 (SCON0.1)
Y N ES0 (IE.4) PS0 (IP.4)

Timer 2 Overflow 0x002B 5 TF2H (TMR2CN.7)
TF2L (TMR2CN.6)

Y N ET2 (IE.5) PT2 (IP.5)

SPI0 0x0033 6 SPIF (SPI0CN.7) 
WCOL (SPI0CN.6)
MODF (SPI0CN.5)
RXOVRN (SPI0CN.4)

Y N ESPI0 
(IE.6)

PSPI0 
(IP.6)

SMB0 0x003B 7 SI (SMB0CN.0) Y N ESMB0 
(EIE1.0)

PSMB0 
(EIP1.0)

ADC0 Window Com-
pare

0x0043 8 AD0WINT 
(ADC0CN.3)

Y N EWADC0 
(EIE1.1)

PWADC0 
(EIP1.1)

ADC0 Conversion 
Complete

0x004B 9 AD0INT (ADC0CN.5) Y N EADC0 
(EIE1.2)

PADC0 
(EIP1.2)

Programmable 
Counter Array

0x0053 10 CF (PCA0CN.7)
CCFn (PCA0CN.n)
COVF (PCA0PWM.6)

Y N EPCA0 
(EIE1.3)

PPCA0 
(EIP1.3)

Comparator0 0x005B 11 CP0FIF (CPT0CN.4) 
CP0RIF (CPT0CN.5)

N N ECP0 
(EIE1.4)

PCP0 
(EIP1.4)

Comparator1 0x0063 12 CP1FIF (CPT1CN.4) 
CP1RIF (CPT1CN.5)

N N ECP1 
(EIE1.5)

PCP1 
(EIP1.5)

Timer 3 Overflow 0x006B 13 TF3H (TMR3CN.7)
TF3L (TMR3CN.6)

N N ET3 
(EIE1.6)

PT3 
(EIP1.6)

LIN0 0x0073 14 LIN0INT (LINST.3) N N* ELIN0
(EIE1.7)

PLIN0
(EIP1.7)

Voltage Regulator 
Dropout

0x007B 15 N/A N/A N/A EREG0
(EIE2.0)

PREG0
(EIP2.0)

CAN0 0x0083 16 CAN0INT 
(CAN0CN.7)

N Y ECAN0
(EIE2.1)

PCAN0
(EIP2.1)

Port Match 0x008B 17 None N/A N/A EMAT 
(EIE2.2)

PMAT 
(EIP2.2)

*Note:  The LIN0INT bit is cleared by setting RSTINT (LINCTRL.3)
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C8051F55x/56x/57x
17.4.  Multiplexed Mode
The External Memory Interface operates only in a Multiplexed mode. In Multiplexed mode, the Data Bus 
and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch 
(74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch 
is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface 
logic. An example of a Multiplexed Configuration is shown in Figure 17.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state 
of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are pre-
sented to AD[7:0]. During this phase, the address latch is configured such that the Q outputs reflect the 
states of the ‘D’ inputs. When ALE falls, signaling the beginning of the second phase, the address latch 
outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data 
Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section “17.6.1. Multiplexed Mode” on page 153 for more information.

Figure 17.1. Multiplexed Configuration Example
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C8051F55x/56x/57x
18.4.  External Oscillator Drive Circuit
The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A 
CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crys-
tal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 18.1. A 
10 MΩ resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configura-
tion. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as 
shown in Option 2, 3, or 4 of Figure 18.1. The type of external oscillator must be selected in the OSCXCN 
register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 18.6).

Important Note on External Oscillator Usage: Port pins must be configured when using the external 
oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins 
P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is 
enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar 
should be configured to skip the Port pins used by the oscillator circuit; see Section “19.3. Priority Crossbar 
Decoder” on page 172 for Crossbar configuration. Additionally, when using the external oscillator circuit in 
crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs. 
In CMOS clock mode, the associated pin should be configured as a digital input. See Section “19.4. Port 
I/O Initialization” on page 174 for details on Port input mode selection.
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C8051F55x/56x/57x
Figure 18.3. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

18.4.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as 
shown in Figure 18.1, Option 2. The capacitor should be no greater than 100 pF; however for very small 
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first 
select the RC network value to produce the desired frequency of oscillation, according to Equation 18.1, 
where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor 
value in kΩ.

Equation 18.1. RC Mode Oscillator Frequency

For example: If the frequency desired is 100 kHz, let R = 246 kΩ and C = 50 pF:

f = 1.23(103)/RC = 1.23(103)/[246 x 50] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 18.6, the required XFCN setting is 010b.

18.4.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in 
Figure 18.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, 
the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the 
required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capaci-
tor to be used and find the frequency of oscillation according to Equation , where f = the frequency of oscil-
lation in MHz, C = the capacitor value in pF, and VDD = the MCU power supply in Volts. 

XTAL1

XTAL2

10MΩ

22pF*22pF*

32.768 kHz

* Capacitor values depend on 
crystal specifications

f 1.23 10
3× R C×( )⁄=
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C8051F55x/56x/57x
The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-
OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is 
required even for the digital resources selected in the XBRn registers, and is not automatic. The only 
exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the 
PnMDOUT settings. When the WEAKPUD bit in XBR2 is 0, a weak pullup is enabled for all Port I/O config-
ured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is 
turned off on an output that is driving a 0 to avoid unnecessary power dissipation.

Registers XBR0, XBR1, and XBR2 must be loaded with the appropriate values to select the digital I/O 
functions required by the design. Setting the XBARE bit in XBR2 to 1 enables the Crossbar. Until the 
Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn 
Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority 
Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will deter-
mine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers 
are disabled while the Crossbar is disabled.
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C8051F55x/56x/57x
SFR Address = 0xF4; SFR Page = 0x00

SFR Address = 0xF3; SFR Page = 0x00

SFR Definition 19.6. P1MASK: Port 1 Mask Register

Bit 7 6 5 4 3 2 1 0

Name P1MASK[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P1MASK[7:0] Port 1 Mask Value.

Selects P1 pins to be compared to the corresponding bits in P1MAT.
0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event.
1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 19.7. P1MAT: Port 1 Match Register

Bit 7 6 5 4 3 2 1 0

Name P1MAT[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P1MAT[7:0] Port 1 Match Value.

Match comparison value used on Port 1 for bits in P1MAT which are set to 1.
0: P1.n pin logic value is compared with logic LOW.
1: P1.n pin logic value is compared with logic HIGH.
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C8051F55x/56x/57x
SFR Address = 0xF1; SFR Page = 0x0F

SFR Address = 0xA4; SFR Page = 0x0F

SFR Definition 19.13. P0MDIN: Port 0 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P0MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P0MDIN[7:0] Analog Configuration Bits for P0.7–P0.0 (respectively).

Port pins configured for analog mode have their weak pull-up and digital receiver 
disabled. For analog mode, the pin also needs to be configured for open-drain 
mode in the P0MDOUT register.
0: Corresponding P0.n pin is configured for analog mode.
1: Corresponding P0.n pin is not configured for analog mode.

SFR Definition 19.14. P0MDOUT: Port 0 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P0MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P0MDOUT[7:0] Output Configuration Bits for P0.7–P0.0 (respectively).

These bits are ignored if the corresponding bit in register P0MDIN is logic 0.
0: Corresponding P0.n Output is open-drain.
1: Corresponding P0.n Output is push-pull.
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C8051F55x/56x/57x
Indirect Address: LIN0DT1 = 0x00, LIN0DT2 = 0x01, LIN0DT3 = 0x02, LIN0DT4 = 0x03, LIN0DT5 = 0x04, 
LIN0DT6 = 0x05, LIN0DT7 = 0x06, LIN0DT8 = 0x07

LIN Register Definition 20.4. LIN0DTn: LIN0 Data Byte n

Bit 7 6 5 4 3 2 1 0

Name DATAn[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 DATAn[7:0] LIN Data Byte n. 

Serial Data Byte that is received or transmitted across the LIN interface.
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C8051F55x/56x/57x
21.  Controller Area Network (CAN0)

Important Documentation Note: The Bosch CAN Controller is integrated in the C8051F550/1/4/5, ‘F560/
1/4/5/8/9, and ‘F572/3 devices. This section of the data sheet gives a description of the CAN controller as 
an overview and offers a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip 
Bosch CAN controller. In order to use the CAN controller, refer to Bosch’s C_CAN User’s Manual as an 
accompanying manual to the Silicon Labs’ data sheet.

The C8051F550/1/4/5, ‘F560/1/4/5/8/9, and ‘F572/3 devices feature a Control Area Network (CAN) con-
troller that enables serial communication using the CAN protocol. Silicon Labs CAN facilitates communica-
tion on a CAN network in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). 
The CAN controller consists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message 
handler state machine, and control registers. Silicon Labs CAN is a protocol controller and does not pro-
vide physical layer drivers (i.e., transceivers). Figure 21.1 shows an example typical configuration on a 
CAN bus.

Silicon Labs’ CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical 
layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be 
configured to transmit or receive data. Incoming data, message objects and their identifier masks are 
stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is 
performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is 
needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data, 
and passes data for transmission via Special Function Registers (SFRs) in the CIP-51.

Figure 21.1. Typical CAN Bus Configuration

Silicon Labs MCU

CANTX CANRX

CAN_H
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Transceiver
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CAN 
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24.2.  SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the 
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when 
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer 
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data 
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag 
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device 
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex 
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The 
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is 
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by 
reading SPI0DAT. 

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire 
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-
MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is 
used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this 
mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a 
Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will 
typically default to being slave devices while they are not acting as the system master device. In multi-mas-
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. 
Figure 24.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this 
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices 
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 24.3 
shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an 
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value 
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be 
addressed using general-purpose I/O pins. Figure 24.4 shows a connection diagram for a master device in 
4-wire master mode and two slave devices.
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Figure 24.6. Slave Mode Data/Clock Timing (CKPHA = 0)

Figure 24.7. Slave Mode Data/Clock Timing (CKPHA = 1)

24.6.  SPI Special Function Registers
SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN 
Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate 
Register. The four special function registers related to the operation of the SPI0 Bus are described in the 
following figures.

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO

NSS (4-Wire Mode)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MOSI

SCK
(CKPOL=0, CKPHA=0)

SCK
(CKPOL=1, CKPHA=0)

SCK
(CKPOL=0, CKPHA=1)

SCK
(CKPOL=1, CKPHA=1)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO

NSS (4-Wire Mode)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MOSI
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SFR Address = 0xCC; SFR Page = 0x00

SFR Address = 0xCD; SFR Page = 0x00

SFR Definition 25.11. TMR2L: Timer 2 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2L[7:0] Timer 2 Low Byte.

In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-
bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 25.12. TMR2H Timer 2 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2H[7:0] Timer 2 High Byte.

In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-
bit mode, TMR2H contains the 8-bit high byte timer value.
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SFR Address = 0x94; SFR Page = 0x00

SFR Address = 0x95; SFR Page = 0x00

SFR Definition 25.16. TMR3L: Timer 3 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3L[7:0] Timer 3 Low Byte.

In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-
bit mode, TMR3L contains the 8-bit low byte timer value.

SFR Definition 25.17. TMR3H Timer 3 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3H[7:0] Timer 3 High Byte.

In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-
bit mode, TMR3H contains the 8-bit high byte timer value.
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Figure 26.9. PCA 9, 10 and 11-Bit PWM Mode Diagram

26.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other 
(8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA 
clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the out-
put on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a vary-
ing duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM 
Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a vary-
ing duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the 
capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each 
time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the 
overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 26.4. 

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Cap-
ture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the 
ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Equation 26.4. 16-Bit PWM Duty Cycle

Using Equation 26.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 
0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.
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